
International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-03, Issue 03, Apr 2017

44 | IJREAMV03I032709 www.ijream.org © 2017, IJREAM All Rights Reserved.

Automatic Test Packet Generation
1
Prof. Shinde Vishal,

2
Mr. More Ganesh L,

3
Mr. Lawande Vaibhav D

1
Asst. Professor,

2,3
UG Student,

1,2,3
Computer Engg. Dept. Shivajirao S.Jondhle College of Engineering &

Technology, Asangaon, Maharshatra, India

2
ganeshmore30031994@gmail.com,

3
vaibhavlawande125@gmail.com

Abstract—Networks are getting greater and more compound, yet superintendents rely on elementary tools such as and

to debug problems. Thus, an programmed and organised approach for testing and debugging networks called

“Automatic Test Packet Generation” (ATPG) is proposed. ATPG reads router configurations and produces a device

independent model. The model is used to generate a minimum set of test packets to minimally exercise every link in the

network or maximally exercise every rule in the network. Test packets are sent sporadically, and detected failures

generate a separate mechanism to localize the fault. ATPG can detect both functional and performance problems. ATPG

complements but goes beyond earlier work in static checking or fault localization which only localize faults given liveness

results. ATPG protocol is used for implementation and results on two real-world data sets: Stanford University’s

backbone network and Internet2. A small number of test packets serves to test all rules in these networks: For example,

3500 packets can cover all rules in Stanford backbone network, while 55 are enough to cover all links. Sending 3500 test

packets 9 times per second consumes less than 1% of link capacity. ATPG code and the datasets are publicly available.

Keyword: Data plane analysis, network troubleshooting, test packet generation.

I. INTRODUCTION
It is disreputably hard to rectify networks. Every day,

network engineers wrestle with router misconfigurations,

fiber cuts, faulty interfaces, mislabeled cables, code bugs,

intermittent links, and a several alternative reasons that

cause networks to decline fully. Network engineers search

out bugs using the foremost elementary to trace down root

causes employing a combination of accumulated

information and instinct. Debugging networks is simply

turning more durable as networks have gotten larger and

have gotten a lot of difficult. It’s a little surprise that

network engineers are labeled “masters of complexity”.

Think about following example. Suppose a router with a

faulty contour card starts sinking packets taciturnly. Alex,

who administers ninety nine routers, receives a price ticket

from many unfortunate users complaintive regarding

connectivity. First, Alex examine router to check if the

configuration was modified recently and concludes that the

configuration was unhurt. Next, Alex uses her data of the

topology to triangulate the faulty device with ping and

eventually, she calls a colleague to exchange the line Card.

Organizations will modify ATPG to fulfil their

requirements; for instance, they'll value more highly to

merely check for network aliveness or check each rule to

verify security policy.

ATPG may be custom-made to examine just for reachability or

for routine also. ATPG will adapt to restraints like demanding

test packets from solely a rare places within the network or

using uncommon ATPG may also to tuned to allot additional

test packets to use additional vital rules. for instance, additional

test packets to firewall to Firewall rules to confirm HIPPA

compliance.

The results are inspiring . the amount of test packets wanted is

surprisingly tiny. For the Stanford network with over 755 000

rules and over ninety VLANs, we have a tendency to solely

need 3700 packets to review all forwarding rules and ACLs.

Fig 1: Static versus Dynamic checking

On Internet2, 34000 packets serve to study all IPv4

forwarding rules. Put another way, we can crisscross every

rule in every router on the Stanford backbone 9 times every

second by sending test packets that ingest less than 1% of

network bandwidth. The link cover for Stanford is even

smaller, around 45 packets, which allows positive live ness

testing every millisecond using 1% of network bandwidth.

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-03, Issue 03, Apr 2017

45 | IJREAMV03I032709 www.ijream.org © 2017, IJREAM All Rights Reserved.

II. LITERATURE SURVEY

1. KLEE

It introduce a new symbolic execution tool, KLEE, skilled

of automatically generating tests that achieve great

coverage on a various set of complex and environmentally

intensive programs. This method used KLEE to

systematically check all 88 standalone programs in the

GNU COREUTILS usefulness suite, which form the core

user level environment installed on millions of UNIX

systems, and perhaps are the single most profoundly tested

set of open source programs in presence. KLEE generated

tests achieve high line coverage on average over 89% per

tool and significantly shattered the coverage of the

developers' own handwritten test suites.

