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Abstract - CPU scheduling is a fundamental operating system function that determines which of the process should be 

executed next when multiple run-able process is waiting in the ready queue. Round Robin scheduling algorithm is 

found efficient in case of time sharing system however an improved version of traditional RR algorithm had been given 

that provides priority to processes that are near to completion. This improved RR policy reduces the average waiting 

time and increases the throughput and maintains the same level of CPU utilization like traditional RR provides. In the 

proposed paper a Markov chain analysis is done in order to determine the performance of this suggested improved 

round robin algorithm. We have also proposed some other others ways to assign the scheduler to the next ready 

process. These efforts have found very efficient and useful. Further some numerical studies have been done to justify 

the proposed suggestions.  
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I. INTRODUCTION 

Multiprogramming is one of the most important 

characteristics of operating systems. It requires several 

programs to be kept simultaneously in memory, the aim of 

which is maximum CPU utilization. The CPU scheduling 

decides which one among them to run first. Making this 

decision is CPU scheduling. CPU scheduling is the 

fundamental of multiprogramming systems. It mentions to a 

set of policies and mechanisms to control the order of work 

to be performed by an operating system, It is called the 

scheduler, using a CPU scheduling algorithm [4]. 

Scheduling algorithms are used for distributing resources 

among users which simultaneously and asynchronously 

request them. The main purposes of scheduling algorithms 

are to minimize resource starvation, to ensure fairness 

amongst the users utilizing the resources and to keep the 

CPU busy as much as possible by executing a (user) 

process and then switching to another process. Scheduling 

deals with the problem of deciding which of the outstanding 

requests is to be allocated resources. 

The CPU scheduler executes the processes when they 

schedule on it. When there are number of processes in the 

ready queue, the algorithm which decides the order of 

execution of those processes is called scheduling algorithm. 

The various well-known CPU scheduling algorithms are 

First Come First Serve (FCFS), Shortest Job First (SJF), 

Shortest Remaining Time (SRT), Round-Robin (RR), 

Multi-Level Queue Scheduling (MLQ), Earliest Deadline 

First (EDF), and Priority scheduling algorithms. All the 

above algorithms are preemptive non-preemptive in nature. 

Shortest Remaining Time First (SRTF) and Round Robin 

(RR) are preemptive in nature. RR is most suitable for time 

sharing systems [15], [16], [17], [19]. 

The performance of all these scheduling algorithms are 

evaluated on the basis of criteria‟s that seems more 

important for the system. Some of the general criteria‟s are 

like CPU utilization, throughput, turnaround time, response 

time etc. It is recommended [4], [6], [9] that good 

scheduling algorithm must possess following 

characteristics:  

 Minimum context switches. 

 Maximum CPU utilization. 

 Maximum throughput. 

 Minimum turnaround time. 

 Minimum waiting time. 

 Minimum response time. 

     

II. RELATED WORK 

To carry out the proposed review work some of the 

studies are discussed, which had been previously 

undertaken in the field of Round Robin CPU Scheduling 

algorithm. Performed one scheduling scheme which is the 

mixture of FIFO and RR is found efficient in terms of 

model-based study using Markov chain model [8]. 
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Presented a general structure of transition scenario for the 

functioning of CPU scheduler in the presence of deadlock 

condition [10]. A new substitute of RR scheduling 

algorithm which is suitable for time shared systems, 

performed study to improve the RR algorithm using 

dynamic intelligent time slice and shortest remaining time 

next algorithm joint together to reduce the average waiting 

time, average turnaround time and the number of context 

switches [23], [1]. Researcher worked on existing round 

robin scheme to reduce the total waiting time of an any 

process which is spend in a ready queue and improve the 

performance of existing round robin algorithm to 

understand this waiting time difference using mathematical 

calculation [2]. Study about various RR algorithm and 

proposed a new improved RR algorithm; Shortest 

Remaining Burst Round Robin (SRBRR) by assigning the 

processor to processes with shortest remaining burst in 

round robin manner using the dynamic time quantum and 

also used same approaches to increase the performance of 

Shortest Remaining Burst Round Robin (SRBRR) 

scheduling algorithm and compare with different RR 

scheduling algorithms [24], [3]. described an improvement 

in RR; through preparing a simulator program and tested 

improved RR. After testing it has been found that the 

waiting time and turnaround time have been reduced 

drastically [25]. Proposed and enhanced a new round robin 

algorithm and also compare some other related algorithms 

and study priority based round robin CPU scheduling 

algorithm, it retains the advantage of round robin in 

reducing starvation and also integrates the advantage of 

priority scheduling [4], [6]. 

