
International Journal for Research in Engineering Application & Management (IJREAM)
ISSN : 2494-9150 Vol-02, Issue 07, Oct 2016

36 | IJREAMV02I071917 www.ijream.org © 2016, IJREAM All Rights Reserved.

Abstract - By pooling together the processing power of mobile devices within a crowd to form a ‘mobile cloud’, these

devices be efficiently utilized to help realize the full potential of mobile computing. However, the dynamic nature of

mobile computing makes sharing and coordinating work non-trivial. Although never been used before in the mobile

computing domain, the concept of work stealing possesses useful traits such as self-adaptive ness, and decentralized

nature that can help with these issues. Here we explore this concept of ‘work stealing’ for crowd computing on an

opportunistic network of mobile devices, for both machine and human computation.

Keywords: Mobile crowd computing, mobile cloud computing, work stealing.

I. INTRODUCTION
1

Mobile computing can provide a computing tool when and

where it is needed irrespective of user movement, thereby

supporting location independence. However, the inherent

problems of mobile computing such as resource scarcity,

finite energy and low connectivity pose problems for most

applications. These problems can be addressed by „sharing‟

resource intensive work with a resource rich server.

However in situations concerning mobile devices,

connecting to a remote resource cloud via WiFi or 3G is not

feasible because of bandwidth issues, data access fees, and

the battery drain. Increasing usage and capabilities of

smartphones, combined with the potential of crowd

computing can provide a collaborative opportunistic

resource pool to solve these problems. We define „mobile

crowd computing‟ as a local „mobile resource cloud‟

comprising of a collection of local nearby mobile devices,

utilized to achieve a common goal in a distributed manner.

In the Mobile Cloud computing environment, downloading

speed will be affected due to the waiting for the request to

be processed in the queue by the server. Without doing

efficient assignment of the request to the servers, in some

specific time, some servers will be in the overloaded status,

some will be in the idle state. This causes the unnecessary

delay in the downloading process. This issue is need to be

solve by efficiently assigning the requests to the respective

servers based on the workload of the servers as well as work

left to be done by the servers.

Crowd computing been conceptualized in various ways as

being related to crowd sourcing, human computation, social

computing, cloud computing and mobile computing[1][4].

A number of authors have put forward their own definitions

to address a perceived lack of a common definition. Bessis

et al. have noted that the emergence of differently labelled

technologies with somewhat similar purposes can cause

confusion, and in response have offered conceptions on how

these technologies relate to each other. Schneider et al. have

elaborated on earlier work and offer their own

characterization of crowd computing systems, mapping out

Crowd Sourced Work Stealing in Mobile Cloud

Computing

1
Prof. Sharmila Rathod,

2
Shabnam Noorani

1
Professor,

2
PG Student,

1,2
Dept. of Computer Engineering, Ragiv Gandhi College of Engineering,

Andheri, Maharashtra, India.

International Journal for Research in Engineering Application & Management (IJREAM)
ISSN : 2494-9150 Vol-02, Issue 07, Oct 2016

37 | IJREAMV02I071917 www.ijream.org © 2016, IJREAM All Rights Reserved.

the application space that is encompassed by crowd

computing. Some authors have referenced work on crowd

computing by other researchers but it appears that the

multiple streams of research and definitions[9] have

evolved somewhat independently, perhaps due to the

relative newness of this area of interest. By reviewing the

extant literature on the subject of crowd computing, this

paper aims to reconcile and integrate various descriptions

that have been put forward in order to derive a definition of

crowd computing. According to Pozzi, a definition serves to

delimit an entity with respect to all others, and plays a

central role in any inquiry[8]. A definition of crowd

computing can be used to position the research already

conducted on this subject to understand its relevance and

coverage[5]. Therefore a clear definition is the starting

point for further research, to articulate a meaningful

research problem to address gaps in prior research[3].

II. LITERATURE SURVEY

Niroshinie Fernando, Seng W. Loke and W. Rahayu

proposed "Mobile Crowd Computing with Work Stealing".

