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ABSTRACT-In this paper a variationally consistent polynomial shear deformation theory is presented for the free 

vibration of thick isotropic square and rectangular plate. In this displacement based theory, the in-plane displacement 

field use parabolic function in terms of thickness coordinate to include the shear deformation effect. Governing 

equations and boundary conditions of the theory are obtained using the principle of virtual work. Results of frequency 

are obtained from free vibration of simply supported isotropic square and rectangular plates and compared with those 

of other refined theories and frequencies from exact theory.  
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I. INTRODUCTION 

Plates are the basic structural components that are widely 

used in various engineering disciplines such as aerospace, 

civil, marine and mechanical engineering. The transverse 

shear and transverse normal deformation effects are more 

pronounced in shear flexible plates which may be made up 

of isotropic, orthotropic, anisotropic or laminated 

composite materials. In order to address the correct 

structural behavior of structural elements made up of these 

materials; development of refined theories, which take into 

account refined effects in static and dynamic analysis of 

structural elements, becomes necessary. The study of plate 

vibration dates back to the early eighteen century, with the 

German physicist, who observed the nodal patterns for a 

flat square plate. Since then there has been a tremendous 

research interest in the subject of plate vibrations. Several 

thin plate vibration solutions based on Kirchhoff’s plate 

theory are available in the literature. The classical plate 

theory based on Kirchhoff's hypothesis [1] is not adequate 

for the analysis of shear flexible plates due to the neglect of 

transverse shear deformation and the rotary inertia in the 

theory; as a consequence, it under predicts deflections and 

over predicts all the vibration frequencies for thick plates, 

and the higher frequencies for the thin plates. The most 

suitable starting point for the analysis of both thin and thick 

plates seems to be a theory in which the classical 

hypothesis of zero transverse shear strains is relaxed.  

At first, Reissner  proposed that the rotations of the normal 

to the plate mid-surface in the transverse plane could be 

introduced as independent variables in the plate theory. 

Reissner has developed a stress based theory which 

incorporates the effect of shear. Mindlin [2] simplified 

Reissner’s assumption that normal to the plate mid-surface 

before deformation remains straight but not necessarily 

normal to the plate mid-surface after deformation and the 

stress normal to the mid-surface is disregarded as in the 

case of classical plate theory of Kirchhoff. Mindlin 

employed displacement based approach. In Mindlin’s 

theory, transverse shear stress is assumed to be constant 

through the thickness of the plate, but this assumption 

violates the shear stress free surface conditions. The theory 

includes both the shear deformation and rotary inertia 

effects. Both effects decrease the frequencies. There are 

still other effects not accounted for by the Mindlin are 

stretching in the thickness direction and the warping of the 

normal to the mid-plane, which are more important in case 

of thick plates.  

Mindlin’s theory satisfies constitutive relations for 

transverse shear stresses and shear strains by using shear 

correction factor. The value of this factor is not unique but 

depends on the material, geometry, loading and boundary 

condition parameters. Wang discussed these theories in 

detail and developed the relationships between bending 

solutions of Reissner and Mindlin plate theory. Usually, in 

two dimensional plate theories, displacement components 

are considered power series expressions in thickness 

coordinate (z). Depending on the number of terms retained 

in the power series expressions, various higher order 

theories for homogeneous and laminated plates can be 

developed Reddy [3,4] utilize some simplification of the 

generalized displacement function.The simplified higher 

order theories, generally third order shear deformation 

theories give parabolic variation of transverse shear stress 

through the thickness of the plate satisfying the shear stress 

free boundary conditions on the top and bottom surfaces of 
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the plate. Thus, these theories do not require shear 

correction factors. Levinson formulated a theory based on 

displacement approach which does not require shear 

correction factor. However, Levinson’s theory is 

variationally inconsistent since the field equations and 

boundary conditions are not derived using principle of 

virtual work. Srinivas et al. [5] developed exact elasticity 

solutions for the flexure and free vibration of simply 

supported homogeneous, isotropic, thick rectangular plates. 

The exact elasticity solutions play important role in 

validation of results of two dimensional thick plate theories. 

surveyed plate theories particularly applied to thick plate 

vibration problems. In the development of such theories use 

of polynomials, trigonometric functions, hyperbolic 

functions and exponential functions in terms of thickness 

coordinate is widely and wisely made by 

Ghugal and Sayyad [6,7] have used trigonometric shear 

deformation theory for the free vibration analysis of 

orthotropic plates and  a variationally consistent 

trigonometric shear deformation theory for free vibration of 

homogenous, isotropic plate is developed. It has four 

variables and includes effects of transverse shear and 

transverse normal strain. The theory satisfies the tangential 

traction free boundary conditions (zero shear stress 

conditions) on the top and bottom surfaces of the plate. The 

primary objective of this investigation is to present the 

frequencies of flexural mode, thickness shear and thickness 

stretch modes of free vibration of thick plates. 

II. THEORETICAL FORMULATION 

2.1 Laminated plate under consideration  

Consider a rectangular laminated plate composed of 

orthotropic layers as shown in figure 1.The plate is 

assumed in Cartesian coordinate (x,y,z) system with origin 

o .it is convenient to take the y-plane of the coordinate 

system to the undeformed middle taken to be positive in a 

downword direction from the middle plane. 

