

Optimum Tilt Angle for Solar Panel in Pune

Jwalandhar Girnar, SY-Btech Mechanical, MIT-WPU Pune, jwalandhar@gmail.com

Prakash Gadhe, Associate Professor, MIT WPU, Pune, India, prakash.gadhe@mitwpu.edu.in

ABSTRACT - The main aim of this paper is to find the optimum tilt angle for a solar panel in Pune. This is achieved by maximizing the annual radiation and finding the corresponding slope for it. This work presents a simple numerical model, based on a spreadsheet, to optimize solar panel tilt angle for given panel and solar azimuth angle. First beam, diffused and reflected radiations on a titled surface are calculated independently for a given azimuthal angle in a day. Then then it is converted to monthly radiation which are then added to obtain the annual radiation. Then by implementing spreadsheet's solver, the tilt angle to yield maximum annual solar irradiation per square area of panel is evaluated.

Keywords- incident angle, tilt angle, beam radiation, diffused radiation, reflected radiation, annual solar radiation for tilted surface

I. INTRODUCTION

Renewable energy has become a very important source of energy in the current world, as the conventional sources of energy are on the brink of extinction as well as extremely polluting. There are multiple renewable energy sources but very few could actually meet the current world demand for energy, solar energy being prominent among them.

The sun is the only start of our solar system located at its centre. The earth and the other planets orbit the sun. Energy from sun the in form of solar radiation supports almost all life on earth via photosynthesis and drives the earth's climate and weather. Solar energy is a very large, inexhaustible source of energy. The power from the sun intercepted by the earth is approximately $1.8 \times [[10]] ^11$ MW [1], which is many thousand times than the present consumption rate on earth of all commercial energy resources. Thus, theoretically, solar energy could supply all the present and future energy needs of the world on a continuing basis. This makes it one of the most promising of the unconventional energy sources.

Presently the conversion rate of solar energy to usable energy is 15%-30% which is very low. In order to aid the current method of solar energy collection the slope of the solar panels must be such that the solar radiation fall normal to the surface so as to achieve maximum energy collection.

Due to the importance of this problem a number of research work on determining the optimum solar panel tilt angles have been published. The most prominent among them is work by Yin-Ping Chang uses combination of sequential neural-network approximation and orthogonal arrays (SNAOA) to determine the tilt angle for photovoltaic (PV) modules. In this study, seven Taiwanese areas were selected for analysis. The sun's position at any time and location was predicted by the mathematical procedure of Julian calendar; then, the solar irradiation was obtained at each site under a clear sky. Chen et al. used the Genetic Algorithm (GA) and the Simulated-Annealing (SA) method to determine the optimum tilt angle for the fixed solar-cell panels. They utilized the climatic data with GA and SA to calculate the optimum installation angle of the solar-cell panel for different locations in Taiwan. They found that the best monthly and annual installation angles obtained by computer simulations are very close to the data obtained by experiment.[2]

The current work uses a model programmed into a spreadsheet. It contains the relation between the tilt angle and annual radiation per unit area of that panel, then by using Excel Solver the radiation is maximized by varying the tilt angle. The model is then used to determine the optimum tilt angle for Pune.

II. ANALYSIS

Solar radiation is received at the earth's surface in an attenuated form because it is subjected to the mechanisms of absorption and scattering as it passes through the earth's atmosphere (fig.1). Absorption occurs primarily because of the presence of ozone and water vapour in the atmosphere, and to a lesser extent due to other gases (like CO_2 , NO_2 , CO, O_2 and CH_4) and particulate matter[2]. It results in an increase in the internal energy of the atmosphere. On the other hand, scattering occurs due to all gaseous molecules as well as particulate matter in the atmosphere. The scattered radiation is redistributed in all directions, some going back into space and some reaching the surface.

The atmosphere at any location on the earth's surface is often classified into two broad types-an atmosphere without clouds and atmosphere with clouds. In the former case, the sky is cloudless everywhere, while in the latter, the sky is partly or fully covered by clouds. The mechanism of scattering and absorption is similar for both types of atmosphere. However it is obvious that less attenuation takes place in a cloudless sky. Consequently maximum radiation is received on the earth's surface under the conditions of cloudless sky.

Solar radiation received at the earth's surface without change of directions that is in line with the sun, is called as beam or direct radiation[1]. The radiation received at the earth's surface from all parts of the sky's hemisphere (after being subjected to scattering in the atmosphere) is called as diffused radiation. The sum of the beam and diffused radiation is referred to as total or global radiation.

