
International Journal for Research in Engineering Application & Management (IJREAM)
ISSN : 2494-9150 Vol-02, Issue 08, Nov 2016

39 | IJREAMV02I082020 www.ijream.org © 2016, IJREAM All Rights Reserved.

Abstract Multicore architectures are increasingly adopted as computing platforms for safety-critical avionics systems

because of their superior performance and cost benefits. In the past two decades, the embedded systems research

community has devoted significant attention to the impact of interference on execution timing determinism that arises

mainly due to resource sharing. The interference issue reaches a new level of rigorousness in the context of a safety-

critical platform that makes timing analysis becomes more and more challenging and lead to extremely multifaceted

nondeterminism. We identify and assess the major sources of unpredictability of the system behavior and we discuss

potential methods to alleviate them or limit their timing impact. For this study, we consider a mixed-criticality safety-

critical domain, as is typical in aeronautics industry.

Keywords — embedded system, interferences, mixed-criticality, multicore processor, resource sharing, safety-critical system.

I. INTRODUCTION
1

With the relentless developments of high performance

multicore processors, several functionalities with different

criticality (i.e., importance) levels are assimilated together

and performed concomitantly on a shared platform. Though

typical multicore architectures are mostly intended to increase

the system performance, the adoption of multicore

architectures in safety-critical systems (SCS) have very

different demands in terms of safety, reliability, quality of

service, predictability and temporal correctness of the system.

Most of the SCS are mixed-criticality (MC) systems that

consolidate different tasks (workloads) with diverse criticality

levels on a single, shared execution platform. Each criticality

level reflects a degree of guarantee required against the

subsystem’s malfunction. The embedded system research

community is interested in implementing multicore processors

to realize the safety-critical avionics system.

Integrating various software components on a common

platform brings many potential benefits to the electronics

market, allowing us to schedule a large number of tasks hence

maximizing the resource utilization while decreasing the cost

and SWaP (Space, Weight, and Power consumption)

demands of the system. Resource sharing implies sharing

physical resources such as computational cores (i.e.,

processing elements (PE), buses, caches, main memory

(usually a DRAM), and memory controllers between system

components. However, using multicore architectures in the

SCS imposes several challenges including designing of

certifiable multicore architectures, the organization of the

system resources and integration of parallel software to the

computing industry has to face [1]. Effective utilization of

system resources, which is conceived to increase the average

performance, needs sharing. On the other hand, resource

sharing breaks rigidity in timing analysis and jeopardizes the

dependability of the system. A general property of these SCS

is that malfunctions may have catastrophic consequences,

such as the potential loss of human lives/equipment or severe

financial ramifications.

Multicore processors are shaking the basis of traditional

timing analysis methods of real-time applications, i.e.

traditionally, the worst-case execution time (WCET) can be

estimated on each task to calculate the schedulability of the

entire system when tasks are executing concurrently. Over the

last few decades, this basic notion has been widely accepted

by conventional scheduling algorithms; unfortunately, while

dealing with modern safety-critical systems, this notion is not

true and causes a deficiency of composability. Common

physical resources such as caches, global memory, and

interconnects are all sources of complex interferences and

timing dependencies between concurrent workloads. The

The Impact of Interference due to Resource

Contention in Multicore Platform for Safety-critical

Avionics Systems

1
K. Nagalakshmi,

2
N. Gomathi

1
Hindusthan Institute of Technology, Coimbatore, India.

2
Vel Tech Dr. RR & Dr. SR University, Chennai,

India
1
nagulaxmi@gmail.com,

2
gomathin@veltechuniv.edu.in

International Journal for Research in Engineering Application & Management (IJREAM)
ISSN : 2494-9150 Vol-02, Issue 08, Nov 2016

40 | IJREAMV02I082020 www.ijream.org © 2016, IJREAM All Rights Reserved.

adoption of a multicore processor in SCS creates the necessity

to certify that systems operate in the way they are intended to

and that consequences of a task’s failure are absolutely

tackled in a safe manner.

An important requirement of safety-critical applications is the

necessity to deliver predictable timing behavior: the temporal

correctness of the system should be analyzable during the

certification process with a quantitative metric and assured in

the implementation phase. Therefore, this requirement of

predictability is imperative for many critical domains,

including automotive, avionics, military, medical systems,

manufacturing, and nuclear power stations. There are several

methods to ensure predictability for serial applications. In

order to consider unpredictable interferences, such as

interrupts, with prudently analyzed timing characteristics,

additional execution time (or penalty) is added.

 In the multicore platform, a number of tasks may request a

shared resource simultaneously, but the resource can only

acknowledge one request at a time. A resource arbiter is

responsible to allocate the resource bandwidth among the

workloads. Consequently, the arbitration logics implemented

in some resources (e.g., buses) will delay the request of all but

one task, hence retarding the execution of other tasks. This

type of resources is usually named bandwidth resources.

Conversely, in some cases (e.g., shared caches), one task may

alter the state of the common resource such that the co-

running tasks incur additional execution latency. This type of

shared resources is known as storage resources.

The interferences due to resource contention are fall into one

of two camps: inherent interferences and virtual interferences.