Presented a new priority driven scheduling algorithm 

based on burst time of processes which is reduces average 

waiting time, turnaround time, context switches and 

throughput of the simple round robin scheduling algorithm 

[7]. Developed a new RR algorithm which help to improve 

the CPU efficiency in real time and timesharing operating 

system. The proposed algorithm improves the drawback 

(context switch, average turnaround time, waiting time, 

etc.) of simple RR algorithm [9]. Compared an improved 

RR scheduling algorithm, with joining the two-scheduling 

algorithm (shortest job first and simple RR) [20]. Presented 

an improved RR CPU scheduling algorithm coined 

enhancing CPU performance using the features of SJF and 

RR scheduling with varying time quantum. The proposed 

algorithm is experimentally proven better than conventional 

RR [22]. 

 The set of possible values of an individual random 

variable X(n) (or X(t)) of a stochastic process {X(n), n1}, 

{X(t), tT} is known as state space, The stochastic process 

{X(n), n=0,1,2…} is called Markov chain, if, for j, k, j1, … , 

j(n-1) € N (or any subset of I), 

Medhi have given an elaborate study of a variety of 

stochastic processes and their applications in various fields 

and developed a Markov chain model for the study of 

uncertain rainfall phenomenon and also presented the use of 

stochastic process in the management of queues [26], [11], 

[26]. Naldi presented a Markov chain model for 

understanding the internet traffic sharing among various 

operators in a competitive market [5]. Researcher studied 

the use of Markov chain model for multilevel queue 

scheduler and also designed a scheduling scheme and 

compare through numerical based study [13], [14]. 

Proposed a linear data model-based study of improved RR 

CPU Scheduling algorithm with features of shortest job first 

scheduling with varying time quantum by using Markov 

chain model with different data set and performed some 

numerical based study [18], [21].  

  

III. PROPOSED  SYSTEM 

In RR principle, processes are executed in the order of their 

arrival. However, unlike FCFS, the processes get only a 

fixed quantum of CPU time in each round. RR therefore 

avoids a long wait for first CPU response. A process may 

thus need several rounds for completion. A major drawback 

in RR policy is that even if a process is near completion, it 

is still placed at the rear end of Q1, which not only 

increases the total waiting time but also lowers the 

throughput.  

In improved RR scheduling policy is combine the basic 

functions of RR with an improvement towards the priority 

assigned to the processes nearing completion. In view of 

(1), it is obvious that the time requirement for completion 

of a process Pi after (ri - 1)th round will be at the most one-

time quantum. We therefore, consider a priority queue (to 

be referred as Q2) in addition to the ready queue Q1. An 

additional queue has been used by Pandey et.al [4] for 

dispatching priority in context of FCFS scheduling. All 

processes, after being served by the CPU in penultimate 

round, are sent to the rear end of Q2 instead of Q1. Thus, 

the processes which need only one quantum or less will be 

terminated in the first round itself from Q1, while all others 

will be terminated on being dispatched from Q2. Therefore, 

processes going to CPU through Q1, if not terminated, may 

return back to the rear end of either Q1 or Q2. As shown in 

Fig. 3.1, this approach organizes the pending requests in 

two queues. The improved RR scheduling policy assume 

cycle of three queues (Q1, Q2, Q3) for the purpose of 

sequential allocation to CPU; it starts with two processes 

from Q1 one process from Q2 and one process from Q3 

(waiting process).  

The scheduling policy can further be improved by 

adopting some different cycle. Precise idea is to 

appropriately choose a pair of numbers p and q (p>q) that 

determine the number of processes from Q1 and Q2 for 

allocation to CPU in the cycle. An optimal choice may 

however, depend on the number of processes and the size of 

their CPU bursts. In the present work, we shall confine our 

discussion to p and q. This policy provides better estimates 

than the conventional RR policy in respect of all 

performance measures, including the throughput, without 

any significant increase in the overheads [2]. 

Generalized Markov chain models in CPU scheduling 
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Fig. 3.1: Generalized Markov chain models in CPU Scheduling. 