They explore concept of „work stealing‟ for crowd

computing on an opportunistic network of mobile devices,

for both machine and human computation. They also

present experimental data and discuss the findings. In paper

they also explore results with work stealing on mobile

devices show that it is a viable method for efficient work

distribution in a mobile cloud. They demonstrated the

possibility of a self-adaptive and decentralized mobile

computation cloud, that is able to obtain performance gains

even without prior information about the participating

devices[7].

Robert D. Blumofe Christopher F. Joerg Bradley C.

Kuszmaul Charles E. Leiserson Keith H. Randall Yuli Zhou

proposed concept of job scheduling with load balancing in

distributed environments in paper "Cilk: An Efficient

Multithreaded Runtime System". They discuss efficiency of

the Cilk work-stealing scheduler, both empirically and

analytically. They also show that on real and synthetic

applications, the “work” and “critical path” of a Cilk

computation can be used to accurately model

performance[10].

Robert D. Blumofe proposed concept of scheduling

Multithreaded Computation in paper "Scheduling

Multithreaded computations by Work Stealing". They

studied the problem of efficiently scheduling fully strict

multithreaded computations on parallel computers. In this

paper they discussed work staling scheduler for

multithreaded computations with their dependencies[11].

Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur

Naik, Ashwin Patti, discussed mobile cloud design &

migration in paper "CloneCloud: Elastic Execution between

Mobile Device and Cloud". This paper presents the design

and implementation of CloneCloud, a system that

automatically transforms mobile applications to benefit

from the cloud. The system is a flexible application

partitioner and execution runtime that enables unmodified

mobile applications running in an application-level virtual

machine to seamlessly off-load part of their execution from

mobile devices onto device clones operating in a

computational cloud. At runtime, the application

partitioning is effected by migrating a thread from the

mobile device at a chosen point to the clone in the cloud,

executing there for the remainder of the partition, and re-

integrating the migrated thread back to the mobile

device[13].

Eduardo Cuervoy, Aruna Balasubramanianz, Dae-ki Cho,

proposed VM migration in paper, "MAUI: Making

Smartphones Last Longer with Code Offload". This paper

presents MAUI, a system that enables fine-grained energy-

aware offload of mobile code to the infrastructure. MAUI

uses the benefits of a managed code environment to offer

the best of both worlds: it supports fine-grained code

offload to maximize energy savings with minimal burden on

International Journal for Research in Engineering Application & Management (IJREAM)
ISSN : 2494-9150 Vol-02, Issue 07, Oct 2016

38 | IJREAMV02I071917 www.ijream.org © 2016, IJREAM All Rights Reserved.

the programmer. MAUI decides at runtime which methods

should be remotely executed, driven by an optimization

engine that achieves the best energy savings possible under

the mobile device‟s current connectivity constrains[14].

James Dinan, D. Brian Larkins, P. Sadayappan, Sriram

Krishnamoorthy, and Jarek Nieplocha proposed concept

scalable work stealing in paper "Scalable work stealing". In

this work author investigate the design and scalability of

work stealing on modern distributed memory systems. We

demonstrate high efficiency and low overhead when scaling

to 8,192 processors for three benchmark codes: a producer-

consumer benchmark, the unbalanced tree search

benchmark, and a multiresolution analysis kernel[15].

Daniel C Doolan, Sabin Tabirca, and Laurence T Yang. put

concept of message passing interface for the mobile

environment. This paper looks at how all these devices can

be used together of a collaborative fashion to solve parallel

computing problems in a Java based environment. The

means by which cross platform Bluetooth enabled

applications can be developed and executed is examined,

enabling mobile message passing to come into its own. The

effectiveness of this parallel architecture is examined, with

real world test results being presented to show that cross

platform mobile parallel computing is more than a viable

option[16].

N. Fernando, S.W. Loke, and W. Rahayu focuses concept of

mobile cloud computing framework to use local resources

in paper "Dynamic mobile cloud computing: Ad hoc and

opportunistic job sharing". In this paper, Author explores

the feasibility of a mobile cloud computing framework to

use local resources to solve these problems. The framework

aims to determine a priori the usefulness of sharing

workload at runtime. The results of experiments conducted

in Bluetooth transmission and an initial prototype are also

presented. They also discuss a preliminary analytical model

to determine whether or not a speedup will be possible in

offloading[7].