Virtual interferences create artificial nondeterminism whereas

inherent interference eff ects introduce actual

nondeterminism. However, both are harmful for temporal

behavior of the system. The inherent interference effect is

behavior generated by the accesses from the co-running

accessors (resource-users) at random intervals. Hence, the

running application incurs higher execution delays. In

multicore platforms, memory and buses are deemed main

sources of inherent interferences. Different accessors access

the buses in uncontrolled manners. Main memory and caches

are shared among different cores simultaneously. Hence, such

interferences might increase the actual execution times of

workloads and therefore, inherently, the WCET bounds of

those workloads, too.

Virtual interferences are introduced by the inevitable

abstraction of the system (i.e., loss of information about

system behavior). Even though all the interferences might not

ever occur in a tangible way, the investigations cannot verify

these effects, as it can merely depend on its inadequate, static

information. As an example, if the execution time analysis for

task Γ abstracts from the parallel execution of multiple

workloads, it has to assume interference by other workload

Γ1 whenever Γ generates access request to a shared resource.

Loss of information due to an abstraction from the concurrent

workloads and the scheduling algorithm introduces non-

determinism, which confine what can really take place in

parallel computing. Limiting the loss of information about

parallel workloads by appropriate abstractions is a

challenging endeavor. It is the key objective of system

designer and application developers to bound both kinds of

interference effects. The basic intuition behind modern

system architecture is to yield a decent tradeoff between

performance, cost, and composable timing behavior where

resource contention is considered.

Through this work, we target to investigate interferences due

to resource sharing in multicore safety-critical embedded

systems. We examine the major sources of such interferences

which make timing predictability more challenging. We

address the challenges to predictability imposed by the

multicore architecture in consolidating several tasks with

varying criticality levels on a common platform or porting the

single core software onto multicore platforms. Subsequently,

we describe state-of-the-art approaches to ensure time-

predictable execution. Remainder sections of this article are

structured as follows. First, Section II of this paper identifies

some major sources of interferences owing to resource

contention on multicore systems. Next, Section III discusses

Hardware/software solutions to safely limit the interferences.

This is followed by Section IV which discusses the future

direction of research in the context of interference in

integrated platforms. Finally, we conclude the paper in

Section IV.

II. INTERFERENCES DUE TO RESOURCE

CONTENTION

Modern high-performance commercial off-the-shelf (COTS)

hardware will share the following built-in physical

components for cost, energy, and communication reasons:

System bus, Main memory (DRAM), Memory bus or

interconnects, the DRAM access controller, shared cache

memories, Intelligent built-in computational accelerators (e.g.

DMA engine, General Purpose Graphics Processing Units

(GPGPUs), Interrupt Service Routines (ISR), etc.),

Supporting built-in logics (e.g. Cache Coherence techniques,

Translation Look aside Buffers (TLB), etc.), Logical units,

I/O buses, Pipelines, and other attached peripherals.

International Journal for Research in Engineering Application & Management (IJREAM)
ISSN : 2494-9150 Vol-02, Issue 08, Nov 2016

41 | IJREAMV02I082020 www.ijream.org © 2016, IJREAM All Rights Reserved.

Figure1: Multicore Processor with the shared Resources

A multicore architecture with the shared resources is shown in

Figure 1. A workload running on one processing element can

access the shared DRAM through memory bus and memory

controller. The shared resources are assumed to process only

one request at a time. Access to these resources must be

arbitrated either through TDMA arbitration [2] or a dynamic

arbiter [3] or else an adaptive arbitration (as in FlexRay) [4].

A. System bus Review

One of the clearest facts of contention in the multicore

platform is the shared system bus. In a multicore system, bus

is an interconnect structure for transferring data among

various subsystems within a processor, between a processor

and its external devices, or among different processors. The

components of the system that demand bus access are named

as bus masters. To decrease the system complexity, only one

master is permitted to access the bus at a time and the

bounded bandwidth of that bus is used exclusively with

respect to the system’s timing. Multiple bus masters may

contend for the same bus simultaneously and hence lead to

bus conflicts. The system bus is tethering with the PEs, the

memory bus, common caches, and other attached devices as

shown Figure 2. Depending on the underlying hardware it

may also connect to other internal/external buses, such as

Peripheral Component Interconnect (PCI), CAN and

FlexRay.

Figure 2: Multicore processor with shared memory and bus

The connection of multiple buses needs the implementation of

interconnect bridges. In this case, a fine-grained mechanism is

used to control the access conflicts. According to employed

coherence protocols of private caches, these might also be

directed over the system bus. Applications that only rely on

asynchronous accesses mechanisms such as DMA traffic or

DRAM refresh causes additional interference effects on the

time determinism of the system. Typically, a hardware arbiter

is used to control access to the system bus. This arbitration

logic is depending on Round Robin (RR) and First-Come-

First-Serve (FCFS) policies. For example, in earlier

researches on limiting memory interference patterns, each

memory request is processed for a time slot of fixed size and

accesses originating from multiple PEs are granted in FCFS

or round robin fashion [5], [6], [7].

B. Main memory and shared memory bus

Main memory is becoming an important source of

unnecessary interferences that cause unpredictability owing to

its nondeterministic access time (i.e., processing time of a

memory request). Modern multicore platforms use Dynamic

Random Access Memory (DRAM) as their main memory to

satisfy high performance, low power and extremely low

latency demands of safety-critical applications. In general, the

main memory comprises multiple components such as ranks,

banks, and buses as shown Figure 3. The typical problem for

these components is simultaneous access by several cores in

the processor.