  
Fig. 3.2: Unrestricted transition diagram 

Let X(n), n≥1, be a markov chain where X(n) denotes the 

state of the scheduling at the quantum of time. The state 

space for the random variable X(n) is {Q1, Q2, Q3} where 

Q1 = Pi, Pj are combine process in first queue, Q2 = Pk is 

second queue and Q3 = Pl is waiting state and scheduler X 

move stochastically over different processing states and 

waiting within different quantum of time. And fig. 3.2 

shows the transition diagram performing transition from 

one state to another state according to CPU scheduling 

algorithm. Unit step transaction probability matrix for X(n) 

under general model is: 

 
Predefined selection for initial probabilities of states are: 

P [ X(n) = Pi ] = Pr1 ; P [ X(n) = Pj ] = Pr2 ; P [ X(n) = Pk ] = Pr3 ; 

P [ X(n) = Pl ] = 0        ……… eq 1 

Let Sij ( i, j = 1, 2, 3,…) be the unit step transition 

probabilities of scheduler over three states then transition 

probability depend on subject to condition: 

 

S14 = ( 1 – ∑     
    ); S24 = ( 1 – ∑     

    ); S34 = ( 1 – 

∑     
    ); S44 = ( 1 – ∑     

    ); & 0   Sij   1, 

 

The state probabilities, after the first quantum can be 

obtained by a simple relationship: 

 

P [ X(1) = Pi ] =  P [ X(0) = Pi ] P [ X(1) = Pi / X
(0) = Pi] + P [ 

X(0) = Pj ] P [ X(1) = Pi / X
(0) = Pj ] + P [ X(0) = Pk ] P [ X(1) = Pi 

/ X(0) = Pk ] +P [ X(0) = Pl ] P [ X(1) = Pi / X
(0) = Pl ] 

 

P [ X(1) = Pi ] = ∑         
    ; P [ X(1) = Pj ] = ∑         

    ; P 

[ X(1) = Pk ] = ∑         
    ; P [ X(1) = Pl ] = ∑         

      
............eq. 2 

 

Similarly, state probabilities after second quantum can be 

obtained by simple relationship: 

 

P [ X(2) = Pi ] =  P [ X(1) = Pi ] P [ X(2) = Pi / X
(1) = Pi ] + P [ 

X(1) = Pj ] P [ X(2) = Pi / X
(1) = Pj ] + P [ X(1) = Pk ] P [ X(2) = Pi 

/ X(1) = Pk ] + P [ X(1) = Pl ] P [ X(2) = Pi / X
(1) = Pl ] 

 

P [ X(2) = Pi ] = ∑     ( ∑         
    ) Si1  ; P [ X(2) = Pj] =  

∑     ( ∑         
    ) Si2  ; P [ X(2) = Pk] =  ∑     ( 

∑         
    ) Si3  ; P [ X(2) = Pl] =  ∑     ( ∑         

    ) Si4  

............eq. 3 

 

The generalized expressions for n quantum are: 

 

P [ X(n) = Pi ] = ∑       ........  ∑       ∑       ∑       
∑                          
    ; 

P [ X(n) = Pj] =  ∑       ........  ∑       ∑       ∑       
∑                          
    ; 

P [ X(n) = Pk] =  ∑       ........  ∑       ∑       ∑       
∑                          
    ; 

P [ X(n) = Pl] =  ∑       ........  ∑       ∑       ∑       
∑                          
     ............eq. 4 

 

IV. SOME IMPROVED RR SCHEDULING SCHEMES 

By imposing some restrictions and condition that can 

produce various scheduling schemes from above mentioned 

generalized IRR scheme. The three schemes are discussed 

as follows: 

A. Scheme - I  

At any stage, after dispatching two processes from Q1, if 

Q2 is found to be empty, another pair of processes will be 

dispatched from Q1. When process entry to first queue only 

– under process entry restriction, the scheme-1 is described 

in fig. 4.1. 

 A new process can only enter to first queue Q1 and 

after executing the two processes Pi and Pj , if 

state Q2 ( i.e. process Pk) is found to be empty, 

then another pair of processes (Pi and Pj) will be 

dispatched from state Q1. Scheduler comes to Q3 

only if state Q1 and Q2 are empty. 

 Define Q3 = Pl is a waiting state. 