It also used KLEE as a bug finding tool, applying it to 440

applications, where it found 50 solemn bugs, counting three

in COREUTILS that had been unexploited for over 15

years. Finally, Is used KLEE to cross-check supposedly

identical BUSY BOX and COREUTILS values, finding

functional correctness errors and a numerous of

irregularities.

2. NETWORK TOMOGRAPHY OF BINARY NETWORK

PERFORMANCE

In network performance tomography, characteristics of the

network peripheral, such as link loss and packet latency, are

concrete from allied end to end measurements. Most work

to date is based on manipulating packet level correlations,

e.g. of multicast packets or unicast competitions of them.

However, these methods are often limited in scope

multicast is not broadly deployed or require deployment of

additional hardware or software infrastructure. Some recent

work has been successful in reaching a less detailed goal:

identifying the lossiest network links using only

uncorrelated end-to-end measurements. Moreover, the

algorithm is sufficiently simple that can analyze its

performance explicitly.

3. NETWORK TOMOGRAPHY OF BINARY

NETWORK PERFORMANCE.

In network performance tomography, characteristics of the

network interior, such as link loss and packet latency, are

inferred from correlated end-to-end measurements. Most

work to date is based on exploiting packet level

correlations, e.g., of multicast packets or unicast emulations

of them. However, these methods are often limited in

scope-multicast is not widely deployed-or require

deployment of additional hardware or software

infrastructure. Some recent work has been successful in

reaching a less detailed goal: identifying the lossiest

network links using only uncorrelated end-to-end

measurements. In this approach,

Its abstract the properties of network performance that

allow this to be done and exploit them with a quick and

simple inference algorithm that, with high likelihood,

identifies the worst performing links. It give several

examples of real network performance measures that

exhibit the required properties. Moreover, the algorithm is

sufficiently simple that can analyze its performance

explicitly.

1: input: Topology T ; End-to-end measurements

fXkgk2R;

2: Y0 = 1;

3: W = ;;

4: recurse(1);

5: output: W;

6: do

7: subroutine recurse(k) {

9: if(k 2 R) {Yk= Xk};

10: else {

11: Yk= maxj2d(k) Yj;

12: foreach(j 2 d(k))

13.}

III. EXISTING SYSTEM

Testing aliveness of a network is a fundamental problem

for ISPs and huge data centre workers. Sending enquiries

between every couple of bound ports is neither

comprehensive nor ascendable. It serves to find a marginal

set of end to end packets that negotiate each link. However,

doing this needs a way of theorizing crosswise device

specific configuration files, producing headers and the links

they reach, finally determining a least set of test packets To

check imposing reliability between policy and the

configuration.

DISADVANTAGES OF EXISTING SYSTEM

 Not planned to identify aliveness failures, bugs router

hardware or software, or enactment problems.

 The two utmost mutual causes of network failure are

hardware failures and software bugs, and that problems

evident themselves both as approachable failures and

throughput/latency dilapidation.

 It check only Network layer status, Not Correct

identify the issues in Network.

IV. PROBLEM STATEMENT

In current system, the administrator manually decides

which ping packet to be sent. Sending programs among

every pair off boundary ports is neither broad nor scalable.

This system is adequate to find least set of end to end

packets that travel each link. However, doing this need a

way of abstracting across device specific configuration files

generating headers and links they reach and finally

calculating a minimum set of test packets. It is not designed

to identify failures caused from failed links and routers,

bugs caused from faulty router hardware or software, and

performance problems. The common causes of network

failure are hardware failures and software bugs, in which

that problems manifest both as reachability failures and

throughput/latency degradation. To overcome this we are

proposing new system.

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-03, Issue 03, Apr 2017

46 | IJREAMV03I032709 www.ijream.org © 2017, IJREAM All Rights Reserved.

TABLE 1. Comparative Study

Sr.

No.

Paper Title Author’s

Name

Problem Solution

1 Network performance

anomaly detection and

localization

P. Barford, N.

Duffield, A. Ron,

and J. Sommers

Location of perform-ance

anomalies (e.g., high jitter

or loss events) is critical to

ensuring the effective

operation of network

infrastructures.

