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Abstract The classical Gauss-Lucas theorem states that the roots of derivative of non constant polynomial      lie in 
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I. INTRODUCTION 

Gauss-Lucas theorem is named after Carl Friedrich Gauss 

and Felix Lucas. Gauss-Lucas theorem establish a relation 

between the roots of a polynomial F and the roots of F' i.e. 

the roots of derivatives of F. According to Gauss-Lucas 

theorem, the roots of derivatives of F lie in convex hull of 

roots of F.  

Definition 1.1 (Convex hull): Convex hull C(S) of any 

convex set S is the smallest convex polygon that contains S. 

In other words, convex hull is the intersection of all convex 

sets containing S. Convex hull of a set S may also be 

defined as the set of all convex combinations of finite 

points of S. So, 

C(S) = { ∑   
 
      ;    ≥ 0, ∑   

 
    = 1 ,    is in S}  

                                                                              (1.1) 

If S contains only one point then convex hull of S is a 

single point. If the points of S lie on a line then its convex 

hull is the line segment formed by joining two extreme 

points of S. If the points of S are some points of the plane 

then convex hull of S can be thought of a shape of a rubber 

band enclosing all the points of S and stretched around S. 

Gauss-Lucas theorem has very important physical 

interpretation in potential theory. This theorem can be 

considered as a variant of Rolle’s theorem for complex 

polynomial[1]. This result has been widely used to study 

the properties of the polynomials[2]. 

Theorem 1.1 (Gauss-Lucas Theorem): All the critical 

points of      i.e. the zeros of the derivatives       lie in 

the convex hull C(S) of the zeros of F(z) where      is 

non-constant univariate polynomial and S = {z1, z2,……., 

zn} is the set of zeros of F(z). Further if the zeros of F(z) are 

non-collinear then no critical point of      can lie on the 

boundary of C(S) unless it is a multiple root of     . 

This result was given by Gauss and later explicitly stated 

and proved by Lucas[3] in 1879. In 1836, Gauss proved 

that the roots of        which are different from multiple 

roots of      can be considered as the points of equilibrium 

for the fields of forces created by unit masses placed at the 

roots of      which repel or attract with a force inversely 

proportional to the distance of this unit mass. 

II. SOME REFINEMENTS OF GAUSS-

LUCAS THEOREM 

2.1 Refinement of Gauss-Lucas theorem (Dimitrov[4]) 

The convex hull C(S) as mentioned in Gauss-Lucas 

theorem contains all the zeros of       . In fact a sub 

domain of C(S) contains all the zeros of        as described 

by D.K. Dimitrov[4]. Let       be a polynomial with roots 

z1,z2,…..zk with multiplicities m1,m2,…..mk respectively. 
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                                                                           (2.1.1)

 

Corresponding to every zero of      , zi with multiplicity 

mi, we associate a closed circular region   . This region     

in complex plane is such that it contains the points 1 and 
  

 
 

. For each  r ≠ i,     is the affine transformation of    given 

by 
                                                 

   
(z z )cir i r i iT z                                      (2.1.2)                                       

And  define                     

                      r ir

r i

T T




                         (2.1.3) 

This refinement of Gauss-Lucas theorem as given by 

Dimitrov[4] is as follows: 

Theorem 2.1.1 (Dimitrov[4]): Every zero of        , not 

coincident with    lies in    .  Further  if      r =1,2,3,….,k 

are all regions associated with distinct roots of       then 
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every non trivial zero of        lies in the region  

1

(F(z)) .
k

r

r

T T


   

2.2 Refinement of Gauss-Lucas theorem(Arnaud et. 

al.[5]) 

W. P. Thurston gave a geometric proof of classical Gauss-

Lucas theorem using the concept of distance function and 

considering the polynomial as product of linear factors. He 

gave another version of the classical Gauss-Lucas theorem 

as follows: 

Theorem 2.2.1 (A surjective version of classical Gauss-

Lucas theorem[5]): Let       be a polynomial of degree n 

where n is atleast 2 and C(S) be the convex hull of zeros of 

       where S = {z1, z2,……., zn} is the set containing 

zeros of       . Then Fn : E →C is a surjective mapping for 

any closed half plane E intersecting C(S). 