 
Fig.4.1: Restricted transition diagram 

Thus, the initial probabilities under scheme-I are: 

 

P [ X(0) = Pi ] = 1 ; P [ X(0) = Pj ] = 0 ; P [ X(0) = Pk ] = 0 ; 

P [ X(0) = Pl ] = 0 

 

Unit step transaction probability matrix for X(n) under 

scheme-1 is: 



International Journal for Research in Engineering Application & Management (IJREAM) 

ISSN : 2454-9150    Vol-04, Issue-03, June 2018 

731 | IJREAMV04I0339131                        DOI : 10.18231/2454-9150.2018.0412                      © 2018, IJREAM All Rights Reserved. 

 

 
 

By using eq. 2 the state probabilities after the first time 

quantum are: 

 

P [ X(1) = Pi ] = 0 ; P [ X(1) = Pj ] = S12  ; P [ X(1) = Pk ] = S13 ; 

P [ X(1) = Pl ] = S14 

 

By using eq. 3 the state probabilities after the second time 

quantum are: 

 

P [ X(2) = Pi ] =  P [ X(1) = Pi ] P [ X(2) = Pi / X
(1) = Pi ] + P [ 

X(1) = Pj ] P [ X(2) = Pi / X
(1) = Pj ] + P [ X(1) 

= Pk ] P [ X(2) = Pi / X
(1) = Pk ] + P [ X(1) = Pl 

] P [ X(2) = Pi / X
(1) = Pl ] 

P [ X(2) = Pi ] = S13 S31 +  S14 S41 

P [ X(2) = Pj ] =P [ X(1) = Pi ] P [ X(2) = Pj/ X
(1) = Pi ] + P [ X(1) 

= Pj ] P [ X(2) = Pj/ X
(1) = Pj ] + P [ X(1) = Pk 

] P [ X(2) = Pj/ X
(1) = Pk ] + P [ X(1) = Pl ] P [ 

X(2) = Pj/ X
(1) = Pl ] 

P [ X(2) = Pj ] = S24 S42 

P [ X(2) = Pk ]=P [ X(1) = Pi ] P [ X(2) = Pk / X
(1) = Pi ] + P [ 

X(1) = Pj ] P [ X(2) = Pk/ X
(1) = Pj ] + P [ X(1) 

= Pk ] P [ X(2) = Pk/ X
(1) = Pk ] + P [ X(1) = Pl 

] P [ X(2) = Pk/ X
(1) = Pl ] 

P [ X(2) = Pk ] = S13 S31 +  S34 S43 

P [ X(2) = Pl ] =P [ X(1) = Pi ] P [ X(2) = Pl / X
(1) = Pi ] + P [ 

X(1) = Pj ] P [ X(2) = Pl/ X
(1) = Pj ] + P [ X(1) 

= Pk ] P [ X(2) = Pl/ X
(1) = Pk ] + P [ X(1) = Pl 

] P [ X(2) = Pl/ X
(1) = Pl ] 

P [ X(2) = Pl ] = S14 S41 + S24 S42 +  S34 S43 

 

Similarly, third time quantum are: 

 

P [ X(3) = Pi ] = (S13 S31 +  S34 S43) S31 +( S14 S41 + S24 S42 +  
S34 S43) S41 

P [ X(3) = Pj ] = (S13 S31 +  S34 S43) S12 + (S14 S41 + S24 S42 +  
S34 S43) S42  

P [ X(3) = Pk ] = (S13 S31 +  S14 S41) S13 +( S24 S42 ) S23 + (S14 

S41 + S24 S42 +  S34 S43) S43 

P [ X(3) = Pl ] = (S13 S31 +  S14 S41) S14 +( S24 S42 ) S24 + (S13 

S31 +  S34 S43) S34 

 

Similarly, fourth time quantum are: 

 

P [ X(4) = Pi ] = { (S13 S31 +  S14 S41) S13+ ( S24 S42 ) S23 + (S14 

S41 + S24 S42 +  S34 S43) S43} S31 + { (S13 S31 +  
S14 S41) S14+ ( S24 S42 ) S24 + (S13 S31 +  S34 

S43) S34} S41 

P [ X(4) = Pj ] = { (S13 S31 +  S34 S43) S31 + (S14 S41 + S24 S42 +  
S34 S43 ) S41} S12 + { (S13 S31 +  S14 S41 ) S14+ 

( S24 S42 ) S24 + (S13 S31 +  S34 S43) S34} S42 

P [ X(4) = Pk ] = { (S13 S31 +  S34 S43) S31 + (S14 S41 + S24 S42 +  
S34 S43 ) S41} S13 + { (S13 S31 +  S34 S43 ) S12+ 

(S14 S41 + S24 S42 +  S34 S43) S42 } S23 +
 { (S13 

S31 +  S14 S41) S14+ ( S24 S42 ) S24 + (S13 S31 +  
S34 S43) S34} S43

 