Figure 3: DRAM system organization

The memory access time is susceptible to variations

according to the requested location and the timing constraints

of rank/bank/bus. Memory requests from multiple banks can

be processed concurrently. Conversely, simultaneous requests

to one shared unit are typically serialized. Thus, multiple

requests by different cores to the same resource lead to extra

latencies, based on the resource’s competencies for

concurrent execution. For example, if a NoC (Network-on-

Chip) has adequate logical communication links to serve all

the PEs simultaneously; hence concurrent requests by

multiple cores are usually not a problem. An arbiter is

required to determine the order in which the pending access

requests are serviced, which can lead to additional access

latency. This additional latency can be circumvented by not

assigning the same memory bank to different threads on

International Journal for Research in Engineering Application & Management (IJREAM)
ISSN : 2494-9150 Vol-02, Issue 08, Nov 2016

42 | IJREAMV02I082020 www.ijream.org © 2016, IJREAM All Rights Reserved.

multiple cores. By applying this idea, modern researches

propose many software elucidations to assign memory banks

dynamically and evade bank sharing between different cores

[7]. In addition to this, researchers have also probed

approaches to limit the inherent interferences in memory [8].

According to the employed bus arbiter and a given accessing

budget, the interference problem on predictability is more or

less challenging. For instance, TDMA deterministic

arbitration logic is not a problem for predictability since a

constant accessing budget is assigned to each bus master. This

arbitration logic is illustrated in Figure 4.

Figure 4: Multicore system with shared resources and Composability by

timing isolation.

Other time-randomized mechanisms, like RR, can be

implemented in a deterministic way, based on how fine-

grained control of usage of these resources can be realized.

Accessing mechanisms that allow starvation of PEs are very

difficult to be evaluated since they do not provide a tight

upper bound on latencies. The possible interleaved accesses

from multiple PEs to DRAM may already exhibit extra

latencies if they work with various data (i.e., memory pages),

coercing the memory controller to constantly open and close

memory pages. Based on the amount of concurrent active

data, this may be a relatively serious concern. With respect to

predictability, one would require considering accesses with

the given theoretical upper bounds on latency, as far as

precise information of which accesses might crash at the

controller is missing. For dynamic memory systems, the

additional latency owing to memory refreshes is also a serious

dispute.

A modern DRAM system consists of a number of ranks; each

rank contains many DRAM chips as depicted in Figure 3. The

DRAM device has a narrow data bus size (typically 4, 8 or 16

bits), but chips are generally assembled to extend the size of

the data bus (e.g. 8 chips X 8 bits = 64 bits wide data buses).

Each DRAM device has several banks and accesses to

multiple banks can be served concurrently. A DRAM bank

contains a row-buffer (RB) and DRAM cells used to store

data. These cells are arranged in a 2D memory structure of

rows (i.e., pages) and columns. On a DRAM access, the target

row having the required data needs to be transferred into the

RB by means of the row decoder. The entire page that is

transferred into row-buffer is called an open page. Hence, the

width of the RB is the same as the width of a complete page.

Consequently, the data is fetched from the particular column

using the column decoder. Successive accesses to the same

page are processed directly and the required data is fetched

from the corresponding column without transferring the page

into RB once again. The processing time of memory request

varies according to which page is cached in the RB at present.

A request to the page that is already stored in the RB (i.e.,

open page) is said to be page -hit, whereas a request to the

page that is not stored in the RB presently (i.e., the closed

page) is called as a page-conflict. If the required page is

different than the page cached in the RB, then the active page

should be is precharged (closed) and the required page has to

be transferred to the RB. Subsequently, the required data item

is fetched from the RB. However, moving data over the data

bus experiences more delay. This latency is typically reduced

by bursting and the amount of data transmitted during the

execution of a read or write (R/W) operation is regulated by

the burst rate.

C. DRAM Access Controller

On-chip DRAM access controller is one of the main sources

of nondeterminism of the multicore processor regarding the

timing estimation of real-time applications. The DRAM

controller is an intermediary between the last-level caches

(LLC) and the DRAM chips that schedules memory R/W

requests generated by the core to the shared DRAM. For that

reason, it is liable for the implementation of DRAM access

control protocol. Furthermore, it interprets R/W operations

into equivalent DRAM commands. Subsequently, these

commands are scheduled according to the real-time

requirements of an underlying memory subsystem. For this

purpose, a DRAM controller contains a scheduler, an RB, and

an R/W buffers. The RB contains certain metadata (i.e.,

address, R/W type, the status of the request, and timestamp)

of the requestor. The R/W buffers store the data item read

from or to be stored in the memory.

Figure 5. Two-level hierarchical structure of DRAM memory scheduler

The memory scheduler decides the access sequences of

outstanding requests. This scheduler has a 2-level memory

hierarchy as depicted in Figure 5. The first-level hierarchy is

International Journal for Research in Engineering Application & Management (IJREAM)
ISSN : 2494-9150 Vol-02, Issue 08, Nov 2016

43 | IJREAMV02I082020 www.ijream.org © 2016, IJREAM All Rights Reserved.

made up of priority run queues and bank schedulers (BS).

Once an access request is made by the PE, first it is inserted

into the priority queue. Then the BS is responsible for

assigning priorities for outstanding requests and produces

corresponding commands. Furthermore, the BS monitors the

status of the bank. If a command with maximum priority

guarantees the timeliness of the bank, then it is considered as

a ready command and is transferred to the second level.