Framework for detecting and

localizing performance anomalies

based on using an active probe-

enabled measurement

infrastructure deployed on the

periphery of a network

2 Robust monitoring of

link delays and faults in

IP networks

Y. Bejerano

and R. Rastogi

Link delays and faults in

a Service Provider or

Enterprise IP network

Two-phased approach attempts

to minimize both the monitoring

infrastructure costs as well as the

additional traffic due to probe

messages.

3 Klee: Unassisted and

automatic generation of

high-coverage tests for

complex systems

programs

C. Cadar, D.

Dunbar, and D.

Engler

Its time consuming n

complex procedure to user

Implement a tool KLEE,

capable of automatically

generating tests that achieve high

coverage on a diverse set of

complex

4 Network tomography

of binary network

performance

characteristics

N. Duffield Network problems such

as link loss and packet

latency

network performance that allow

this to be done and exploit them

with a quick and simple inference

5 A NICE way to test

Open Flow applications

M. Canini,

D.Venzano, P.

Peresini, D.Kostic

Risk of programming

errors that make

communication less reliable

Implement a single controller

program manages the network,

seems to reduce the likelihood of

bugs.

V. PROPOSED SYSTEM

ALGORITHM1-TESTPACKET GENERATION

Main goal is to generate a set of test packets to exercise

every rule in every switch function, so that any fault will be

observed by at least one test packet. When generating test

packets, there are two main con- straint0s:

(1) Port: ATPG must use only test terminals that are

available;

(2) Header: ATPG must use only headers that each test

terminal is permitted to send.

Step 1: (Test Packet Selection)

For a network with the switch functions,{T1,….TN} , and

topology function(T), find the minimum set of test packets

to exercise all reachable rules, subject to the port and

header constraints. Hence, choose test packets using an

algorithm call Test Packet Selection (TPS) Algorithm. TPS

first find all the equivalent classes between each pair of

available ports.

TPS Algorithm

GOOGLE-QUERY-DELAY (tcp_segments)

 S ← tcp_segments[1]

 p ← s

 c ← tcp_segments[2]

 while c ≠ NIL

 do if c.snd_time>p.snd_time and

 c.ack_time>p.ack_time

 then return (s.snd_time, c.snd_time)

 else

 If

 c.size< MSS

 then return (s.snd_time, c.snd_time)

 p ← c

 c ← c.next

Step 2: Generate an all-pairs reachability table

First start by determining the complete set of packet

headers that can be sent from each test terminal, to every

other test terminal.

On every terminal port, Apply an all- x header (a header

which has all wildcarded bits) to the transfer function of the

first hub boxes connected to test terminals.

Table no.7.1.1 All-pairs reachability table: all possible headers from

every terminal to every other terminal, along with the rules

Header Ingress

Port

Engr

ess

Port

Rule

History

h1

h2

……

Hn

p11

p21

……

pn1

p12

p22

……

pn2

{r11, r12,

….}

{r21, r22,

….}

…….

{rn1, rn2,

….}

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-03, Issue 03, Apr 2017

47 | IJREAMV03I032709 www.ijream.org © 2017, IJREAM All Rights Reserved.

Step 3: Sampling

Next, It need to pick at least one test packet to exercise

every rule. In fact, by picking one packet in an equivalence

class, It can test all of the rules reached by the class. The

simplest scheme is to randomly pick one packet per class.

This scheme only catches faults for which all packets

covered by the same rule will experience the same fault. At

the other extreme, It want to catch a fault for a specific

header within a equivalence class, then it need to test every

header in that class.

Step 4: Compression.

Several of the test packets picked in Step 2 exercise the

same rule. Therefore it will find the minimum subset of the

test packets for which the union of their rule histories

covers all rules in the network. The cover can be changed

to cover all links or all router queues.

ALGORITHM 2- FAULT LOCALIZATION AND

FAULT PROPAGATION

This algorithm use for marking faulty rules assumes that a

test packet will accomplished only if it accomplished at

every hop. For perception, consider ping - a ping will

succeed only when all the forwarding rules along the path

behave correctly. Similarly, if a chain is jammed, any

packets that travel through it will acquire higher latency

and may fail an end-to-end test.

Assumption 1 (Fault propagation)

R(pk) = 1 if and only if Ɐr € pk:history, R(r; pk) = 1

To mark a faulty rule, we start by finding the least set of

potentially faulty rules.

Formally:

Problem 2 (Fault Localization).

