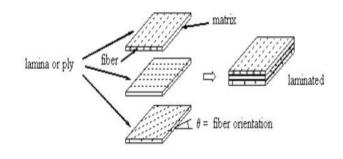


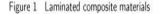
Testing and Analysis of Composite Slabs

Parimal Chilwarwar, Student, MITCOE Pune, chilwarwarparimal@gmail.com Hanuman Gitte, Student, MITCOE Pune, hgitte7@gmail.com Arun Goyal, Student, MITCOE Pune, arun.goyal996@gmail.com Anand Gadsing, Student, MITCOE Pune, anandgadsing15@gmail.com

Abstract Laminated composites are combination of layers of fibers which are combined together by means of a binder (resin). The current era finds wide applications of laminated composites, henceforth it is essential to be aware with its strengths and weakness. Total strength of a composite is combines strength of fibres and the strength of the binder used. With change in temperature there are considerable changes in the properties of composites. The current project concentrates on constructing a setup for testing of composites, the setup is equipped with an enclosure, provision for application of fatigue loading and also with provision for temperature variations (150°C to 250°C). The project also concentrates on testing of the laminated composite for its variation in strength at different temperatures. The specimen under test is a composite of glass fibres and epoxy resin which is subjected to fatigue loading. Plots of life of composite(cycles) Vs temperature at constant frequency and Plots of S-N curves .

Keywords — Composites, Fatigue, Fibres, Life cycles, Loading frequency, Resins, Strength.


I. INTRODUCTION


Laminate composite consists of number of layers, bonded together the the thickness by resin in direction. A layer may consist of short fibers, unidirectional continuous fibers fibers or woven embedded in matrix. Properties of the laminate can be altered by controlling orientation of fibers in each lamina. Adjacent layers (plies) having the same material and the same orientation are referred to as a ply group. The characteristics of the composite is determined by strength of composite, frequency of loading, temperature and number of cycles. To test the composite the system require mechanical as well as electrical components. Mechanical components include the mechanism to provide cyclic loading. electrical components include operator machine interface and control of mechanical input.

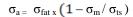
II. COMPOSITION OF THE LAMINATED COMPOSITE SHEET

The composite sheet is made out of layers of glass fibers. The layers of fibers are held in position by a resin. The resin used here is "epoxy Resin". This resin apart from having good mechanical strength it also shows excellent resistance to chemicals and also it requires less time for curing. It shows very less contraction during curing.

The glass fibre is popular for its wide applications, due to its light weight and providing good reinforcement. However when used in composites the glass fibre is less brittle. The fibres used in the composite sheet are made out of E-glass , which is alumino-borosilicate glass with lass than 1% w/w a lkali oxides.

III. FAILURE OF COMPOSITES

Failure of composites may occure due to breaking of fibres, micre-cracking of the matrix, de-bonding, delamination of laminated composites. Here the loading is applied in transverse direction hence compressive stresses are developed on the impact side whereas tensile stresses are developed on the other side.


IV. MATH

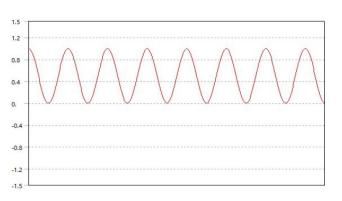
From the various criterions available like the Soderberg criterion, Goodman criterion and Gerber Criterion. This analysis is based on Goodman criterion.

This criterion helps to predict the fracture in composites or in other words it tells us about the decreasing life of the material. Mathematically it is given as:

ISSN : 2454-9150 Special Issue - AMET-2019

where,

 $\sigma_a =$ Alternating stress


 $\sigma_{fat} = Fatigue limit$

 σ_{ts} = ultimate tensile strength

 $\sigma_m = mean \ stress$

V. UNITS

Unit System	Metric (m, kg, N,	s, V, A) Degrees rad/s Celsius			
Angle		Degrees			
Rotational Velocity		rad/s			
Temperature		Celsius			
	Figure 2- U	Inits			
	-				
	Loadii Type	Zero-Based			
	Scale Factor	1.			
	Definiti				
E	Display Time	End Time			
	Option	ns Stress Life			
	nalysis Type ress Theory	Goodman			
		Equivalent (Von Mises)			
	Life Un				
1	Units Name	cycles			
Тсусі	e is equal to	1. cycles			
	Figure 3	3			
	Mean Stress Corre	ction Theory			
SN-None	Goodman	Soderberg Gerber			
Endurance	1				
/					
		0 Yield Ultima			
	Figure 4	1			
Object Na		Geometry			
	ate	Fully Defined			
	Definition	,			
Sou		rive\Documents\r_files\dp0\SYS\DM\SYS.agdb			
	/pe	DesignModeler			
Length L Element Con		Meters Program Controlled			
Display S		Body Color			
	Bounding Bo				
Lengt	h X	0.25 m			
Lengt		5.e-003 m			
Lengt	h Z Properties	0.1 m			
Volu		1.25e-004 m ³			
	ass	0.98125 kg			
Scale Factor Va	lue	1.			
	Statistics				
Boo Active Boo		1			
Active Boo					
Eleme Mesh Me		312 None			
west we	Basic Geometry O				
Paramet	ers	Yes			
Parameter H		DS			
Attribu Named Selectio		No			
Material Propert		No No			
	Advanced Geometry				
Use Associati		Yes			
Coordinate Syste		No			
Reader Mode Saves Updated I Use Instan		No Yes			
Smart CAD Upd		No			
Compare Parts On Upd		No			
Attach File Via Temp I	File	Yes			
Temporary Direct		C:\Users\arung\AppData\Local\Temp			
		3-D Vac			
		Yes			
Analysis Ty Decompose Disjoint Geome Enclosure and Symmetry Process	/pe etry	3-D Yes Yes			

Figure 6-constant amplitude load zero based

U		-			
Object Name	Life	Safety Factor	Damage	Equivalent Alternating Stress	
State	Solved				
		Scope			
Scoping Method	Geometry Selection				
Geometry	All Bodies				
		Definition			
Туре	Life	Safety Factor	Damage	Equivalent Alternating Stress	
Identifier					
Suppressed	No				
Design Life	1.e+009 cycles				
	Integrat	ion Point Res	ults		
Average Across Bodies	No				
		Results			
Minimum	7.4875e+005 cycles	0.95872		3.2856e+005 Pa	
Maximum			1335.6	9.0643e+007 Pa	

Figure 7-Life of slab

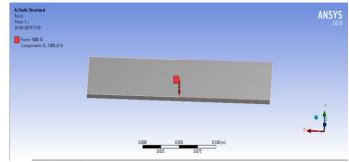


Figure 8 - Loading

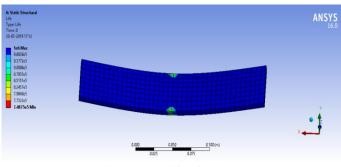
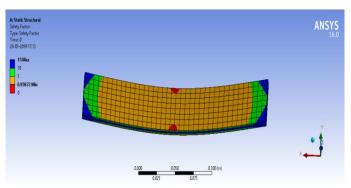



Figure 10 – Life of Slab

ISSN : 2454-9150 Special Issue - AMET-2019

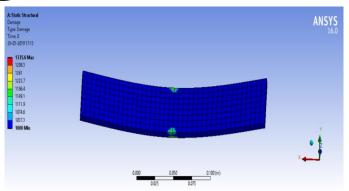


Figure 9 – Damage

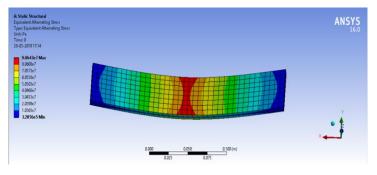


Figure 11 – Factor of safety

VI. CONCLUSION

The analysis focuses on determining the composite slab strength so as to suite its application. It helps to choose the other parameters of the application accordingly so as to avoid any kind of unwanted damage to its application.

REFERENCES

- A. Varvani-Farahani ,International Journal of Fatigue, Volume 113, Pages 253-263, August 2018
- [2] Epaarachchi JA, Clausen PD, A New Approach to a Fatigue Damage Model for Glass-Fibre Reinforced Plastic Composites, Proceeding of the Seventh International Conference on Composite Engineering (ICCE/7), D. Hui, Ed., Denver, Colorado; 2000.
- [3] Menard K. P., 2008. Dynamic Mechanical Analysis: A Practical Introduction. 2nd edition, CRC Press International Standards Organisation. ISO 13003:2003 Fibre reinforced plastics determination of fatigue properties under cyclic loading conditions, 2003.