Gonzalo Huerta-Canepa and Dongman Lee. discuss concept

of A virtual cloud computing provider for mobile devices.

In this paper, we present the motivation and preliminary

design for a framework to create Ad Hoc cloud computing

providers. This framework takes advantage of the

pervasiveness of mobile devices, creating a cloud among

the devices in the vicinity, allowing them to execute jobs

between the devices[17].

R Kemp, N Palmer, T Kielmann, and H Bal. propose

development of smartphone applications in paper "Cuckoo:

a computation offloading framework for smartphones". In

this paper authors present the first practical implementation

of this idea for Android: the Cuckoo framework, which

simplifies the development of smartphone applications that

benefit from computation offloading and provides a

dynamic runtime system, that can, at runtime, decide

whether a part of an application will be executed locally or

remotely[18].

Wei Lu and Dennis Gannon explores work on parallelism

on the multicore machine the XML serialization in the

paper "Parallel xml processing by work stealing". In this

paper, Authors present a stealing-based parallel XML

processing model. In this model the load balance among the

threads is dynamically controlled by the stealing-based

mechanism. And the stealing-based mechanism introduces

only a little bit performance penalty, and this is mainly

contributed by the stealing-from-bottom policy as well as

the lock free ABP-deque. They show how the stealing-based

mechanism , the stealing stub work and result gluing

techniques be applied in the parallel XML serialization[2].

Derek G. Murray, Eiko Yoneki, Jon Crowcroft, and Steven

Hand focuses the potential for crowd computing in the

paper "The case for crowd computing". In this paper,

International Journal for Research in Engineering Application & Management (IJREAM)
ISSN : 2494-9150 Vol-02, Issue 07, Oct 2016

39 | IJREAMV02I071917 www.ijream.org © 2016, IJREAM All Rights Reserved.

Author focuses the potential for crowd computing. Human

interaction can be used to spread computation through an

opportunistic network, and collect results. Furthermore, a

simple task farming model can achieve reasonable

performance in such a network, and dramatically better

performance when community detection is used. A crowd

computation should be energy-efficient, so the amount of

wasted work must be small. Author also presented realistic

model for crowd computing: static task farming[5].

III. EXISTING SYSTEM

The existing work on victim selection in non-mobile

computing domains such as suggest randomized and round

robin selection methods and in a „Pick-The-Richest‟ policy

has been suggested. However, considering the need to

conserve energy with the least amount of communication,

we have decided against the „Pick-The-Richest‟ policy. The

stealing mechanism is initiated by a device (thief) sending a

steal request to a potential victim. When a device receives

such a transmission, depending on its available job queue, it

can decide to become a victim[6][7]. The victim then

removes a certain number of jobs from its own job list, and

transmits them back to the thief. A device can be both a

victim and a thief[1][4].

Disadvantages of the Existing System

 More processing power on a mobile device than on s

node in distributed processing system.

 In a mobile cloud, the devices will be known to each

other a priori, unlike in a grid environment.

 Heavy traffic when communicating the server.

IV. PROPOSED SYSTEM

Work Stealing on multi processors. Each process maintains

a double ended queue containing the jobs. Each process

executes jobs from the head of the queue, and when the

queue is empty, attempts to steal jobs from the tail of a

queue that belongs to another process[3]. The concept of

work stealing in the context of mobile cloud can be

explained.

1. Video requests are sent to the Network gateway

server from the N number of clients.

2. Network gateway server forwards the request to the

Delegator Server.

3. Delegator Server receives the requests and creates

the work chunks in the queue format.

4. If both Worker Server1 and Worker Server2 are in

idle state, first work chunk will be assign to the Worker

Server1 and second work chunk will be assign to the

Worker Server2.

5. Worker Server1 and Worker Server2 download the

videos from the Video Data Server with respect to the

works chunks assigned to both.

6. If either any of the Worker Server completes the

assigned works chunk, next work chunk will be steal from

the Work Queue which is in Delegator Server.

After successful completion of all the works chunks both

Worker Servers will go to the idle state[11].

Fig. 1 System Architecture

Advantages of the Proposed System

 Less processing power on a mobile device than on s

node in distributed processing system.