In the second level of this hierarchal architecture, a channel

scheduler (CS) is responsible for monitoring commands from

all BSs and keeps track the real-time guarantees of memory

subsystems. Amongst all the ready commands regarding the

desired channel real-time constraints, the CS selects the

highest priority command for service. When the command is

delivered, the CS sends an acknowledgment signal to the

corresponding BS, and then it chooses the subsequent

command to be processed.

D. Cache Memories

Caches are small, but fast built-in memories that temporarily

store a subset of instructions and/or data of the memory for

quick access. They can efficiently hide the huge access delay

gap between pipelines and shared DRAM. In current and

forthcoming multicore systems, more advanced levels of

cache hierarchies are implemented where for every added

level, size, and access time increase. The L1 (Level 1) cache

is not shared among PEs, i.e. private (local). Obviously, the

DRAM is common for each PE. The intermediary cache

memories (e.g. Level 2 (L2) caches) may be private or

common based on architecture. For a multicore platform with

a shared memory model, cache data should be kept coherent.

Cache coherency is a state where the change in the value of

the shared data item in main memory ought to be reflected in

the other processing unit’s caches to maintain a consistent

state of the memory hierarchy. In order to prohibit access to

outdated data, extra bus transactions are required. This

increases the amount of non-determinism, causing a deprived

predictability of the entire processor. Though the shared

memory model guarantees faster communication, sharing

leads to an adverse impact on the access time of each PE.

Regrettably, the temporal behavior of shared cache memory is

difficult to characterize statically. Sharing memory and

caches will cause different side-effects in terms of time

determinism. The major issue that we observe in a multicore

platform is the bottleneck for building time-predictable

software for accessing shared DRAM/caches. Traditionally,

concurrent accesses will be serialized, thus a memory request

incurs an additional latency due to the contention at the

shared resources [9]. An unintended interference of

employing a common cache is that by storing data into a

cache, one PE can evict cache lines belonging to another PE

since caches only have a bounded capacity. The consequence

of caching is hence decreased while a large number of PE

makes accesses to a common cache. Hence, the subsequent

request to the evicted cache lines can be delayed again,

however, it would have been fast if no other PE had stored to

the same location.

Maintaining data coherency persuades a new, extensive

slowdown to cache access: if one PE stores data item to a

memory location, concurrent read requests from other PEs

need to consider this, i.e. data item of a PE’s private caches

need to be invalidated by a write request from other PE. As a

consequence, there is an additional resource access delay

since the content has been invalidated, and it would be

updated. This may again cause bus access conflict due to

parallel operation from other PEs. Moreover, the bus

transaction required for the coherency mechanism itself may

be competed if several write requests happen.

In all of these scenarios, besides the tangible latencies when

running the application on physical resources, each of the

cited effects will also make a static WCET analysis more

conservative, particularly on complex architectures where it is

impossible to add a fixed delay to the result of the WCET

analysis performed under the unicore assumption. On

complex multicore processors, considering pipeline domino

effects may introduce additional difficulties in the static

WCET analysis. Since static worst-case temporal analysis is

the foundation for task scheduling approaches, pessimism has

the similar result as a tangible delay, as the sufficient resource

needs to be reserved.

E. Logical units and pipelines

Current MPSoC exploits hyperthreading principles, where

multiple PEs actually use the same execution units and

common caches such as instruction caches. Since one virtual

PE blocks and delays the execution of another PE associated

with the shared unit, this cause instruction level interferences.

Likewise, logical units, coprocessors and Graphic Processing

Units (GPUs) can be shared. The access conflicts in such

resources lead to potential latencies in the execution of

multiple PEs accessing the shared resource. Based on the

deployment of the resource scheduler, the delay can be

imperative or even cause starving of one PE if the scheduler

does not implement some level of fairness.

F. Addressable peripherals

In addition to processing elements and memories, there may

be addressable devices (e.g., I/O devices, interrupt controllers

and DMA engines) on the shared system bus. In a multicore

platform, access to these peripherals may be more difficult. In

International Journal for Research in Engineering Application & Management (IJREAM)
ISSN : 2494-9150 Vol-02, Issue 08, Nov 2016

44 | IJREAMV02I082020 www.ijream.org © 2016, IJREAM All Rights Reserved.

order to achieve predictable use of shared addressable devices

in multicore platforms, we need to enable exclusive access.

Typically, locking mechanisms are required to avoid critical

interferences amongst transactions accessing the same

resource. In unicore systems, kernel-level scheduling is

sufficient to ensure exclusive access. Alternatively, in a

concurrent multicore environment, spinlocks are used to

serialize access requests. Conversely, they have a noticeable

overhead related to unicore implementation, i.e., all but one

PE will be obliged to wait. Since spinlocks follow the shared

memory model, all the features of this memory model, cache

coherency mechanism, etc., apply here, also.

A different kind of interference arises from DMA engines that

independently access a common bus. The addressable devices

are analogous to processor cores regarding bus utilization and

contention. Interrupt controllers used in multicore

architectures are more advanced than in unicore processor

environment, as the interrupt controller has the capacity to

allocate interrupts to multiple PEs, based on requestor,

preference settings, and load. The well-established interrupt

routing methods may decrease timing impacts on multicore

platforms compared to unicore processors: with different PEs,

interrupts can be moved to other PEs, so that timing impacts

on a highly critical workload may be reduced. Conversely,

operating systems for multicore processors running in a

Symmetric Multi-Processing (SMP) model needs to trigger

other core-to-core interrupts (i.e., doorbell interrupts) for

realizing TLB synchronization, or so as to assign pending

workloads on other PEs. This may again cause more timing

impacts.

