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Abstract—Networks are getting greater and more compound, yet superintendents rely on elementary tools such as and 

to debug problems. Thus, an programmed and organised approach for testing and debugging networks called 

“Automatic Test Packet Generation” (ATPG) is proposed. ATPG reads router configurations and produces a device 

independent model. The model is used to generate a minimum set of test packets to minimally exercise every link in the 

network or maximally exercise every rule in the network. Test packets are sent sporadically, and detected failures 

generate a separate mechanism to localize the fault. ATPG can detect both functional and performance problems. ATPG 

complements but goes beyond earlier work in static checking or fault localization which only localize faults given liveness 

results. ATPG protocol is used for implementation and results on two real-world data sets: Stanford University’s 

backbone network and Internet2. A small number of test packets serves to test all rules in these networks: For example, 

3500 packets can cover all rules in Stanford backbone network, while 55 are enough to cover all links. Sending 3500 test 

packets 9 times per second consumes less than 1% of link capacity. ATPG code and the datasets are publicly available. 

Keyword: Data plane analysis, network troubleshooting, test packet generation. 

I. INTRODUCTION 
It is disreputably hard to rectify networks. Every day, 

network engineers wrestle with router misconfigurations, 

fiber cuts, faulty interfaces, mislabeled cables, code bugs, 

intermittent links, and a several alternative reasons that 

cause networks to decline fully. Network engineers search 

out bugs using the foremost elementary to trace down root 

causes employing a combination of accumulated 

information and instinct. Debugging networks is simply 

turning more durable as networks have gotten larger and 

have gotten a lot of difficult. It’s a little surprise that 

network engineers are labeled “masters of complexity”. 

Think about following example. Suppose a router with a 

faulty contour card starts sinking packets taciturnly. Alex, 

who administers ninety nine routers, receives a price ticket 

from many unfortunate users complaintive regarding 

connectivity. First, Alex examine router to check if the 

configuration was modified recently and concludes that the 

configuration was unhurt. Next, Alex uses her data of the 

topology to triangulate the faulty device with ping and 

eventually, she calls a colleague to exchange the line Card. 

Organizations will modify ATPG to fulfil their 

requirements; for instance, they'll value more highly to 

merely check for network aliveness or check each rule to 

verify security policy. 

ATPG may be custom-made  to examine just for reachability or 

for routine also. ATPG will adapt to restraints like demanding 

test packets from solely a rare places within the network or 

using uncommon ATPG may also to tuned to allot additional 

test packets to use additional vital rules. for instance, additional 

test packets to firewall to Firewall rules to confirm HIPPA 

compliance. 

The results are inspiring . the amount of test packets wanted is 

surprisingly tiny. For the Stanford network with over 755 000 

rules and over ninety VLANs, we have a tendency to solely 

need 3700 packets to review all forwarding rules and ACLs. 

 
Fig 1: Static versus Dynamic checking 

On Internet2, 34000 packets serve to study all IPv4 

forwarding rules. Put another way, we can crisscross every 

rule in every router on the Stanford backbone 9 times every 

second by sending test packets that ingest less than 1% of 

network bandwidth.  The link cover for Stanford is even 

smaller, around 45 packets, which allows positive live ness 

testing every millisecond using 1% of network bandwidth.  
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II. LITERATURE SURVEY 

1. KLEE 

It introduce a new symbolic execution  tool, KLEE, skilled 

of automatically generating tests that achieve great 

coverage on a various set of complex and environmentally 

intensive programs. This method used KLEE to 

systematically check all 88 standalone programs in the 

GNU COREUTILS usefulness suite, which form the core 

user level environment installed on millions of UNIX 

systems, and perhaps are the single most profoundly tested 

set of open source programs in presence. KLEE generated 

tests achieve high line coverage on average over 89% per 

tool and significantly shattered the coverage of the 

developers' own handwritten test suites. 