Theorem 2.2.2 (Gauss-Lucas-Thurston[5]): Let       be a 

polynomial of degree n where n is atleast 2 and C(S) be the 

convex hull of zeros of        where S = {z1, z2,……., zn} 

is the set containing zeros of       . Let  L be a straight line 

intersecting C(S) and let it bounds an open half plane H 

which is disjoint from C(S). If a point a on L is zero of 

       then there exist a set of geodesic for metric of 

              originating from a on L and in the direction of 

H so that it forms an open subset X of H for which F( ̅ )= 

C. 

III. SOME EXTENSIONS OF GAUSS-LUCAS 

THEOREM 

3.1 Extension of the Gauss-Lucas theorem to convex 

linear combinations of incomplete polynomials (J.L. 

Diaz-Barrero and J.J. Egozcue[6]) 

This generalization of Gauss-Lucas theorem given by J.L. 

Diaz-Barrero and J.J. Egozcue[6] is the extension of 

classical Gauss-Lucas theorem to convex linear 

combinations of incomplete polynomials. 

Definition 3.1.1 (Incomplete Polynomials): An incomplete 

polynomial is a polynomial which has some coefficients as 

zero. The general representation of an incomplete monic 

polynomial is of the form 

1

(z) (z z )
n

r i
i
i r

h



  

 (3.1.1) 

Here r is any integer between 0 and n corresponding to 

which the linear factor (z – z r) in the continuous product of 

factors (z – zi); (i = 1 to n) is missing. Clearly hr(z) is of 

degree n-1. If      is a monic polynomial with roots 

z1,z2,….,zn then        is of the form 

            

1

(z) (z z )
n

n i
i
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(3.1.2)
 

If the derivative of       is normalized to form a monic 

polynomial then 

1

1 1
'(z) (z)

n

n j

j

F h
n n


                 (3.1.3)

 

Clearly the R.H.S. of (3.1.3) indicates that 
 

 
        is a 

convex linear combination of incomplete polynomials as 

each  
 

 
 lies between 0 and 1 and 

 

 
 

 

 
 

 

 
          

 . Obviously the derivative of      when reduced to monic 

polynomial is one of the convex linear combinations of 

incomplete polynomial. This fact leads to the following 

theorem which is an extension of the Gauss-Lucas theorem 

to convex linear combinations of incomplete polynomials. 

Theorem 3.1.1 (J.L. Diaz-Barrero and J.J. Egozcue[6]): If 

       is a monic polynomial with complex coefficients 

with zeros 1 2, z ,..., zkz   with multiplicities 

1 2, ,..., km m m   such that 
1

n

i

i

m n


  and let (z)nF  be a 

polynomial of degree  1n such that 

1(z)
2
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dz i
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                                         (3.1.4) 

And                                                      

1(z)
Res 0, 1,2,...,

(z)i

n

z z
n

F
i k

F





 
  

                 (3.1.5)                  

 

Then all the zeros of          must lie in the convex hull 

C(S) where S = {z1, z2,……., zn} and  τ is the  closed path 

containing all the zeros of       . 

3.2 Extension of Gauss-Lucas theorem for integral 

functions(Moreno[7]) 

Definition 3.2.1 (Integral function): An integral function is 

a complex valued function that is analytic at all the points 

over the whole complex plane. Integral function is also 

called entire function[8]. 
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Definition 3.2.2 (Hurwitz Stable Polynomial): A Hurwitz 

Stable Polynomial is a polynomial whose zeros lie either in 

left half plane of whole complex plane or on imaginary 

axis. In other words, the real part of every zero is either 

zero or negative [9].This polynomial is named after Adolf 

Hurwitz (1859-1919), a German Mathematician. 

Definition 3.2.3 (Derivative of Hurwitz Stable 

Polynomial[7]): The derivative of Hurwitz Stable 

Polynomial  

1

(z)
n

i

i

i

F a z


 is given by   

1

1
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n
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i

i

F i a z






   

which is also a polynomial of lower degree. 

An important property of stable polynomial which is a 

consequence of Gauss Lucas Theorem is that if F(z) is 

stable then F'(z) is also stable. The validity of this property 

is demonstrated by J. Moreno [7].  

Definition 3.2.4 (Quasi polynomial): A quasi polynomial is 

a generalization of polynomial in which the coefficients are 

periodic  functions with integral period. 

Theorem 3.2.1 (Hermite Biehler theorem): If a polynomial 

F(z) is stable then it satisfies monotone phase increasing 

property i.e.the argument of F(ωi) is monotone increasing 

function. 