P [ X(4) = Pl ] = { (S13 S31 +  S34 S43) S31 + (S14 S41 + S24 S42 +  
S34 S43 ) S41} S14 + { (S13 S31 +  S34 S43 ) S12+ 

(S14 S41 + S24 S42 +  S34 S43) S42 } S24 +
 { (S13 

S31 +  S14 S41) S13+ ( S24 S42 ) S23 + (S14 S41 + 

S24 S42 +  S34 S43) S43} S34 

 

Similarly, we can find fifth, sixth and so on time 

quantum. 

B. Scheme - II  

If Q1 is left with a single process, Q2 will have its turn 

immediately after the dispatch of the single process from 

Q1. When some transitions are restricted in the scheme-2 is 

described in fig. 4.2. 

 A new process enters to Q1 only 

 Scheduler can‟t jump to Q3 from Q1 without 

passing Q2 

 If state Q1 is left with a single process, state Q2 

will have its turn immediately after the dispatch of 

the single process from state Q1 

 Resting of scheduler on state Q3 (process Pl) ends 

up only if a new process enters in Q1, otherwise 

resting continues. 

 
Fig.4.2: Restricted transition diagram 

Thus, the initial probabilities under scheme-II are: 

 

P [ X(0) = Pi ] = 1 ; P [ X(0) = Pj ] = 0 ; P [ X(0) = Pk ] = 0 ; P [ 

X(0) = Pl ] = 0 

 

Unit step transaction probability matrix for X(n) under 

scheme-2 is: 

 
 

By using eq. 2 the state probabilities after the first time 

quantum are: 

P [ X(1) = Pi ] = 0 ; P [ X(1) = Pj ] = S12  ; P [ X(1) = Pk ] = S13 ; 

P [ X(1) = Pl ] = S14 

 

By using eq. 3 the state probabilities after the second time 

quantum are: 

 

P [ X(2) = Pi ] =  P [ X(1) = Pi ] P [ X(2) = Pi / X
(1) = Pi ] + P [ 

X(1) = Pj ] P [ X(2) = Pi / X
(1) = Pj ] + P [ X(1) 

= Pk ] P [ X(2) = Pi / X
(1) = Pk ] + P [ X(1) = Pl 

] P [ X(2) = Pi / X
(1) = Pl ] 
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P [ X(2) = Pi ] = S13 S31 +S14 S41  

P [ X(2) = Pj ] =P [ X(1) = Pi ] P [ X(2) = Pj/ X
(1) = Pi ] + P [ X(1) 

= Pj ] P [ X(2) = Pj/ X
(1) = Pj ] + P [ X(1) = Pk 

] P [ X(2) = Pj/ X
(1) = Pk ] + P [ X(1) = Pl ] P [ 

X(2) = Pj/ X
(1) = Pl ] 

P [ X(2) = Pj ] = 0 

P [ X(2) = Pk ]=P [ X(1) = Pi ] P [ X(2) = Pk / X
(1) = Pi ] + P [ 

X(1) = Pj ] P [ X(2) = Pk/ X
(1) = Pj ] + P [ X(1) 

= Pk ] P [ X(2) = Pk/ X
(1) = Pk ] + P [ X(1) = Pl 

] P [ X(2) = Pk/ X
(1) = Pl ] 

P [ X(2) = Pk ] = S13 S31 +S34 S43 

P [ X(2) = Pl ] =P [ X(1) = Pi ] P [ X(2) = Pl / X
(1) = Pi ] + P [ 

X(1) = Pj ] P [ X(2) = Pl/ X
(1) = Pj ] + P [ X(1) 

= Pk ] P [ X(2) = Pl/ X
(1) = Pk ] + P [ X(1) = Pl 

] P [ X(2) = Pl/ X
(1) = Pl ] 

P [ X(2) = Pl ] = S14 S41 + S34S43 

 

Similarly, third time quantum are: 

 