Given a list of (pk0, R(pk0), (pk1,R(pk1), …tuples, find

all r that satisfies Ǝpki, R(pki;, r) = 0.

 function NETWORK (packets, switches, Γ)

 for pk0 ϵ packets do

 T←FIND_SWITCH (pk0.p, switches)

 for pk1 ϵ T (pk0) do

 if pk1.p ϵ EdgePorts then

 #Reached edge

 RECORD (pk)

 else

 #Find next hop

 NETWORK (Γ(pk1), switches, Γ)

Hence solve this problem opportunistically and in steps.

Step 1: Consider the results from our regular test packets.

For every passing test, place all the rules they exercise into

the set of passing rules, P. If it similarly define all rules

traversed by failing test packets F, then one or more of the

rules in F are in error. Therefore F - P is a set of suspect

rules.

Step 2: ATPG trims to make the set of suspect rules as

small as possible by weeding out all the correctly working

rules.

For this it make use of the reserved packets (which were the

packets eliminated by the Min-Set-Cover). From the

reserved packets, we _nd those whose rule history contains

exactly one rule from the suspect set and send them. If the

test packet fails, it shows that the exercised rule is for sure

in error. If it passes, it can remove that rule from the

suspect set. Then repeat the same process for the rest of the

suspect set.

Step 3: In most cases it have a small enough suspect set

that can stop here and report them all. However, It can

further narrow down the suspect set by sending test packets

that exercise two or more of the rules in the suspect set

using Step 2's technique. If these test packets pass, it

shows that none of the exercised rules are in error and it

can remove them from the suspect set. If our Fault

Propagation assumption holds, the method will not miss

any faults, and therefore will have no false negatives.

VI. MATHMATICAL MODEL

Specifying models are,

b =0ǀ1ǀx where,

b= bit

pk = (p, h) where

pk= packet

h =[b0, b1,b2,……,bL] where,

h=header

p = port

T: pk pk

T= Transfer function

Complexity of finding test packet is,

O(TDR^2) and

Complexity of computing reachability from one input

port is,

O(DR^2) where,

T= numer of test terminals

D= network diameter

R= average number of rules

Fault model

R(r, pk)= 0, if pk fails at rule r

 1, if pk succeed at rule r,

Where, R= result of function

 r = rule

end-to-endvesion of result function

R(pk) = 0, if pk fails

 1, if pk succeeds

Fault prapogation

R(pk)= 1 if and only if

r € pk

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-03, Issue 03, Apr 2017

48 | IJREAMV03I032709 www.ijream.org © 2017, IJREAM All Rights Reserved.

VII. SYSTEM ARCHITECTURE

1. TEST PACKET GENERATION

Let us consider that the sending and receiving of test

packets is occurring in between a bunch of test terminals.

Generating least number of “test packets” to execute all

the packet processing rules in every node is the main aim

of the proposed work. The system must respect two key

constraints,

while generating the test packets.

1) Port - The tool should only make use of available test

terminals,

2) Header - The tool uses the headers for the purpose of

granting send permission to every testing terminal.

Test Packet Selection

The switching functions T1,..Tn, and network topology

function Г, the Test Packet Selection (TPS) algorithm can

be used for selecting the test packets to study all packet

processing rules which can be reachable, subject to the

header and port restraints in a network. In between each

and every couple of available nodes, Test Packet Selection

algorithm (TPS) is used for finding the equivalent set of

classes.

Fig 2: ATPG block diagram

2. GENERATING TABLE WITH ALL-PAIR

REACHABLECONDITIONS

While the packet is transferred in between one test

terminal to another test station, the tool starts working by

calculating the total bunch of packet headers in the first

step. Then it computes an entire rule sets so that it

exercises along the path from each such packet header. It

takes use of all-pair reachability algorithm described in

order to discover the possible pairs.

I. Sampling

In the next step, the tool selects minimum of a test packet

to act upon all the reachability rules. Selecting a lone

packet per class in some random manner is the simplest

mechanism.

II. Compression:

In this step, the packets are compressed to minimum

number. So, the system selects a least set of packets from

the sampling step, such that it covers all the rules of the

merger of rule histories. The cover is selected in such a way

that all connection or all router configurations are covered.

This is known as Min-Set-Cover problem. While NP- Hard,

greedy O(N2) gives a decent approximation, here N

represents thetest packets. The obtained lowest set of test

packets is referred as regular test packets fp1,p2, p3, p4,

p5g and the remaining packets which are not selected

comes under reserved test packetsfp6g.