G. Other sources of unpredictability

According to the given platform, there are some impacts, not

associated with multiple cores that affect timing behavior of

the system. These impacts might include power and thermal

control strategies (e.g., Dynamic Voltage and frequency

Scaling (DVFS)) and BIOS handlers and microcode (i.e.,

emulation microcode). Modern SCS application developers

must take the consequences of power-saving techniques into

account, which are evidently associated with average-case

processor performance. Even though the clock-gating strategy

is instant, the switching time of going into and out of sleep

states is significant and must be considered in the analysis of

temporal behavior. In the same way, in DVFS technique,

speed-switch must be planned to reduce switching overheads.

Table 1: Undesired Mechanisms Affecting the timing predictability

Common

Resource
Mechanism

Impact

Level

System bus Conflicts generated by multiple

cores

 Conflicts generated by I/O devices,

DMA and other devices

 Conflicts generated by coherency

mechanism traffic

High

Main

memory
 Interleaved access by different PEs

leads to latency

 Latency due to memory refresh

cycles

High

Memory

bus and

controller

 Simultaneous access

 Timing anomalies High

Common

cache

memories

 Conflicts due to simultaneous access

 Delay due to cache line eviction

 Deferred read due to invalidated

data

 Latency owing to congestion of read

request generated by lower level

cache

 Conflicts due to coherency

High

Private

cache

memories

 Deferred read owing to invalidated

data

 Congestion by read requests

generated by coherency

High

TLBs Overhead due to coherency Medium/

High

Pipeline

components
 Conflicts generated by concurrent

hyper threads
High

Logical

units
 Conflicts generated by concurrent

applications

 Some platform-specific

consequences such as BIOS

Handlers, Cache stashing, etc.

Medium/

Low

Bridges Conflicts due to other connected

busses.

Medium/

Low

I/O devices

 Complexity due to locking

mechanism

 Status of addressable devices

changed by other thread/application

 Overhead due to interrupt routing

 Conflicts due to the addressable

peripherals like DMA engine, ISR,

etc.

Medium/

High

Temperature is one more issue that may distress the timing

behavior and the reliability of the SCS. Usually, some cooling

methods are implemented to reduce the core’s temperature to

a safe threshold. If such power/ thermal controlling activities

are performed during the execution of high-critical workloads

and the associated latencies owing to suspensions are not

taken into account in the temporal analysis, then the execution

of the workloads will be nondeterministic. Any timing impact

of such additional effects must, however, be examined in the

case-by-case fashion. The timing effects of contention for

these shared resources, which affect the predictability of the

system, were identified and given in Table 1.

International Journal for Research in Engineering Application & Management (IJREAM)
ISSN : 2494-9150 Vol-02, Issue 08, Nov 2016

45 | IJREAMV02I082020 www.ijream.org © 2016, IJREAM All Rights Reserved.

III. MITIGATION OF INTERFERENCE EFFECTS

In the following discussion, we summarize possible state-of-

the-art approaches, which are able to alleviate the unintended

interferences mentioned in the preceding section. It is not to

be deemed complete list but rather as a description of

potential tactics to handle the effect of such interferences.

A. System bus

Up to now the typical resolution to the problem of congestion

at the shared bus has been derived by deactivating parallel

acting cores in the processor and circumventing asynchronous

aggressive accesses such as DMA, and I/O traffic. On the

other hand, this does not utilize the performance benefits

delivered by multicore architectures completely. For

implementing coherency, some architectures provide a

distinct interconnection network. However, while deactivating

the coherency from shared bus utilization is useful, it only

decreases the effect of interferences, but it does not resolve

the problem. The same is true for exploiting multiple banks to

parallelize the concurrent accesses to memory. Once again,

this decreases the consequences with respect to the level of

average contention, but the problems continue.

Some methods motivate us to implement a deterministic

arbitration mechanism to alleviate shared bus contention (e.g.,

usage of priorities in accesses). Nevertheless, these

deterministic arbiters cannot be implemented in COTS

architectures owing to their negative influence on average-

case performance. The temporal correctness of the operations

has to be assured even when employed with traditional

hardware. By controlling the number of accesses, some

ongoing projects, like ARAMiS [10], [11], target to reduce

the highly complex interactions of multiple bus masters. Once

the maximum number of accesses in a particular time window

reaches a threshold, all the accesses are stalled. Although

coarse-grained access windows are considered as a viable

alternative, up to now, those approaches have not been

examined completely. Recently, RECOMP project aims at

providing methods to reduce the effect of contention through

the usage of system parameters to facilitate the worst case

scenario [12] or analytical techniques [5].

B. Main memory, shared memory bus and controller

In order to tackle the timing effects of resource contention,

different solutions are proposed in the literature. Beneath the

obvious methods to disable all but one core in the system and

considering the worst-case estimates for temporal behavior,

the following approaches are used: (i) complete concurrent

architectures, (ii) more deterministic arbiters (iii) execution

patterns, and (iv) resource limitation mechanisms. The first

two methods are absolutely platform-dependent. Therefore,

they cannot be implanted to the particular COTS processor if

they are not already available.