Definition 3.2.5 (UMPLIP): An entire function is said to 

satisfy uniform monotone phase increasing 

property(UMPIP) if the argument of F(ρ + ωi ) is monotone 

increasing function for every ρ ≥ 0. 

Theorem 3.2.2 (Moreno[7]): If the entire function F(z) is 

stable and satisfies UMPIP then F'(z) is also stable. 

Moreno[7] extended the implication of Lucas theorem (i.e. 

derivative of Hurwitz stable polynomial is also Hurwitz 

stable polynomial) to the entire functions provided that it 

satisfy uniform monotone phase increasing 

property(UMPIP). 

3.3 Extension of Gauss-Lucas theorem from the set of 

complex numbers to the set of bicomplex numbers (M. 

Bidkham and S. Ahmadi [10]) 

This section provides the extension of the Gauss-Lucas 

theorem from the set of complex numbers to the set of 

bicomplex numbers as given by M. Bidkham and S. 

Ahmadi[10]. 

Definition 3.3.1 (Bicomplex numbers): A bicomplex 

number is the number of the form             

1 1 2 2( )a ib j a ib    where 

2 2

1 1 2 2, , , , 1, 1a b a b R i j      and .ij ji   

We can also write a bicomplex number as 1 2z jz   where 

1z  and  2z  are complex numbers. 

Following are some important properties of bicomplex 

numbers: 

1. A bicomplex number 1 2z jz can be uniquely 

expressed as
     

 

               1 2 1 1 2 2 1 2(z -iz )e +(z +iz )e =λe +μe  

  Where  
1 2

1 1
,

2 2

ij ij
e e

 
 

 

2. Let   1 2 1 2z=λe +μe , z '=λ 'e +μ 'e
 
 

Then 
 

1 2

1 2

z+z '=(λ+λ ')e +(μ +μ ')e ,

zz '=(λλ ')e +(μμ ')e

 

      3.  If  z = λ e1+ μe2  then z is invertible if z-1 exists 

     

 

So   

1 1zz    

1

1 2

1 1
and z e e

 

     

Provided that λ,μ≠0 

4. The usual norm of z is given by     

2 2

1 2
2

z e e
 

 


     

Definition 3.3.2 (Cartesian set): The Cartesian set in the set 

of bicomplex numbers determined by X1 and X2 is defined 

by  

 
1 2

1 2 1 2 1 2 1 2: , ( , )

eX X X

z jz z jz e e X X   

 

      
 

Definition  3.3.3 (disk) Let 1 2z '=λ 'e +μ 'e  be a fixed 

bicomplex number. An open disk with center z' and radii r1 

and r2 is given by 

 

1 2

1 2 1 2 1 2 1 2 1 1

( ' : , )

: , , , ' , '

z r r

z jz z z C z jz e e r r

D

              

 and a closed disk with center z' and radii r1 and r2 is given 

by 

 
1 2

1 2 1 2 1 2 1 2 1 1

( ' : , )

: , , , ' , '

D z r r

z jz z z C z jz e e r r     



        

 The extension of Gauss-Lucas theorem for bicomplex 
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numbers is given by  M. Bidkham and S. Ahmadi[10] is 

based on following lemmas: 

Lemma 3.3.1 : The Cartesian product in the set of 

bicomplex numbers determined by X1 and X2 is convex set 

in C. 

Lemma3.3.2 :If  1 1 2, ,.... ;n iX a a a a C   and

 2 1 2, ,.... ;m iX b b b b C  then 

(i) C( 1 2eX X ) = 1 2C( ) C( )eX X  

(ii) C( 1 eX C ) = 1C( ) eX C  

(iii) C( 2eC X ) = 2C( )eC X  

Lemma 3.3.3 : In a bicomplex polynomial of the form

1

(z)
n

i

i

i

F a z


  if all the coefficients ia   are multiples of 

e1 and the constant term 0 0 1 0 2a e e    has 0 ≠ 0 then 

F(z) has no root otherwise F(z) has atleast one root. 

This lemma is analogue of fundamental theorem of algebra 

for bicomplex theorem. Based on above lemmas, following 

is the extension of Gauss-Lucas theorem: 

Theorem 3.3.1 (Bidkham and Ahmadi[10]): If F(z) is a non 

constant bicomplex polynomial with atleast one zero then 

every zero of F'(z) lies in the convex hull of zeros of F(z). 