2. LOCALIZATION OFFAULTS

After sending the minimum set of test packets across the

node, it tests for failures. If any faults are present in the

path, the system diagnosis the defects. A bunch of test

packets are sent sporadically by ATPG. If test packets fail,

ATPG pinpoints the fault(s) that caused the problem. A

rule fails if its experimental nature differs from its

expected nature. ATPG keeps path of where rules fail

using a result function ”Success” and ”failure” depend on

the behaviour of the rule: A forwarding rule fails if a test

packet is not delivered to the proposed output port, where

a drop rule behaves correctly when packets are dropped.

Similarly, a link failure is a interruption of a forwarding

rule in the topology function. On the other hand, if an

output link is congested, failure is obtained through the

latency of a test packet going above a threshold

VIII.DESIGN DETAILS

NODE 1.

ROUTER 1

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-03, Issue 03, Apr 2017

49 | IJREAMV03I032709 www.ijream.org © 2017, IJREAM All Rights Reserved.

PACKET SEND

IX. CONCLUSION
We ave tried to implement the paper “Automatic Test

Packet Generation” IEEE Trans April 2014 and according

to the implementation the conclusion is testing liveness of a

network is a vital problem for huge data centre operators.

Sending inquiries between every couple of edge ports is

neither comprehensive nor accessible. It be sufficient to

find a least set of end to end packets that navigate each link.

However, undertaking this necessitates a way of extracting

across device particular configuration files, generating

headers and the links they touch, and finally determining a

least set of test packets. Even the crucial problem of

automatically generating test packets for efficient liveness

testing wants techniques akin to ATPG.

ATPG, however, goes much auxiliary than liveness testing

with the same framework. ATPG can test for approachable

policy and performance health. In implementation also

amplifies testing with a simple fault localization scheme

also assembled using the header space framework. As in

software testing, the formal model helps exploit test

coverage while diminishing test packets. the outcomes

declares that all forwarding rules in Stanford backbone or

Internet2 can be applied by a amazingly lesser number of

test packets.

Network managers today use primitive tools such as and. in

the survey results indicate that they are eager for more

sophisticated tools. Other fields of engineering indicate that

these desires are not unreasonable: For example, both the

ASIC and software design industries are buttressed by

billion-dollar tool businesses that supply techniques for

both static and dynamic verification. ATPG was a well-

known acronym in hardware chip testing, where it stands

for Automatic Test Pattern Generation . the network ATPG

will be equally useful for automated dynamic testing of

production networks.

REFERENCES

[1] N. Duffield, F. L. Presti, V. Paxson, and D. Towsley,

“Inferring link loss using striped unicast probes,” in Proc.

IEEE INFOCOM, 2001, vol. 2, pp. 915–923.

[2] N. Duffield, “Network tomography of binary network

performance characteristics,” IEEE Trans. Inf. Theory, vol.

52, no. 12, pp. 5373–5388, Dec. 2006.

[3] Y. Bejerano and R. Rastogi, “Robust monitoring of link

delays and faults in IP networks,” IEEE/ACM Trans. Netw.,

vol. 14, no. 5, pp. 1092–1103, Oct. 2006.

[4] C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted

and automatic generation of high-coverage tests for

complex systems programs,” in Proc. OSDI, Berkeley, CA,

USA, 2008, pp. 209–224.

[5] M. Canini,D.Venzano, P. Peresini,D.Kostic, and J.

Rexford, “A NICE way to test OpenFlow applications,” in

Proc. NSDI, 2012, pp. 10: 2010.

[6] A. Dhamdhere, R. Teixeira, C. Dovrolis, and C. Diot,

“Netdiagnoser: Troubleshooting network unreachabilities

using end-to-end probes and routing data,” in Proc. ACM

CoNEXT, 2007, pp. 18:1/18/12.

[7] “Automatic Test Pattern Generation,” 2013

[Online].Available: http://en.wikipedia.org/wiki/Automatic

test pattern generation.

[8] P. Barford, N. Duffield, A. Ron, and J. Sommers,

“Network performance anomaly detection and

localization,” in Proc. IEEE INFOCOM, April pp. 1377–

1385.

[9] “Beacon,” [Online]. Available:

http://www.beaconcontroller.net/

[10] “ATPG code repository,” [Online]. Available:

http://eastzone.github.com/atpg/

http://www.beaconcontroller.net/
http://eastzone.github.com/atpg/