 A mobile node has on a finite energy source.

 A resource pool made up of mobile devices is highly

volatile, and hence node availability is

inconsistent.

 In a mobile cloud, the devices will be unknown to

each other a priori, unlike in a grid environment.

International Journal for Research in Engineering Application & Management (IJREAM)
ISSN : 2494-9150 Vol-02, Issue 07, Oct 2016

40 | IJREAMV02I071917 www.ijream.org © 2016, IJREAM All Rights Reserved.

 Where nodes are established and approved before-

hand. Therefore a mobile cloud calls for a more

opportunistic and ad hoc behavior.

 A mobile cloud is most likely to be heterogeneous.

Although „work stealing‟ method has been employed for job

scheduling with load balancing in distributed environments

such as Cilk, and Parallel XML processing, it has not yet

been used in mobile computing domain, as far as we

know[2]. The need for dynamic load balancing was

demonstrated in, where distributed Mandelbrot set

generation was done over a set of mobile devices.

Mandelbrot set generation is one of the two applications

used here as well, but here, we use the work stealing

mechanism to efficiently distribute tasks. Work stealing in a

„mobile cloud‟ would mean connecting opportunistically to

unfamiliar devices, while considering the demands of

connectivity on the limited battery as well. Therefore, our

implementation employs an adjusted version of the

traditional work stealing scheme to better suit mobile

computing. We show that this mechanism will always give a

speedup gain, provided the devices are in no great distance

from each other[10].

V. IMPLEMENTATION DETAILS

In this section we discuss results from applications

employing work stealing on mobile cloud. The job

distribution and coordination is done according to the work

stealing mechanism. A worker device that can take video

quickly, can travel to view the parade from different interest

points, is able to finish his/her job list faster than others.

Once a worker‟s job list is exhausted, he/she can send the

video to the originating device, and has the option of

stealing video jobs from the delegator‟s job list, and vice

versa. Hence our approach of work stealing can be used to

load balance jobs done via crowd-sourcing or human

computation[12]. For example, a human who can take video

faster would be on a higher skill level than one who is

slower. The faster human can then, finish his/her job queue

and steal more jobs from the delegator. In this scenario too,

the system has no a priori knowledge of worker capabilities

and work stealing method ensures the system adapts

accordingly.

VI. CONCLUSIONS

Our results with work stealing on mobile devices show that

it is a viable method for efficient work distribution in a

mobile cloud. We have demonstrated the possibility of a

self-adaptive and decentralized mobile computation cloud

that is able to obtain performance gains even without prior

information about the participating devices. These results

are valid for the „generative‟ class of applications, where

both the machine and human computation applications

shown are „generative‟ type, in that the job description is

rather small, but the output results in a large amount of data

that needs to be transmitted back.

VII. FUTURE SCOPE

Device participation is an important factor to the success of

mobile crowd, and participation depends on the incentives.

We hope to include incentive management in our

framework in future work, where incentives could be in the

form of social contract such as in a group of friends,

common goals such as discussed in, or monetary as in the

case of crowd sourcing done.

Although current experiments have involved only three

devices this can further be scaled up to involve many more

devices by implementing hierarchical stealing, where

workers themselves become delegators. We aim to extend

our implementation to use the Amazon cloud as well, since

this would provide a comparison between offloading to

local versus remote devices.

REFERENCES

[1] Zeljko Vrba, H˚avard Espeland, P˚al Halvorsen, and Carsten

Griwodz, "Limits of Work-Stealing Scheduling", E. Frachtenberg

and U. Schwiegelshohn (Eds.): JSSPP 2009, LNCS 5798, pp.

280–299, 2009.

[2] Wei Lu, Dennis Gannon, "Parallel XML Processing by Work

Stealing", SOCP‟07, June 26, 2007, Monterey, California, USA,

ACM 978-1-59593-717-9/07/0006.

International Journal for Research in Engineering Application & Management (IJREAM)
ISSN : 2494-9150 Vol-02, Issue 07, Oct 2016

41 | IJREAMV02I071917 www.ijream.org © 2016, IJREAM All Rights Reserved.