It also used KLEE as a bug finding tool, applying it to 440 

applications, where it found 50 solemn bugs, counting three 

in COREUTILS that had been unexploited for over 15 

years. Finally, Is used KLEE to cross-check supposedly 

identical BUSY BOX and COREUTILS values, finding 

functional correctness errors and a numerous of 

irregularities. 

2. NETWORK TOMOGRAPHY OF BINARY NETWORK 

PERFORMANCE 

In network performance tomography, characteristics of the 

network peripheral, such as link loss and packet latency, are 

concrete from allied end to end measurements. Most work 

to date is based on manipulating packet level correlations, 

e.g. of multicast packets or unicast competitions of them. 

However, these methods are often limited in scope 

multicast is not broadly deployed or require deployment of 

additional hardware or software infrastructure. Some recent 

work has been successful in reaching a less detailed goal: 

identifying the lossiest network links using only 

uncorrelated end-to-end measurements. Moreover, the 

algorithm is sufficiently simple that can analyze its 

performance explicitly. 

3. NETWORK TOMOGRAPHY OF BINARY    

NETWORK     PERFORMANCE. 

In network performance tomography, characteristics of the 

network interior, such as link loss and packet latency, are 

inferred from correlated end-to-end measurements. Most 

work to date is based on exploiting packet level 

correlations, e.g., of multicast packets or unicast emulations 

of them. However, these methods are often limited in 

scope-multicast is not widely deployed-or require 

deployment of additional hardware or software 

infrastructure. Some recent work has been successful in 

reaching a less detailed goal: identifying the lossiest 

network links using only uncorrelated end-to-end 

measurements. In this approach,  

Its abstract the properties of network performance that 

allow this to be done and exploit them with a quick and 

simple inference algorithm that, with high likelihood, 

identifies the worst performing links. It give several 

examples of real network performance measures that 

exhibit the required properties. Moreover, the algorithm is 

sufficiently simple that can analyze its performance 

explicitly. 

1: input: Topology T ; End-to-end measurements         

fXkgk2R; 

2: Y0 = 1; 

3: W = ;; 

4: recurse(1); 

5: output: W; 

6: do 

7: subroutine recurse(k) { 

9: if(k 2 R) {Yk= Xk}; 

10: else { 

11: Yk= maxj2d(k) Yj; 

12: foreach(j 2 d(k)) 

13.} 

III. EXISTING SYSTEM 

Testing aliveness of a network is a fundamental problem 

for ISPs and huge data centre workers. Sending enquiries 

between every couple of bound ports is neither 

comprehensive nor ascendable. It serves to find a marginal 

set of end to end packets that negotiate each link. However, 

doing this needs a way of theorizing crosswise device 

specific configuration files, producing headers and the links 

they reach, finally determining a least set of test packets To 

check imposing reliability between policy and the 

configuration. 

DISADVANTAGES OF EXISTING SYSTEM 

 Not planned to identify aliveness failures, bugs router 

hardware or software, or enactment problems. 

 The two utmost mutual causes of network failure are 

hardware failures and software bugs, and that problems 

evident themselves both as approachable failures and 

throughput/latency dilapidation. 

 It check only Network layer status, Not Correct 

identify the issues in Network. 

IV. PROBLEM  STATEMENT 

In current system, the administrator manually decides 

which ping packet to be sent. Sending programs among 

every pair off boundary ports is neither broad nor scalable. 

This system is adequate to find least set of end to end 

packets that travel each link. However, doing this need a 

way of abstracting across device specific configuration files 

generating headers and links they reach and finally 

calculating a minimum set of test packets. It is not designed 

to identify failures caused from failed links and routers, 

bugs caused from faulty router hardware or software, and 

performance problems. The common causes of network 

failure are hardware failures and software bugs, in which 

that problems manifest both as reachability failures and 

throughput/latency degradation. To overcome this we are 

proposing new system. 
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TABLE 1. Comparative Study 

 

Sr. 

No. 

Paper Title Author’s 

Name 

Problem Solution 

1 Network performance 

anomaly detection and 

localization 

P. Barford, N. 

Duffield, A. Ron, 

and J. Sommers 

 

Location of perform-ance 

anomalies (e.g., high jitter 

or loss events) is critical to 

ensuring the effective 

operation of network 

infrastructures. 