Fig. 1 scattered, diffused, and direct normal solar radiations

So the solar radiation falling on a titled plate is divided into three parts-

- 1) Beam radiation
- 2) Diffused radiation
- 3) Reflected radiation

The summation of these three radiation is the total radiation on a tilted surface

Before calculating the solar radiations one must be aware of solar geometry for a tilted surface (fig.2)

Here

 Θ = incident angle i.e. angle made by the sun with the normal of the panel

ISSN : 2454-9150 Special Issue - AMET-2019

 α = tilt angle of the panel

 γ = surface azimuthal angle i.e. the angle made by the component of the normal to the panel on the horizontal surface with south

 Φ = solar azimuthal angle i.e. angle made by the component of solar radiation in the horizontal surface with south

B= solar altitude angle

 θ_z = solar zenith angle

Now

 δ = Declination angle i.e. the angle made by the lines joining the centres of the sun and the earth with its projection on the equatorial plane

$$\delta(in \ degrees) = 23.45 \sin[\frac{360}{365} \times$$

$$(284 + n)$$
] ...(1

L= the latitude of a location is the angle made by the radial line joining the location to the centre of the earth with the projection of the line on the equatorial plane.

 ω =the hour angle is an angular measure of time and is equivalent to 15° per hour.

The slope α is the angle made by the plane surface with the horizontal. It can vary from 0° to 180°. It can be shown that-

$$\cos \theta = \sin L (\sin \delta \cos \alpha + \cos \delta \cos \gamma \cos \omega \sin \alpha) + \cos L (\cos \delta \cos \omega \cos \alpha - \sin \delta \cos \gamma \sin \alpha) + \cos \delta \sin \gamma \sin \omega \sin \alpha$$

...(2)

Beam radiation

The ratio of beam radiation flux falling on a tilted surface to that falling on horizontal surface is called the tilt factor for beam radiation[1]. It is denoted by r_b .

$$r_b = \frac{I_{bt}}{I_b} \qquad \dots (3)$$

Here

 I_{bt} = beam radiation flux on tilted surface

 I_b = beam radiation flux on horizontal surface

It is generally known that southern facing panels, in the northern hemisphere, results in the highest solar irradiation[2]. Therefore γ is kept 0°.

$$\cos\theta = \sin\delta\sin(L-\alpha) + \cos\delta\cos\omega\cos(L-\alpha) \quad \dots (4)$$

While for horizontal surface

 $\cos \theta_z = \sin L \sin \delta + \cos L \cos \delta \cos \omega \qquad \dots (5)$

Hence from equation (4) and (5)

$$=\frac{\cos\theta}{\cos\theta_z}\qquad\ldots(6)$$

Diffuse radiation

The tilt factor r_d for diffuse radiation is the ratio of diffuse radiation flux falling on the tilted surface to that falling on a horizontal surface. The value of tilt factor depends upon the distribution of diffuse radiation over the sky and on the portion of the sky seen by the tilted surface[1].

$$r_d = \frac{I_{dt}}{I_d} \qquad \dots (7)$$

Here

 I_{dt} = diffused radiation flux on tilted surface

 I_d = diffused radiation flux on horizontal surface

Since $(1 + \cos \alpha)/2$ is the radiation shape factor for a tilted surface with respect to sky

$$r_d = \frac{1 + \cos \alpha}{2} \qquad \dots (8)$$

Reflected radiation

As $(1 - \cos \alpha)/2$ is the radiation shape factor for the surface with respect to the surrounding ground and reflectivity is $\rho[1]$, the tilt factor for reflected radiation is given by,

$$r_r = \rho(\frac{1-\cos\alpha}{2}) \quad \dots(9)$$

Also

$$r_r = \frac{I_{rt}}{I_b + I_d} \qquad \dots (10)$$

Here

 I_{rt} = reflected radiation flux on a tilted surface

Therefore total radiation flux (I_T) on a tilted surface at any instant is given by [from equation (6), (3) (7), (8), (9) and (10)]

 $I_T = I_b r_b + I_d r_d + (I_b + I_d) r_r$...(11)

III. **METHODOLOGY**

To determine the fixed optimum solar panel angle that receives maximum annual solar irradiation equation (11) must be found for the whole year in terms of tilt angle and then I_T must be maximized by varying the tilt angle. This process is complex and quite tedious. A simplified approach is to use an Excel spreadsheet to evaluate the total annual irradiation per unit area and the use its solver to maximize the annual solar irradiation. The daily irradiation on the panel at solar time 12pm is calculated at the 21st of each month and it is assumed that the same irradiation is applicable for fifteen days before and after. The procedure for evaluating the daily solar irradiation for 21st of January is herein explained in detail.