P [ X(3) = Pi ] = (S13 S31 + S34S43) S31  +  (S14 S41 + S34S43) S41 

P [ X(3) = Pj ] = (S13 S31 + S14S41) S12 

P [ X(3) = Pk ] = (S13 S31 + S14S41) S13 +  (S14 S41 + S34S43) S43 

P [ X(3) = Pl ] = (S13 S31 + S14S41) S14  +  (S13 S31 + S34S43) S34 

 

Similarly, fourth time quantum are: 

 

P [ X(4) = Pi ] = { (S13 S31 + S14S41)S13   +  (S14 S41 + S34S43) 

S43} S31+ { (S13 S31 + S14S41)S14   +  (S13 

S31 + S34S43) S34} S41 

P [ X(4) = Pj ] = { (S13 S31 + S34S43)S31   +  (S14 S41 + S34S43) 

S41} S12 

P [ X(4) = Pk ] = { (S13 S31 + S34S43)S31   +  (S14 S41 + S34S43) 

S41} S13+ { (S13 S31 + S14S41)S12 } S23 + { 

(S13 S31 + S14S41)S14   +  (S13 S31 + S34S43) 

S34} S43 

P [ X(4) = Pl ] = { (S13 S31 + S34S43)S31   +  (S14 S41 + S34S43) 

S41} S14  + { (S13 S31 + S14S41)S13   +  (S14 

S41 + S34S43) S43} S34 

 

Similarly, we can find fifth, sixth and so on time 

quantum.  

C. Scheme - III  

If Q1 is left with no process, Q2 will function as a single 

ready queue. The following transition are restricted in this 

scheme-3 is described in fig. 4.3. 

 A new process can only enter to Q2 

 Transition from Q1 to Q3 is restricted  

 Transition must occur in sequence from Q2 to Q1, 

Q1 to Q2, Q1 to Q3 and then Q2 to Q3. 

 

 
Fig.4.3: Restricted transition diagram 

Thus, the initial probabilities under scheme-III are: 

 

P [ X(0) = Pi ] = 0 ; P [ X(0) = Pj ] = 0 ; P [ X(0) = Pk ] = 1 ;  

P [ X(0) = Pl ] = 0 

 

Unit step transaction probability matrix for X(n) under 

scheme-3 is: 

 
 

By using eq. 2 the state probabilities after the first time 

quantum are: 

 

P [ X(1) = Pi ] = 0 ; P [ X(1) = Pj ] = 0 ; P [ X(1) = Pk ] = S13 ; P 

[ X(1) = Pl ] = S14 

By using eq. 3 the state probabilities after the second time 

quantum are: 

 

P [ X(2) = Pi ] =  P [ X(1) = Pi ] P [ X(2) = Pi / X
(1) = Pi ] + P [ 

X(1) = Pj ] P [ X(2) = Pi / X
(1) = Pj ] + P [ X(1) 

= Pk ] P [ X(2) = Pi / X
(1) = Pk ] + P [ X(1) = Pl 

] P [ X(2) = Pi / X
(1) = Pl ] 

P [ X(2) = Pi ] = S13 S31 

P [ X(2) = Pj ] =P [ X(1) = Pi ] P [ X(2) = Pj/ X
(1) = Pi ] + P [ X(1) 

= Pj ] P [ X(2) = Pj/ X
(1) = Pj ] + P [ X(1) = Pk 

] P [ X(2) = Pj/ X
(1) = Pk ] + P [ X(1) = Pl ] P [ 

X(2) = Pj/ X
(1) = Pl ] 

P [ X(2) = Pj ] = S23 S32 

P [ X(2) = Pk ]=P [ X(1) = Pi ] P [ X(2) = Pk / X
(1) = Pi ] + P [ 

X(1) = Pj ] P [ X(2) = Pk/ X
(1) = Pj ] + P [ X(1) 

= Pk ] P [ X(2) = Pk/ X
(1) = Pk ] + P [ X(1) = Pl 

] P [ X(2) = Pk/ X
(1) = Pl ] 

P [ X(2) = Pk ] = S13 S31 + S23 S32 + S34 S43 

P [ X(2) = Pl ] =P [ X(1) = Pi ] P [ X(2) = Pl / X
(1) = Pi ] + P [ 

X(1) = Pj ] P [ X(2) = Pl/ X
(1) = Pj ] + P [ X(1) 