Framework for detecting and 

localizing performance anomalies 

based on using an active probe-

enabled measurement 

infrastructure deployed on the 

periphery of a network 

2 Robust monitoring of 

link delays and faults in 

IP networks 

Y. Bejerano 

and R. Rastogi 

Link delays and faults in 

a Service Provider or 

Enterprise IP network 

Two-phased approach attempts 

to minimize both the monitoring 

infrastructure costs as well as the 

additional traffic due to probe 

messages. 

3 Klee: Unassisted and 

automatic generation of 

high-coverage tests for 

complex systems 

programs 

C. Cadar, D. 

Dunbar, and D. 

Engler 

Its time consuming n 

complex procedure to user 

Implement a tool KLEE, 

capable of automatically 

generating tests that achieve high 

coverage on a diverse set of 

complex  

4 Network tomography 

of binary network 

performance 

characteristics 

N. Duffield Network problems such 

as link loss and packet 

latency 

network performance that allow 

this to be done and exploit them 

with a quick and simple inference 

5 A NICE way to test 

Open Flow applications 

 

M. Canini, 

D.Venzano, P. 

Peresini, D.Kostic 

Risk of programming 

errors that make 

communication less reliable 

Implement a single controller 

program manages the network, 

seems to reduce the likelihood of 

bugs. 

 

V. PROPOSED SYSTEM 

ALGORITHM1-TESTPACKET GENERATION 

Main goal is to generate a set of test packets to exercise 

every rule in every switch function, so that any fault will be 

observed by at least one test packet. When generating test 

packets, there are two main con- straint0s: 

(1) Port: ATPG must use only test terminals that are 

available;  

(2) Header: ATPG must use only headers that each test 

terminal is permitted to send.  

Step 1: (Test Packet Selection) 

For a network with the switch functions,{T1,….TN} , and 

topology function(T), find the minimum set of test packets 

to exercise all reachable rules, subject to the port and 

header constraints. Hence, choose test packets using an 

algorithm call Test Packet Selection (TPS) Algorithm. TPS 

first find  all the equivalent classes between each pair of 

available ports. 

TPS Algorithm 

GOOGLE-QUERY-DELAY (tcp_segments) 

 S ← tcp_segments[1] 

 p ← s 

 c ← tcp_segments[2] 

 while c ≠ NIL 

     do if c.snd_time>p.snd_time and 

 c.ack_time>p.ack_time 

              then return ( s.snd_time, c.snd_time ) 

              else 

           If 

  c.size< MSS 

    then return ( s.snd_time, c.snd_time ) 

         p ← c 

       c ← c.next 

Step 2: Generate an all-pairs reachability table 

First start by determining the complete set of packet 

headers that can be sent from each test terminal, to every 

other test terminal.  

On every terminal port, Apply an all- x header (a header 

which has all wildcarded bits) to the transfer function of the 

first hub boxes connected to test terminals.  

Table no.7.1.1 All-pairs reachability table: all possible headers from 

every terminal  to every other terminal, along with  the rules 

Header Ingress 

Port 

Engr

ess 

Port 

Rule 

History 

h1 

h2 

…… 

Hn 

p11 

p21 

…… 

pn1 

p12 

p22 

…… 

pn2 

{r11, r12, 

….} 

{r21, r22, 

….} 

……. 

{rn1, rn2, 

….} 
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Step 3: Sampling 

Next, It need to pick at least one test packet to exercise 

every rule. In fact, by picking one packet in an equivalence 

class, It can test all of the rules reached by the class. The 

simplest scheme is to randomly pick one packet per class. 

This scheme only catches faults for which all packets 

covered by the same rule will experience the same fault. At 

the other extreme, It want to catch a fault for a specific 

header within a equivalence class, then it need to test every 

header in that class. 

Step 4: Compression. 