1		1.0	19.8	47.71E												
	÷	1	Ę.	1	ŧ	Ť	1	τ.		Ť.	1	1	1	1	1	- E
		1.0	-													
		and the local division of	-	STATUS OF THE R.	-											
	307308-4	ann agu	-	WAR OZDICE	- 12											
		XApr	Ľ.				North Prot	ZATALSARK	1			107	0.411	D MAG		
	60	160	1	NO.MODULE	5	RANGE	DETHONA	1910	ħ	8	1	54	DRUED	0.00	m	BARTO FOR LADY
	1		1	33350	ï	1	61.0	3134	136	10803	1200	0.45	10035	2223	11.07	TEXTE
	11	14	9	12606	1	1	14:38	346	1578	1000	1390	5.0	19475	2400	御酒	RIVER
	11	Br		1404222	1	1	65.42	20.00	1514	1980	100	林田	MUNE	2546	8.0	20051237
	11	4	111	11900	1	1	85.00	2125	108	14RE	1200	10,36	10.40	1180	10.000	209,002
ł	п	The late	(1)	BURNE	1	1	10.36	3818	LEX.	1585	100	(9.15)	IDEN	100	HX1	2997.181
ŕ	11		12	114528	5	1	6852	-71,74	10W	11821	112E	(AD)	3471	2845	8(8)	METH
í	11	. 16	20	8403001	1	1	4853	40.59	193	1080	1000	12.76	630	1300	NE	MADE
i	11	24	211	174280	1	1	30.9	4152	1896	1988	123	12.11	3114	DAR	和記	223.098
ſ,	П	39	20	433967	1	1	1504	30.00	1398	5683	1200	我和	20100	2308	10.15	NELETA
ŝ	11	0e	31	4.5025	1	1	47.61	38.0	LIN	1080	は天	13.El	1643	1306	MAR	263887
ŕ	#	- bi	15	34001	1	1	68.16	5134	1300	(biant	120W	81.9	14426	1996	181	TT: (EM)
i	ti	30	质	34608	1	1	4634	动机	湖桥	1882	120	规和	15180	0.305	東北	网络加利
í													112	10,000	4101	109105

ISSN · 2454-9150 Special I

Fig. 3 excel spread sheet showing the calculation for optimum tilt angle

Figure 3 represents the excel spreadsheet. You can observe that cell C2 contains the latitude of Pune. Cell C3 contains the surface azimuthal angle which is taken as zero as the surface is facing south. Cell E3 has ground reflectivity ρ . Tilt angle is given in cell C4 for the time being it is randomly considered as 30°. Column from cell A6 contains the day of the months that is 21st. Column from cell B6 contains the months. N is the no of the day in a year. For 21st of January it is 21. Column from D6 contains the declination angle calculated by equation (1) the formula in the column cell is 23.45 * SIN((2 * PI()/365) * (284 +C7)).

Solar time is taken as 12pm for which hour angle is zero. The values of direct normal and diffused radiation for a horizontal surface are obtained from radiation book. Refer fig. 4 and fig. 5.

		6	7	8	9	10	11	12	13	Ņ	5	36	ĩ	18	19
I.	(an	5.556	1.334	58.338	97.B	122,232	127,788	13334	133.344	127.788	113.898	88.8%	52.762	5.556	0
Ē.	Feb	Û	1146	75.005	111.12	130,566	1389	14.65	1383	133.34	116.6%	102.766	72,228	选畅	0
	Mar	2778	3114	组研	127.788	141.678	15273	158,346	155.560	1273	397,234	131.566	\$7.23	¥114	2,778
2	ł¢	5,556	\$2702	111.12	138.9	155.568	166	172236	15.04	175.014	172,236	161,124	122,232	92.338	5,556
1	May	5.556	75.005	127,788	152,79	166.68	181.57	16.15	凯叔	191.602	18.38	166.68	131.344	77.764	8334
5	3at	11.112	81.18	10.24	遠辨	29.42	25.5%	201,144	26.68	161.132	淵筋	211.128	152,79	94.62	13.89
1	14	1556	8.92	摄磁	2002	38.362	45.58	48.924	45.04	27,24	10.50	39.20	172,235	基质	8334
2	Aug	1556	55	131,565	131.52	3533	338.916	4352	452.814	331.56	19234	302,812	102.734	墓飭	5.556
	Sep	2778	44.48	116676	180.57	32.79	24.43	312,802	315.692	288.912	255.5%	202.026	1209	41.67	1778
1	0d	Û	12.124	100.018	14.455	15538	16302	181.57	188.994	流版	播灯	14.55	9452	选彩	0
1	Nor	Û	11112	私料	9723	13.69	115.01	133,344	133,344	17.7萬	113,898	923	55	134	0
1	Dec	Û	5556	12702	葛肦	13.69	122,232	120	122.232	116.676	100.018	81.562	51.014	156	0
	Dec	Û	0	0	0	1	- 1	1	1	- 0	0	0	0	0	0