2.2 Displacement field. 

For the bending analysis, the displacement field at a point 

in the laminated plate is expressed as:- 

 
Figure1: plate geometry and coordinate System 
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Where , ,u v w  are the in-plane displacement of the mid-

plane in x,y and z direction respectively 0 1 2, ,w w w are the 

shear rotations 

2.3 Strain-Displacement Relationship  

For the small plate deformation the six strain component 

are plane of the laminate.The z-axis is  

( , , , , , )zx y xy xz yz       and three 

displacement component ( , , )u v w  are related 

according to the well-known liner kinematic relation. 
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2.4 Stress – Strain Relationship                                   

The stress component associated with strain is given 

component by eq. (3) considering transverse shear 

deformation in the plate coordinate can be expressed as 

follows:- 
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Where Qij are the transformed elastic coefficient, 
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Where E1, E2 are the elastic moduli, μ12 and μ21 are 

Poisson’s ratios and G12, G23, G13 are the shear moduli of 

the material. 

2.5 Governing equation and boundary conditions.  

Governing equation and boundary conditions are obtained 

using principal of virtual work. 
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inserting strains from Eq.(2) and stress from Eq.(3) into 

Eq.(5). Integrating by parts and collecting coefficient of 

0 0 0 1 2, , , ,u v w w w      the following governing equation 

are obtain inserting stress resultant in terms of unknown 

variables  

2 3 3 3
0 0 1 2

0 11 11 11 112 3 3 3

2 3 3 3
0 0 1 2

12 12 12 122 2 2

2 3 3 3
0 0 1 2

66 2 2 266 66 66

2 3 3 3
0 0 1 2

66 2 266 66 66

u w w w
u A B C D

x x x x

v w w w
A B C D

x y x y x y x y

u w w w
A B C D

x y x y x y x y

v w w w
A B C D

x y x y x y x y


   

    
   

   
   

       

   
   

       

   
   

        2

2 3 3 3
0 0 1 2

0 12 12 12 122 2 2

2 3 3 3
0 0 1 2

22 22 22 222 3 3 3

u w w w
v A B C D

x y x y x y x y

v w w w
A B C D

y y y y


   

    
       

   
   

   

2 3 3 3
0 0 1 2

66 2 2 266 66 66

u w w w
A B C D

x y x y x y x y

   
   

       
 

2 3 3 3
0 0 1 2

66 2 2 2 266 66 66

2 4 4 4
0 0 1 2

0 11 11 11 113 4 4 4

3 4 4 4
0 0 1 2

12 12 12 122 2 2 2 2 2 2

3 4 4 4
0 0 1

12 12 12 122 2 2 2 2

v w w w
A B C D

x x y x y x y

u w w w
w B E F H

x x x x

v w w w
B E F H

x y x y x y x y

u w w
B E F H

x y x y x y



   
   

      

   
    

   

   
   

       

   
   

     

2
2 2

w

x y 

3 4 4 4
0 0 1 2

22 22 22 223 4 4 4

3 4 4 4
0 0 1 22 2 2 2

66 66 66 662 2 2 2 2 2 2

3 4 4 4
0 0 1 22 2 2 2

66 66 66 662 2 2 2 2 2 2

v w w w
B E F H

y y y y

u w w w
B E F H

x y x y x y x y

v w w w
B E F H

x y x y x y x y

   
   

   

   
   

       

   
   

       

3 4 4 4
0 0 1 2

1 11 11 11 113 4 4 4

3 4 4 4
0 0 1 2

12 12 12 122 2 2 2 2 2 2

u w w w
w C F I J

x x x x

v w w w
C F I J

x y x y x y x y


   

    
   

   
   

       

3 4 4 4
0 0 1 2

12 12 12 122 2 2 2 2 2 2

u w w w
C F I J

x y x y x y x y

   
   

       

3 4 4 4
0 0 1 2

22 22 22 223 4 4 4

3 4 4
0 0 12 2 2

66 66 662 2 2 2 2

4
22

66 2 2

v w w w
C F I J

y y y y

u w w
C F I

x y x y x y

w
J

x y

   
   

   

  
  

     




 



International Journal for Research in Engineering Application & Management (IJREAM) 

ISSN : 2454-9150    Vol-03, Issue-04, July 2017 

42 | IJREAMV03I042889  www.ijream.org © 2017, IJREAM All Rights Reserved. 