Several of the test packets picked in Step 2 exercise the 

same rule. Therefore it will find the minimum subset of the 

test packets for which the union of their rule histories 

covers all rules in the network. The cover can be changed 

to cover all links or all router queues. 

 

ALGORITHM 2- FAULT LOCALIZATION AND 

FAULT PROPAGATION 

This algorithm use for marking faulty rules assumes that a 

test packet will accomplished only if it accomplished at 

every hop. For perception, consider ping - a ping will 

succeed only when all the forwarding rules along the path 

behave correctly. Similarly, if a chain is jammed, any 

packets that travel through it will acquire higher latency 

and may fail an end-to-end test.  

Assumption 1 (Fault propagation) 

R(pk) = 1 if and only if Ɐr € pk:history, R(r; pk) = 1 

To mark a faulty rule, we start by finding the least set of 

potentially faulty rules. 

Formally: 

Problem 2 (Fault Localization). 

Given a list of (pk0, R(pk0), (pk1,R(pk1), …tuples, find 

all r that satisfies Ǝpki, R(pki;, r) = 0. 

 function NETWORK (packets, switches, Γ) 

   for pk0 ϵ packets do 

 T←FIND_SWITCH (pk0.p, switches) 

          for pk1 ϵ T (pk0) do 

              if pk1.p ϵ EdgePorts then 

                    #Reached edge 

                    RECORD (pk) 

             else  

                     #Find next hop 

 NETWORK (Γ(pk1), switches, Γ) 

Hence solve this problem opportunistically and in steps. 

Step 1: Consider the results from our regular test packets. 

For every passing test, place all the rules they exercise into 

the set of passing rules, P. If it similarly define all rules 

traversed by failing test packets F, then one or more of the 

rules in F are in error. Therefore F - P is a set of suspect 

rules. 

 

Step 2: ATPG trims to make the set of suspect rules as 

small as possible by weeding out all the correctly working 

rules. 

For this it make use of the reserved packets (which were the 

packets eliminated by the Min-Set-Cover). From the 

reserved packets, we _nd those whose rule history contains 

exactly one rule from the suspect set and send them. If the 

test packet fails, it shows that the exercised rule is for sure 

in error. If it passes, it can remove that rule from the 

suspect set. Then repeat the same process for the rest of the 

suspect set. 

Step 3: In most cases it have a small enough suspect set 

that can stop here and report them all. However, It can 

further narrow down the suspect set by sending test packets 

that exercise two or more of the rules in the suspect set 

using Step 2's technique. If these test packets pass, it  

shows that none of the exercised rules are in error and it 

can remove them from the suspect set. If our Fault 

Propagation assumption holds, the method will not miss 

any faults, and therefore will have no false negatives.  

VI. MATHMATICAL MODEL 

Specifying models are, 

b =0ǀ1ǀx where,  

b= bit 

pk = (p, h) where 

pk= packet 

h =[b0, b1,b2,……,bL] where, 

h=header 

p  = port 

T: pk pk 

T= Transfer function 

Complexity of finding test packet is, 

O(TDR^2)  and 

Complexity of computing reachability from one input 

port is, 

O(DR^2) where, 

T= numer of test terminals 

D= network diameter 

R= average number of rules 

Fault model 

R(r, pk)=   0, if pk fails at rule r 

                  1, if pk succeed at rule r, 

Where,   R= result of function 

               r = rule 

end-to-endvesion of result function 

R(pk) = 0, if pk fails 

              1, if pk succeeds 

Fault prapogation 

R(pk)= 1      if and only if 

r € pk 
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VII. SYSTEM ARCHITECTURE 

1. TEST PACKET GENERATION 

Let us consider that the sending and receiving of test 

packets is occurring in between a bunch of test terminals. 

Generating least number of “test packets” to execute all 

the packet processing rules in every node is the main aim 

of the proposed work. The system must respect two key 

constraints,  

while generating the test packets.  

1) Port - The tool should only make use of available test 

terminals,  

2) Header - The tool uses the headers for the purpose of 

granting send permission to every testing terminal. 