3.4 Generalization of Gauss-Lucas theorem on a 

circle(A.Aziz and B.A.Zargar [11])  

This generalization is given by A.Aziz and B.A.Zargar[11] 

in the following theorem: 

Theorem 3.4.1 (A.Aziz and B.A.Zargar [11]): If all the 

zeros of a polynomial F(z) lie in a disk  z a R   and ω 

is any number real or complex, satisfying  

( ) '( ) ( ) '( ) ( )a F a F nF             

                                                                           (3.4.1) 

Then a R                                                                               

                                                                           (3.4.2) 

where n is the degree of F(z) 

If (3.4.1) is satisfied as strict inequality then (3.4.2) is also 

satisfied as strict inequality. Gauss Lucas theorem can be 

considered as a special case of above theorem. If we 

consider all the zeros of F(z) to lie in the circle  

z a R    and taking ω as a root of F'(z) = 0 then (3.4.1) 

is obviously true. So we have  a R      i.e. all the 

zeros of F'(z) lie in the circle z a R  . 

3.5 Generalization of Gauss-Lucas theorem in 

asymptotic sense(V. Totik[12]): 

The generalization of the classical Gauss-Lucas theorem in 

asymptotic sense shows that if almost all the zeros of F(z) 

lie in the convex set then almost all the zeros of F'(z) lie in 

any fixed neighborhood of that convex set. 

Theorem 3.5.1 (V. Totik[12]): If F(z) has almost all its 

zeros on compact convex set K then for every ε > 0, almost 

all the zeros of F'(z) lie on Kε , the ε-neighborhood of K.  

The ε-neighborhood of K is considered to be slightly larger 

than the set K. 

In 2003, S.Malamud and R.Pereira gave an extension of 

Gauss-Lucas theorem using the theory of majorization of 

sequences. 

Theorem 3.5.2 (Malamud-Pereira[13]): If 

1, 2,( ...., )nX x x x  are the zeros of polynomial F(z) of 

degree n and 
1, 2, 1( ...., )nY y y y   are the zeros of F'(z) 

then there exist a doubly stochastic matrix A of order  (n-1) 

x n such that y = Ax . 

A rectangular matrix of order (n-1) x n , A=[aij] is said to be 

doubly stochastic if aij ≥ 0 and 

1

1
n

ij

j

a


  and 

1

1

1n

ij

i

n
a

n






  

This Malamud-Pereira theorem implies above theorem 

provided that all the zeros of F(z) lie in a fixed compact set 

but Malamud-Pereira theorem does not imply above 

theorem in full sense. 

3.6 Extension of Gauss-Lucas theorem in higher 

dimension Euclidean space (A.W. Goodman [14]) 

An extension of Gauss-Lucas theorem in higher 

dimensional Euclidean space is described by A.W. 

Goodman [14]. 

Let 
      1 2, ,..., , 1,2,...,

j j j

j nP x x x j m   be distinct 

points in n-dimensional Euclidean space. 

Let the Euclidean distance  
jr of P from 

jP  be defined by 

 
1

2
2

( )

1

n
j

j j k k

k

r PP x x


 
   

 
   

Further consider the function 

1

(x) ( )
m

j j

j

G g r
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  where 
1 2( , ,.. ) and ( )n j jX x x x g r  is the function 

associated with  
jP  given  by log .jr  

So if  
1

(z)
m

j

j

F z z


  , then 

    2 1 2log in :G X F z E z x ix    

Now 

 

 

 

 

1 2

1 11 2

2
1

log log

'

n m
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j j
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G X z z e z z e
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z z

F z

F z

 



 
    

 






 
   
 

 



For a zero of    ' , 0.F z G X   

Using these notations, the extension of Gauss-Lucas 

Theorem as given by Dioz and Shaffer [15] is presented in 

following theorem: 

Theorem 3.6.1 (Dioz and Shaffer [15]):Let 1 2, ,..., mP P P  

be distance points in En and with each point Pj ,  associate a 

function   jg r  such that  ' 0jg r   and continuous 

for r>0. 