 

3 4 4 4
0 0 1 2

22 22 22 223 4 4 4

3 4 4
0 0 12 2 2

66 66 662 2 2 2 2

4
22

66 2 2

v w w w
C F I J

y y y y

u w w
C F I

x y x y x y

w
J

x y

   
   

   

  
  

     




 

3 4
0 02 2

66 662 2 2

4 4
1 22 2

66 662 2 2 2

2 2
1 1

55 552 2

2 2
1 1

44 442 2

v w
C F

x y x y

w w
I J

x y x y

w w
M N

x x

w w
M N

y y

 
 

   

 
 

   

 
 

 

 
 

 

 

2 4 4 4
0 0 1 2

2 11 11 11 113 4 4 4

3 4 4 4
0 0 1 2

12 12 12 122 2 2 2 2 2 2

2 4 4 4
0 0 1 2

12 12 12 122 2 2 2 2 2 2

3 4 4 4
0 0 1 2

22 22 22 223 4 4

u w w w
w D H J L

x x x x

v w w w
D H J L

x y x y x y x y

u w w w
D H J L

x y x y x y x y

v w w w
D H J L

y y y


   

    
   

   
   

       

   
   

       

   
   

    4y

3 4 4 4
0 0 1 22 2 2 2

66 66 66 662 2 2 2 2 2 2

3 4 4 4
0 0 1 22 2 2 2

66 66 66 662 2 2 2 2 2 2

2 2 2 2
1 1 1 1

55 55 44 442 2 2 2

u w w w
D H J L

x y x y x y x y

v w w w
D H J L

x y x y x y x y

w w w w
N P N P

x x y y

   
   

       

   
   

       

   
   

   

     (5) 

Similarly for density of mass component are as follows:- 
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3. Analysis of Laminated Plates. 

 The following middle surface displacement function are 

assumed which satisfies the boundary condition and the 

governing equation of simply supported laminated 

composite plates; 
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Where 
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a b
and                         

Substitutions of solution from given by Eq. into governing 

equation (5)-(6)  result into system of the algebraic 

equation which can be written into matrix form as follows:  
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In a compact equation can be written as follows

   2
([ ] [ ]) 0k M                                    Where 

[k],[M],  and   are the stiffness matrix, mass matrix, 

amplitude vector and natural frequencies, respectively. The 

element of stiffness matrix [k] are defined as follows; 
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The element of mass matrix [M] are given as follows; 
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3.1 Numerical Result. 

In this paper, free vibration analysis of simply supported 

square and rectangular plates for aspect ratio (side to 

thickness ratio, a/h) 10 is attempted.  

The simply supported plates considered are composed of 

isotropic material. The results obtained using trigonometric 

shear deformation theory are compared with exact results 

and with those of other refined theories available in 

literature. Following non-dimensional form is used for the 

purpose of presenting the results in this paper. 

 
 

Figure-1.3 shows that natural frequencies of isotropic rectangular 

plate (b/a= 2 ) for aspect ratio1 
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Figure-1.2 shows that natural frequencies of isotropic square plate 

(b/a = 1) for aspect ratio 10 

Table 1 Comparison of non-dimensional natural frequencies of 

isotropic square plate (b/a = 1) for aspect ratio 10. 

 

M,n  

 

Present  

  

Exact  

[5] 

Ghugal 

and 

Sayyad 

[6] 

 

Reddy  

[4] 

 

Mindlin 

[2]  

 

CPT 

[1] 

(1,1) 0.0930 0.0932 0.0933 0.0931 0.0930 0.0955 

(1,2) 0.2220 0.2226 0.2231 0.2219 0.2219 0.2360 

(1,3) 0.4151 0.4171 0.4184 0.4150 0.4149 0.4629 

(2,2) 0.3406 0.3421 0.3431 0.3406 0.3406 0.3732 

(2,3) 0.5208 0.5239 0.5258 0.5208 0.5206 0.5951 

(2,4) 0.7453 0.7511 0.7542 0.7453 0.7446 0.8926 

(3,3) 0.6839 0.6889 0.6917 0.6839 0.6834 0.8090 

(4,4) 1.0783 1.0889 1.0945 1.0785 1.0764 1.3716 

Table 2  Comparison of non-dimensional natural frequencies 

of isotropic rectangular plate (b/a = ) for aspect ratio 10 

IV. CONCLUSION 

In this paper, a variationally consistent trigonometric shear 

deformation theory is applied to free vibration of isotropic 

square and rectangular plates. The effects of transverse 

shear and transverse normal deformation are both included 

in the present theory. The theory gives realistic variation of 

transverse shear stress through the thickness of plate and 

satisfies the shear stress free boundary conditions on the top 

and bottom planes of the plate. The theory requires no shear 

correction factor. The result of frequencies are compared 

with exact frequencies and those of other higher order 

theories. It is observed that the frequencies obtained by 

present theory are in excellent agreement with the 

frequencies of exact theory. The present theory is capable 

to produce frequencies of thickness of bending mode of 

vibration. The theory yields the exact dynamic shear 

correction factor from the thickness shear motion which is a 

most important factor in the dynamic analysis of plates. 
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(2,2) 0.2625 0.2634 0.2642 0.2628 0.2625 0.2821 

(2,3) 0.3596 0.3612 0.3623 0.3601 0.3595 0.3958 

(2,4) 0.4863 0.4890 0.4906 0.4874 0.4861 0.5513 

(3,1) 0.3968 0.3987 0.3999 0.3975 0.3967 0.4406 

(3,2) 0.4511 0.4535 0.4550 0.4520 0.4509 0.5073 

(3,3) 0.5378 0.5411 0.5431 0.5392 0.5375 0.6168 