Test Packet Selection 

The switching functions T1,..Tn, and network topology 

function Г, the Test Packet Selection (TPS) algorithm can 

be used for selecting the test packets to study all packet 

processing rules which can be reachable, subject to the 

header and port restraints in a network. In between each 

and every couple of available nodes, Test Packet Selection 

algorithm (TPS) is used for finding the equivalent set of 

classes. 

 
Fig 2:  ATPG block diagram 

2. GENERATING TABLE WITH ALL-PAIR 

REACHABLECONDITIONS 

While the packet is transferred in between one test 

terminal to another test station, the tool starts working by 

calculating the total bunch of packet headers in the first 

step. Then it computes an entire rule sets so that it 

exercises along the path from each such packet header. It 

takes use of all-pair reachability algorithm described in 

order to discover the possible pairs. 

I. Sampling 

In the next step, the tool selects minimum of a test packet 

to act upon all the reachability rules. Selecting a lone 

packet per class in some random manner is the simplest 

mechanism. 

II. Compression: 

In this step, the packets are compressed to minimum 

number. So, the system selects a least set of packets from 

the sampling step, such that it covers all the rules of the 

merger of rule histories. The cover is selected in such a way 

that all connection or all router configurations are covered. 

This is known as Min-Set-Cover problem. While NP- Hard, 

greedy O(N2) gives a decent approximation, here N 

represents thetest packets. The obtained lowest set of test 

packets is referred as regular test packets fp1,p2, p3, p4, 

p5g and the remaining packets which are not selected 

comes under reserved test packetsfp6g. 

2. LOCALIZATION OFFAULTS 

After sending the minimum set of test packets across the 

node, it tests for failures. If any faults are present in the 

path, the system diagnosis the defects. A bunch of test 

packets are sent sporadically by ATPG. If test packets fail, 

ATPG pinpoints the fault(s) that caused the problem. A 

rule fails if its experimental nature differs from its 

expected nature. ATPG keeps path of where rules fail 

using a result function ”Success” and ”failure” depend on 

the behaviour of the rule: A forwarding rule fails if a test 

packet is not delivered to the proposed output port, where 

a drop rule behaves correctly when packets are dropped. 

Similarly, a link failure is a interruption of a forwarding 

rule in the topology function. On the other hand, if an 

output link is congested, failure is obtained through the 

latency of a test packet going above a threshold 

VIII.DESIGN DETAILS 

NODE 1. 

 

ROUTER 1 
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PACKET SEND 

 

IX. CONCLUSION 
We ave tried to implement the paper “Automatic Test 

Packet Generation” IEEE Trans April 2014 and according 

to the implementation the conclusion is testing liveness of a 

network is a vital problem for huge data centre operators. 

Sending inquiries between every couple of edge ports is 

neither comprehensive nor accessible. It be sufficient to 

find a least set of end to end packets that navigate each link. 

However, undertaking this necessitates a way of extracting 

across device particular configuration files, generating 

headers and the links they touch, and finally determining a 

least set of test packets. Even the crucial problem of 

automatically generating test packets for efficient liveness 

testing wants techniques akin to ATPG. 

ATPG, however, goes much auxiliary than liveness testing 

with the same framework. ATPG can test for approachable 

policy  and performance health. In implementation also 

amplifies testing with a simple fault localization scheme 

also assembled using the header space framework. As in 

software testing, the formal model helps exploit test 

coverage while diminishing test packets. the outcomes 

declares that all forwarding rules in Stanford backbone or 

Internet2 can be applied by a amazingly lesser number of 

test packets. 

Network managers today use primitive tools such as and. in 

the survey results indicate that they are eager for more 

sophisticated tools. Other fields of engineering indicate that 

these desires are not unreasonable: For example, both the 

ASIC and software design industries are buttressed by 

billion-dollar tool businesses that supply techniques for 

both static and dynamic verification. ATPG was a well-

known acronym in hardware chip testing, where it stands 

for Automatic Test Pattern Generation . the network ATPG 

will be equally useful for automated dynamic testing of 

production networks. 
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