= Pk ] P [ X(2) = Pl/ X
(1) = Pk ] + P [ X(1) = Pl 

] P [ X(2) = Pl/ X
(1) = Pl ] 

P [ X(2) = Pl ] = S34S43 

 

Similarly, third time quantum are: 

 

P [ X(3) = Pi ] = (S13 S31 + S23 S32 + S34S43) S31  

P [ X(3) = Pj ] = (S13 S31 + S23 S32 + S34S43) S32 

P [ X(3) = Pk ] = (S13 S31 ) S13  + (S23 S32) S23  + (S34S43) S43 

P [ X(3) = Pl ] = (S13 S31 ) S14  + (S23 S32) S24 + (S13 S31 + S23       

S32 + S34S43) S34  

 

Similarly, fourth time quantum are: 

 

P [ X(4) = Pi ] = { (S13 S31 )S13   + (S23 S32) S23 +  (S34S43) S43} 

S31  

P [ X(4) = Pj ] = { (S13 S31 ) S13  + (S23 S32) S23  + (S34S43) S43 

} S32 

P [ X(4) = Pk ] = { (S13 S31 + S23 S32 + S34S43)S31   } S13  + { 

(S13 S31 + S23 S32 + S34S43)S32 }  S23 +  { 

(S13 S31 )S14  + (S23 S32) S24 +  (S13 S31 + 

S23 S32 + S34S43) S34} S43 

P [ X(4) = Pl ] = { (S13 S31 + S23 S32 + S34S43)S31   } S14  + { 

(S13 S31 + S23 S32 + S34S43)S32 }  S24 +  { 
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(S13 S31 )S13  + (S23 S32) S23 +  (S34S43) 

S43} S34 

Similarly, we can find fifth, sixth and so on time 

quantum. 

 

V. FORMULATE AND CALCULATE THE EQUAL VALUE 

TRANSITION PROBABILITIES  

 

Consider equal transition probability matrix for a constant 

number „d‟, 0   d   1. 

Case of equal value transition probabilities: 

 

 Therefore, the nth quantum under scheme-I is determined 

as: 

 
 

P [ X(0) = Pi ] = d ; P [ X(0) = Pj ] = d ; P [ X(0) = Pk ] = d ; P [ 

X(0) = Pl ] = 1-3d  

       

The equal transition matrix for scheme-I is expressed as: 

 

 
 

Table 5.1: (Seven quantum transition probabilities under scheme-I) 

 

 
 

The equal transition matrix for scheme-II is expressed as: 

 

Table 5.2: (Seven quantum transition probabilities under scheme-II) 

 
 

The equal transition matrix for scheme-III is expressed as: 

 
 

Table 5.3: (Seven quantum transition probabilities under scheme-III) 

 
 

VI. SIMULATION STUDY WITH NUMERICAL ANALYSIS 

In order to analyze three schemes mentioned in section 4 

(A, B & C) under markov chain model with equal and 

unequal transition elements in section 5 using different data 

sets:  

A. Data Set – I 

Scheme I: Let initial probabilities are: Pr1 = 1; Pr2 = 0 ; Pr3 = 

0 and Pr4 = 0 

 

Consider data set of unequal and equal probabilities 

matrix are follows:  

 
 

Table 6.1.1: The transition probabilities P [ X(n) = Qi ] for unequal 

and equal cases: 
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Scheme II: Let initial probabilities are: Pr1 = 1; Pr2 = 0 ; Pr3 

= 0 and Pr4 = 0  

 

Consider data set of unequal and equal probabilities 

matrix are follows: 

 
 

Table 6.1.2: The transition probabilities P [ X(n) = Qi ] for unequal 

and equal cases: 

 
 

Scheme III: Let initial probabilities are: Pr1 = 1; Pr2 = 0 ; Pr3 

= 0 and Pr4 = 0  

 

Consider data set of unequal and equal probabilities 

matrix are follows: 

 
 

Table 6.1.3: The transition probabilities P [ X(n) = Qi ] for unequal 

and equal cases: 

 
 

B. Data Set – II 

Scheme I: Let initial probabilities are: Pr1 = 1; Pr2 = 0 ; Pr3 = 

0 and Pr4 = 0 

 

Consider data set of unequal and equal probabilities 

matrix are follows:  

 
 

Table 6.2.1: The transition probabilities P [ X(n) = Qi ] for unequal 

and equal cases: 