Methods following the third alternative provide deterministic

techniques of in what way the tasks are allowed to utilize

common resources. The key idea of many state-of-the-art

solutions is to define various application phases of calculation

and communication by means of common resources [13],

[14], [15]. As an example, Schranzhofer et al. [13]

decompose tasks in various phases such as acquisition,

execution, and replication. They evaluate many patterns by

varying the permissions of the phases to achieve

communication through common resources. Conversely,

Pellizzoni et al. [14] develop the Predictable Execution

Model (PREM) to decompose a task into several time-

predictable intervals. Each interval is again divided into

memory phase (where executable instructions and data are

preloaded into private caches) and execution phase (where the

workload does not incur any LLC conflict and it does not

produce any access request to the common bus). Accordingly,

in the execution phase, workloads will not incur any latency

since there is no additional congestion owing to the bus

sharing.

Boniol et al. [15] employ a similar deterministic execution

model for SCS but is emphasized on a multicore system.

Bellosa suggests to implements hardware means to obtain

runtime information, like cache hits and misses [16]. This

notion has been accepted in recent times by Nowotsch et al.

[10] and Yun et al. [7] for safety-critical applications.

Nowotsch et al. [10] present their approach to exploit timing

statistics for WCET analysis in SCS domains. As the WCET

of real-time tasks is memory bound, they decompose the

accesses of a task based on their delay that is based on the

number of parallel bus masters. By considering the number of

worst-case accesses, they can adopt various latencies for

accesses. Consequently, it decreases the WCET of a task,

compared to traditional methods, which consider the worst-

case access time for each memory request. Yun et al. exploit

certain applications behave counters to acquire statistics

about the memory accesses to distinguish highly-critical and

non-critical tasks. Their objective is to schedule tasks in such

a way that the impact of bounding non-critical tasks by their

accesses is minimal.

 All potential inter leavings of bus accesses and the ensuing

extra latencies can be handled either by conservative

assumptions for the estimation of worst-case execution time

or by the allocation of tasks to memory. Evidently,

conservative assumptions cause flexible WCETs which

decrease processor usage, since assumed scenarios only occur

hardly in reality. Therefore, the allocation of applications to

International Journal for Research in Engineering Application & Management (IJREAM)
ISSN : 2494-9150 Vol-02, Issue 08, Nov 2016

46 | IJREAMV02I082020 www.ijream.org © 2016, IJREAM All Rights Reserved.

memory is a more efficient one. The basic idea behind this is

to allocate the task to distinct memory locations such that they

cannot collide. The main issue in this method is the

granularity of such allocations and they are typically

platform-dependent.

C. Cache Memories

Unsurprisingly, cross-core cache interactions are predictable.

There are several research efforts that investigate the system

execution behavior [17], sometimes offering distinct

hardware means [18]. However, the prediction is challenging.

In order to precisely overcome unintended temporal impacts

generated by common caches in a multiple core processor, the

following methods can be used. The simplest, yet rarely

practicable, method is to turn off caching. Owing to large

access latency, it is considered as impractical. Hence, more

fine-grained techniques are required. To diminish the impact

of cache coherence mechanism, several configurations enable

coherence mechanism to be selectively disabled. The relaxed

memory models are appropriate for the software in use, thus

disabling coherence mechanism may be a possible method. In

some scenarios, software coherence mechanisms may be

implemented as an alternative and will make more predictable

execution [19].

Typically, cache coherence issues only ensue with a shared

memory model, where interaction between cores is based on

shared memory. As an alternative, new techniques may be

employed by OS or even in hardware. This will eliminate the

possible effect on coherence traffic, however, needs

rephrasing algorithms, and may need TLB synchronization

between PEs. There are also some methods such as cache

partitioning to reduce the cache eviction issue. Software

implementation can be possible [20] [21], or directly

implanted in hardware.

D. Logical units and pipelines

In hyper threading architecture, all resources including the

pipeline are shared. Hence, the applications running on the

multicore platform have more influences of resource

contention on their execution times. This makes

hyperthreading unfeasible for hard real-time SCS. To evaluate

tasks on multithreaded multicore systems the following

methods are used: (i) attempting to analyze individual tasks,

and (ii) hybrid analysis, which evaluates all workloads against

each other to identify the potential interferences and impacts

regarding resource contention [15], [22] [23] [24]. These

schemes are of highly complex and demanding additional

execution time or make pessimistic assumptions. One more

method to employ hyper threading principles is to switch off

all but one logical PEs so that the platform is not shared at all.

It is a simple but efficient solution, at least until the timing

impacts of hyper threading principle is better understood. One

possible approach for sharing external resources is to use a

server in software. The server is responsible for tackling

concurrent accesses to the common resources.

E. Addressable peripherals

Interference issues generated by peripherals as mentioned

earlier can be evaded by software/hardware solutions. First of

all, the requests to these peripherals can be controlled by a

software device driver. In some scenarios, the effect of an

interference solution on performance is tremendous.

Contemporary multicore architectures provide fine-grained

access control through I/O Memory Management Units (IO-

MMU). Another method is to employ the virtualization. The

shared device itself delivers different concurrent virtual

interfaces and is able to route the data to suitable dedicated

PEs. Achieving determinism through cautious application

design and temporal analysis are essential features to

guarantee that assumptions made by the device manufacturers

are satisfied. The important issue with arbitration to these

peripherals is its stateful nature, often prohibiting interleaved

access.