If X is a zero of vector function  
1

n

i

i i

G
G X e

x


 


 , 

then X lies in the convex hull of set of points 1 2, ,..., mP P P  

IV. CONCLUSION 

The Gauss-Lucas Theorem is well known result in 

classical complex analysis. This paper provides a review 

of following refinements Gauss Lucas theorem: 

(i) Every zero of         , not coincident with    lies 

in    . Further  if      r =1,2,3,….,k are all regions 

associated with distinct roots of       then every non 

trivial zero of        lies in the region  

1

(F(z)) .
k

r

r

T T


   

(ii) Let       be a polynomial of degree n where n is 

atleast 2 and C(S) be the convex hull of zeros of        

where S = {z1, z2,……., zn} is the set containing zeros of 

      . Let L be a straight line intersecting C(S) and let it 

bounds an open half plane H which is disjoint from C(S). 

If a point a on L is zero of        then there exist a set of 

geodesic for metric of               originating from a on 

L and in the direction of H so that it forms an open subset 

X of H for which F( ̅ )= C. 

Further this paper also provides a review of extension of 

Gauss Lucas theorem on incomplete polynomials, 

extension of Gauss Lucas theorem on integral functions or 

entire functions w.r.t. hurwitz stable polynomials, 

extension of Gauss Lucas theorem from the set of complex 

numbers to the set of bicomplex numbers, generalization 

of Gauss-Lucas theorem on a circle, generalization of 

Gauss-Lucas theorem in asymptotic sense and extension of 

Gauss-Lucas theorem in higher dimension Euclidean 

space. Despite its simplicity, it is very useful and versatile 

theorem in complex analysis. 

REFERENCES 

[1] N. Nikilov and B. Sendov, A converse of the Gauss-Lucas 

theorem, The American Monthly, July 2013 DOI: 

amer.math.monthly.121.06.541. 

[2] M Marden(1966), Geometry of polynomials, American 

Mathematical Society, Providence, Rhode Island. 

[3] F. Lucas, Numerous articles in Comptes Rendus, vols. 89 

(1879) pp 224-226. 

[4] Dimitar K. Dimitrov, A refinement of the gauss-lucas 

theorem, Proceedings of the American Mathematical Society 

, January 1998 

[5] Arnaud Cheriat, Yan Gao, Yafei Ou, Lei Tan, A refinement 

of Gauss-Lucas theorem, C.R.Acad.Sci.Paris,Ser.I353(2015) 

711-715 

[6] J. L. Díaz-Barrero and J. J. Egozcue, A generalization of the 

Gauss-Lucas theorem, 

[7]            Czechoslovak Mathematical Journal, June 

2008, Volume 58, Issue 2, pp 481–486 

[8] J. Moreno, An extension of Lucas theorem to entire 

functions, IFAC Linear time delay systems, Grenoble, 

France,1998  

[9] W. Rudin (1966), Real and Complex Analysis, Mc Graw 

Hill, NY. 

[10] Kuo, F.Franklin (1966) Network analysis and synthesis, 

second edition, John Wiley and sons. Pp 295-296. 

[11] Mahmood Bidkham and Sara Ahmadi, Generalization of the 

Gauss–Lucas theorem for bicomplex polynomials, Turk J 

Math (2017) 41: 1618 – 1627, doi:10.3906/mat-1512-19 

[12] A.Aziz and B.A.Zargar, on Gauss-Lucas theorem concerning 

the location of the critical points of a polynomial, New 

Series,vol.16,2002,Fasc.1-4 

[13]  V. Totik, The Gauss–Lucas theorem in an asymptotic sense, 

Bulletin of the London Mathematical Society, Volume 48, 

Issue 5, 1 October 2016, Pages 848–

854, https://doi.org/10.1112/blms/bdw047 

[14] W.V. Assche,Proceedings of the American Mathematical 

Society. Vol 145, number 9, September 2017, pages 3849-

3863 

[15] A.W. Goodman, Remarks on the Gauss-Lucas Theorem in 

Higher dimensional space, Proceedings of American 

Mathematical Society, Vol. 55, No. 1,Feb. 1976. 



International Journal for Research in Engineering Application & Management (IJREAM) 

ISSN : 2454-9150    Vol-04, Issue-03, June 2018 

541 | IJREAMV04I0339121          DOI : 10.18231/2454-9150.2018.0376            © 2018, IJREAM All Rights Reserved. 

 

[16] J.A. Dioz and D. B. Shaffer, A generalization to higher 

dimension of a theorem of Lucas concerning the zeroes of the 

derivatives of a polynomial of one complex variable, 

Proceeding of International Congress Mathematics 

(Vancouver, 1972). 