Fig. 4 Diffused radiation for a horizontal surface

							14							
	6	1	8	1	11	11	12	B	3	15	16	IJ	18	2
lat .	-5556	171	8.85	25.576	-919	28.8	618	655,608	909Q	455.992	177.8	弧滴	踧	
Feb	Û	160	19234	жΩ	58.95	研題	74.54	152.88	838	552,822	32.06	19273	13.89	
Var	-2778	835	197,238	37.74	32.74	RR	15.2	83354	780.634	55.04	35.8	177,792	202	-170
ka 🛛	-2778	44	211.128	425.034	611.322	MI	<u>23</u>	80.054	ma	57238	377,118	1613	4,48	1
Naj .	Û	55	130,574	4170	63.494	1839	79.26	183,395	75.92	566,712	300.0	25572	272	1
la I	Û	52762	213.905	顶巖	54171	602.05	631/62	617214	5128	477.815	113.914	圓94	4,48	1
N.	Û	U.A	19135	迎迎	38.90	400.EE	431.924	475,038	4176	375.08	27.26	175.014	389	177
Ag	Û	IA	168	18.3	派词	ЯB	20	172,24	NI	75.02	213.935	151	11.117	1
额	Û	IA	1817	1835	9£16	64.64	55.0%	5242	45.68	43.92	20578	197,124	27.78	-177
Ûđ	Ú	1.34	1112	27.26	4176	60.96	677,822	663,942	预將	41.9	18.91	1000	11.117	1
No	Û	1556	115.554	26.14	475.088	615715	9619F	68.94	611,35	431.594	280578	115.54	5556	1
k	Ú	171	81552	244.454	41144	558.378	翻湖	647_74	571.834	452,814	260578	11674	2,718	
k	¢	- 1	1	1	- 1	0	1	Û	1	ũ	0	I	0	

Fig. 5 Direct normal radiation for a horizontal surface

Now r_b is calculated equation (6),The formula in cell I7 is In the next column r_d is calculated by (SIN(D7 * (PI()/180)) * SIN(\$C\$2 * (PI()/180) - \$C\$4 * (PI()/180)) + COS(D7 * (PI()/180)) * COS(F7 * (PI()/180)) * COS(\$C\$2 * (PI()/180) - \$C\$4 * (PI()/180)))/(SIN(\$C\$2 * (PI()/180)) * SIN(D7 * (PI()/180)) + COS(\$C\$2 * (PI()/180)) * COS(D7 * (PI()/180)) * COS(F7 * (PI()/180))).equation (8) and the formula in cell J7 is 0.5 * (1 + COS(\$C\$4 * (PI()/180))). r_r in the next column is calculated by the equation (9), formula for that cell K7 is 0.5 * (1 - COS(\$C\$4 * (PI()/180))) * \$E\$3.

Now the beam radiation at tilted surface is calculated in column L by the equation (3), formula for it in the cell L7 is I7 * G7. Then the diffused radiation at tilted surface is calculated in column M by the equation (7), the formula in cell M7 is H7 * J7.And the last reflected radiation at tilted surface is calculated in column N by the equation (10), the formula in cell M7 is (G7 + H7) * K7. In the next column all this radiations are added to find the final radiation on a tilted surface. In the next column the total radiation is multiplied by no of days in that month. Same process is carried out for all other months and then monthly radiations are added to get the annual radiation in cell P19.

After finding the annual radiation excel solver is used to maximize the value of annual radiation (P19) while varying the tilt angle (C4). So for $\gamma = 0^{\circ}$ and $\rho = 0.2$ the optimum tilt angle obtained is 20.1393°.

IV. CONCLUSION

In this paper a simple model based on spreadsheets is used to predict the optimum solar collector tilt angle.

The model utilizes reflectivity and given radiation for a horizontal surface to obtain the optimum tilt angle. It is observed that from zero as tilt angle increases the annual radiation increases and reaches a maximum value (similar to bell curve). After that if the tilt angle is further increased the annual radiation goes on reducing. Also for the optimum tilt angle, the monthly solar irradiation during winter months are increased. Conversely, the solar irradiations for summer months are decreased.

V. ACKNOWLEDGMENT

I WANT TO ACKNOWLEDGE THE HELP OF PRAKASH GADHE SIR WHO GUIDED ME THOUGH OUT THE RESEARCH.

I WILL LIKE TO ALSO THANK MY PARENTS FOR SUPPORTING ME IN THIS VENTURE

REFERENCES

[1] S. P. SUKHATME, "Solar Energy Principles of collection and storage" second edition. pp. 61-98.

[2] Mohammad H. Naraghi "optimum solar panel tilt angle for maximum annual irradiation"