F. Other sources of unpredictability

The effects include any automated application migration

ability, as being currently investigated by an embedded

system community, cache hoarding activities, and many

others. By implementing special configurations, the system

designer is able to restrict such effects. Although cache

hoarding might enhance the average-case performance, its

unpredictable timing behavior needs to be estimated

accurately. Implementation of efficient thermal management

and power saving techniques reduce non-deterministic

temporal delays.

IV. OPPORTUNITIES FOR FUTURE RESEARCH

In safety-critical embedded systems, resource sharing not only

enacts challenges but also opens many avenues for exciting

opportunities when the system resources are utilized in

innovative ways. As an example, multi-threaded COTS

processors are most frequently used in integrated

architectures due to their good performance as well as energy

efficiency. In a safety-critical domain where the worst-case

performance and predictability are most important concerns,

micro architectural components such as pipelines can be

employed for prefetching data into cache to make the other

pipeline states more predictable. These approaches are most

appropriate for application-specific computing architecture.

Investigation of automatic mechanisms to leverage such

features can aid to realize improved WCET.

International Journal for Research in Engineering Application & Management (IJREAM)
ISSN : 2494-9150 Vol-02, Issue 08, Nov 2016

47 | IJREAMV02I082020 www.ijream.org © 2016, IJREAM All Rights Reserved.

The Multi-Processor System-on-Chip (MPSoC) architectures

are categorized as highly complex embedded systems [25].

They encompass several complex subsystems and special

tactics are required to reimburse the system complexity. In

spite of this, some vital information required to have an in-

depth understanding of application behaviors and trends on

multicore architecture is still missing and very difficult to use

in the aerospace system owing to the protective conduct of

chip manufacturers to preserve their competitive benefit.

Safety-critical engineering united forces and works with chip

manufacturers where the potential difficulty associated with a

shared platform is reduced by an enhanced understanding of

MPSoC. Multi-Core for Avionics (MCFA) is one such

industry working group established on the initiative of silicon

experts to address the problems regarding implementing the

multicore architecture in forthcoming safety aeronautic

products [26]. The approaches that involve extensive

investigation before they can be employed can be established

in the field of hindering the nondeterminism produced by

shared resources. As mentioned earlier, research opening lies

in providing techniques for scheduling the concurrent request

from multiple accessors to the shared resources, either by

implementing cooperative method or by means of TDMA

arbiter. Similar approaches could then also be established to

address the interference problems in a shared system bus.

V. CONCLUSION

In this paper, we address the interference problems due to

resource contention in multicore safety-critical systems. Most

of the challenges and open problems explored in this paper

are already well studied by research communities.

Conversely, there is an evident lack of clarity in the meaning

of integrated approaches and of the assumptions made to

resolve it. In the field of application-specific

microcontrollers, widely used in worst-case execution

scenario, most of the issues are resolved at the hardware level

but may have a detrimental effect on overall system

performance. In the arena of general-purpose computing,

typically designed to meet higher performance and greater

computing capacity requirements of real-time applications,

many of the problems cannot be tackled at the hardware level.

For some safety-critical computing realms, interference

solutions are at a relatively immature stage. Several solutions

focus on reducing the utilization of common system resources

(e.g., shared DRAM), and increasing the utilization of private

resources (e.g., caches) of the core, to thwart access

collisions. Few approaches only exploit designated PEs to

circumvent conflicts. However, both solutions are not always

feasible in practice, either technically or economically and not

at all efficient. For such a scenario, an extensive amount of

investigation on software arbiters is required before they can

be applied. Moreover, innovative programming models will

be strictly required to consider the constrained accessing

capacity of applications to use a shared platform.

REFERENCES

[1] Nagalakshmi, K., and Gomathi, N., "An Irreversible Transition

towards Multicore Platform in Safety-critical Domain for the

Aviation Industries", International Journal of Scientific Research in

Science, Engineering and Technology (IJSRSET), vol. 2, Issue 5,

pp.345-359, 2016.

[2] Schranzhofer, A., Chen, J., and Tiele, L., “Timing analysis for

TDMA arbitration in resource sharing systems,” in Proc. 16th Real-

Time and Embedded Technology and Applications Symposium

(RTAS), pp. 215–224, April 2010.

[3] Simon Schliecker, Mircea Negrean and Rolf Ernst, "Bounding

the shared resource load for the performance analysis of

multiprocessor systems", in Proc. Automation & Test in Europe

Conference & Exhibition (DATE 2010), IEEE, pp. 759-764, 2010.

[4] Schranzhofer, A., Pellizzoni, R., Jian-Jia Chen, and Thiele, L., "

Marco CaccamoA.Schranzhofer et al. Timing analysis for resource

access interference on adaptive resource arbiters", in Proc. 17th

Real-Time and Embedded Technology and Applications Symposium

(RTAS), pp. 213–222, 2011.

[5] Dasari, D., Andersson, B. Vincent Nelis S. M. P., Easwaran, A.,

and Lee, J., “Response time analysis of cots-based multicores

considering the contention on the shared memory bus,” in Proc.

IEEE 10th International Conference on Trust, Security and Privacy

in Computing and Communications (TrustCom), pp. 1068–1075,

2011.

[6] B. Andersson, A. Easwaran, and J. Lee, "Finding an upper

bound on the increase in execution time due to contention on the

memory bus in COTS-based multicore systems", in Proc. Special

Issue on the Work-in-Progress (WIP) Session at the 2009 IEEE

Real-Time Systems Symposium (RTSS), ACM, SIGBED Review,

vol.7(1), pp.4, 2010.