[3] Niroshinie Fernando, Seng W. Loke and W. Rahayu, "Mobile

Crowd Computing with Work Stealing", 15th International

Conference on Network-Based Information Systems, 978-0-7695-

4779-4/12, 2012 IEEE.

[4]Prof. Sharmila Rathod, Shabnam Noorani, "Review of Mobile

Crowd Computing", International Journal of Innovative Research

in Computer and Communication Engineering, Vol. 4, Issue 4,

April 2016.

[5] Derek G. Murray, Eiko Yoneki, Jon Crowcroft, Steven

HandThe, Case for Crowd Computing, MobiHeld 2010, August

30, 2010, New Delhi, India.

[6] Paulo Mendes, Rute C Sofia, Jon Crowcroft, James Kempf,

User-Centric Networking, Dagstuhl Seminar 10372, September

12th-15th, 2010.

[7] Niroshinie Fernando, Seng W. Loke, and Wenny Rahayu,

Honeybee: A Programming Framework for Mobile Crowd

Computing, MOBIQUITOUS 2013, LNICST 120, pp. 224–236,

2013.

[8] Ana Luiza Dallora Moraes, Felipe Fonseca, Maria Gilda P.

Esteves, Daniel Schneider, Jano M. de Souza, A Meta-Model for

Crowdsourcing Platforms in Data Collection and Participatory

Sensing, Proceedings of the 2014 IEEE 18th International

Conference on Computer Supported Cooperative Work in Design.

[9] Kalpana Parshotam, Crowd computing: A literature review and

definition, Proceedings of the South African Institute for

Computer Scientists and Information Technologists Conference,

2013.

[10] Robert D. Blumofe, Christopher F. Joerg, Bradley C.

Kuszmaul, Charles E. Leiserson, Keith H. Randall, and Yuli

Zhou. Cilk: an efficient multithreaded runtime system. SIGPLAN

Not., 30:207–216, August 1995.

[11] Robert D. Blumofe and Charles E. Leiserson. Scheduling

multithreaded computations by work stealing. J. ACM, 46(5):720–

748, September 1999.

[12] F. Warren Burton and M. Ronan Sleep. Executing functional

programs on a virtual tree of processors. In Proceedings of the

1981 conference on Functional programming languages and

computer architecture, FPCA ‟81, pages 187–194, New York,

[13] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis,

Mayur Naik, and Ashwin Patti. Clonecloud: elastic

execution between mobile device and cloud. In Proceedings

of the sixth conference on Computer systems, EuroSys ‟11,

pages 301–314, New York, NY, USA, 2011. ACM.

[14] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho,

Alec Wolman, Stefan Saroiu, Ranveer Chandra, and

Paramvir Bahl. Maui: making smartphones last longer with

code offload. In Proceedings of the 8th international

conference on Mobile systems, applications, and services,

MobiSys ‟10, pages 49–62, New York, NY, USA, 2010.

ACM.

[15] James Dinan, D. Brian Larkins, P. Sadayappan, Sriram

Krishnamoorthy, and Jarek Nieplocha. Scalable work

stealing. In Proceedings of the Conference on High

Performance Computing Networking, Storage and Analysis,

SC ‟09, pages 53:1–53:11, New York, NY, USA, 2009.

ACM.

[16] Daniel C Doolan, Sabin Tabirca, and Laurence T

Yang. Mmpi a message passing interface for the mobile

environment. In Proceedings of the 6th International

Conference on Advances in Mobile Computing and

Multimedia, MoMM ‟08, pages 317–321, New York, NY,

USA, 2008. ACM.

[17] Gonzalo Huerta-Canepa and Dongman Lee. A virtual

cloud computing provider for mobile devices. In

Proceedings of the 1st ACM Workshop on Mobile Cloud

Computing & Services: Social Networks and Beyond, MCS

‟10, pages 6:1–6:5, New York, NY, USA, 2010. ACM.

[18] R Kemp, N Palmer, T Kielmann, and H Bal. Cuckoo: a

computation offloading framework for smartphones. In

Proceedings of The Second International Conference on

Mobile Computing, Applications, and Services, MobiCASE

‟10, 2010.