[7] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha,

“Memory access control in multiprocessor for real-time systems

with mixed criticality,” in Proc. 24th EUROMICRO Conference on

Real-Time Systems (ECRTS), pp. 299 – 308, 2012.

[8] Kim, H., de Niz, D., Andersson, B., Klein, M., Mutlu, O., and

Rajkumar, R., "Bounding memory interference delay in COTS-

based multi-core systems", Technical Report CMU/SEI-2014-TR-

003, Software Engineering Institute, Carnegie Mellon University,

2014

[9] Pellizzoni, R., Schranzhofer, A., Chen, J., Caccamo, M., and

Thiele, L., "Worst case delay analysis for memory interference in

multicore systems", in Proc. Design, Automation & Test in Europe

Conference & Exhibition (DATE 2010), pp. 741- 746, 2010.

International Journal for Research in Engineering Application & Management (IJREAM)
ISSN : 2494-9150 Vol-02, Issue 08, Nov 2016

48 | IJREAMV02I082020 www.ijream.org © 2016, IJREAM All Rights Reserved.

[10] Nowotsch, J., Paulitsch, M., B¨uhler, D., Theiling, H. Wegener,

S., and Schmidt, M., “Monitoring-based shared resource separation

for commercial multi-core system-on-chip,” in Proc. 26th

EUROMICRO Conference on Real-Time Systems (ECRTS), July

2014.

[11] ARAMiS Project, “Automotive, Railway and Avionics

Multicore Systems - ARAMiS,” http://www.projekt-aramis.de/

[12] Nowotsch, J., and Paulitsch, M., “Leveraging multi-core

computing architectures in avionics,” in Proc. 9th European

Dependable Computing Conference, pp. 132–143, May 2012.

[13] Schranzhofer, A., Chen, J.-j., and Thiele, L., “Timing

predictability on multi-processor systems with shared resources,” in

Proc. Embedded Systems Week - Workshop on Reconciling

Performance with Predictability, 2009.

[14] Pellizzoni, R., Betti, E., Bak, S., Yao, G., Criswell, J.,

Caccamo, M., and Kegley, R., “A predictable execution model for

COTS-based embedded systems,” in Proc. 17th IEEE Real-Time

and Embedded Technology and Applications Symposium, IEEE, pp.

269 – 279, 2011.

[15] Boniol, F., Cass´e, H., Noulard, E., and Pagetti, C.,

"Deterministic execution model on cots hardware,” in Proc. 25st

international conference on Architecture of computing systems

(ARCS), pp. 98–110, 2012.

[16] Bellosa, F., “Process cruise control: Throttling memory access

in a soft real-time environment,” University of Erlangen, Technical

Report, 1997.

[17] Yan J., and Zhang, W., “WCET analysis for multi-core

processors with shared L2 instruction caches,” in Proc. IEEE Real-

Time and Embedded Technology and Applications Symposium, pp.

80–89, April 2008.

[18] Hardy, D., Piquet, T., and Puaut, I., “Using bypass to tighten

WCET estimates for multi-core processors with shared instruction

caches,” in Proc. 30th IEEE Real-Time Systems Symposium, pp. 68–

77, 2009.

[19] Bolosky, W. J., “Software Coherence in Multiprocessor

Memory Systems,” Ph.D. Thesis, 1993.

[20] Kaseridis, D., Stuecheli, J., and John, L. K., “Bank-aware

Dynamic Cache Partitioning for Multicore Architectures,” in Proc.

International Conference on Parallel Processing, pp. 18–25, 2009.

[21] Lin,J., Lu, Q., Ding, X., Zhang, Z., Zhang, X., and

Sadayappan, P.,“Gaining Insights into Multicore Cache Partitioning:

Bridging the Gap between Simulation and Real Systems,” in Proc.

14th Intl Symp. on High-Performance Computer Architecture

(HPCA), pp. 367–378, 2008.

[22] Li, Y., Suhendra, V., Liang, Y., Mitra, T., and Roychoudhury,

A., “Timing analysis of concurrent programs running on shared

cache multi-cores,” in Proc. 30th Real-Time Systems Symposium,

pp. 638–680, Dec. 2009.

[23] Crowley, P., and Baer, J.-L., “Worst-case execution time

estimation of hardware-assisted multithreaded processors,” in Proc.

2nd Workshop on Network, Processors, pp. 36–47, 2003.

[24] Radojkovi´c, P., Girbal, S., Grasset, A., Qui˜nones, E., Yehia,

S., and Cazorla, F. J., “On the evaluation of the impact of shared

resources in multithreaded COTS processors in time-critical

environments,” ACM Transactions on Architecture and Code

Optimization, pp. 34:1–34:25, Jan. 2012.

[25] EASA, “Certification memorandum - development assurance of

airborne electronic hardware (Chapter 9),” Software & Complex

Electronic Hardware section, European Aviation Safety Agency,

CM EASA CM SWCEH - 001 Issue 01, 11th Aug. 2011.

[26] Freescale, “Freescale collaborates with avionics manufacturers

to facilitate their certification of systems using multi-core

processors: New working group focusing on commercial off-the-

shelf multi-core processing used in commercial avionics,” Press

release, Sep. 2011