 

 

 

Scheme II: Let initial probabilities are: Pr1 = 1; Pr2 = 0 ; Pr3 

= 0 and Pr4 = 0  

 

Consider data set of unequal and equal probabilities 

matrix are follows: 

 
 

Table 6.2.2: The transition probabilities P [ X(n) = Qi ] for unequal 

and equal cases: 

 
 

Scheme III: Let initial probabilities are: Pr1 = 1; Pr2 = 0 ; Pr3 

= 0 and Pr4 = 0  

 

Consider data set of unequal and equal probabilities 

matrix are follows: 

 
 

Table 6.2.3: The transition probabilities P [ X(n) = Qi ] for unequal 

and equal cases: 

 
 

C. Data Set – III 

Scheme I: Let initial probabilities are: Pr1 = 1; Pr2 = 0 ; Pr3 = 

0 and Pr4 = 0 

 

Consider data set of unequal and equal probabilities 

matrix are follows:  
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Table 6.3.1: The transition probabilities P [ X(n) = Qi ] for unequal 

and equal cases: 

 

 

 

Scheme II: Let initial probabilities are: Pr1 = 1; Pr2 = 0 ; Pr3 

= 0 and Pr4 = 0  

 

Consider data set of unequal and equal probabilities 

matrix are follows: 

 
 

Table 6.3.2: The transition probabilities P [ X(n) = Qi ] for unequal 

and equal cases: 

 
 

Scheme III: Let initial probabilities are: Pr1 = 1; Pr2 = 0 ; Pr3 

= 0 and Pr4 = 0  

 

Consider data set of unequal and equal probabilities 

matrix are follows: 

 
 

Table 6.2.3: The transition probabilities P [ X(n) = Qi ] for unequal 

and equal cases: 

 
 

VII. GRAPHICAL ANALYSIS 

Graphical analysis is performed under above mentioned 

three schemes in section 6 (A, B & C) with different data 

sets considering unequal and equal probability matrix to put 

various quantum values. Thus the analytical discussion on 

graphs about the variation P [ X(n) = Qi ] over three data sets 

are as follows: 

A. Data Set – I 

 
 

 
 

 

B. Data Set – II 
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C. Data Set – III 

 
 

 
 

 

Scheme - I  

i. Unequal: Although the transition in the states Pi ,  

Pj ,  Pk and Pl of the scheduler makes stable pattern 

when number of quantum n >= 3 but up to n = 3 it 

reflects changing in patterns. The remarkable point 

is that the probability of wait state Pl  is higher in 

all data sets than other states especially in fig. 7.1 

and fig. 7.2 but state Pi and Pk  is flying equally 

high in fig. 7.3. This shows a loss of efficiency so 

that scheduling spends more time on the wait state 

than on working states. Therefore, less restricted 

scheduling scheme lead to a loss of CPU time.  

ii. Equal: The graphical patterns (fig. 7.4, fig. 7.5 and 

fig. 7.6) state probabilities are moved independent 

of the quantum variation because the pattern of 

distribution of state probabilities is almost similar 

in these data sets. 

Scheme - II  

i. Unequal: The graphical pattern (fig. 7.7) reveals 

higher probabilities at the wait state than the other 

states (fig. 7.8 and fig. 7.9). This again leads to a lack 

of performance efficiency under these data sets due to 

more on waiting of the scheduler. 

ii. Equal: The state probabilities are moved independent 

of the quantum variation because the pattern of 

distribution of state probabilities is almost similar in 

these fig. 7.10, fig.7.11 and fig. 7.12. So, the 

probabilities of wait state Pl in (fig. 7.10 and fig. 7.11) 

are flying comparatively much high. Therefore, it gives 

degrading in performance and CPU time in scheduling 

the processes. The special remark is that there are more 

chance for process contained in Pi and Pk to be 

processed than in Pj . 

Scheme - III  

i. Unequal: The probability of scheduler in the wait 

state Pl is lower than state Pk ( it is slightly high 

value ) over different quantum which is a sign of 

increase performance efficiency of the IRR 

scheduling in the data sets. The probability of state 

Pk is higher than the previous schemes. Most of the 

transition probabilities are almost equal in fig. 7.14 

and fig. 7.15 and observed minor variation in fig. 

7.13 in graphical pattern. The scheme-III provides 

more chance to job processing than waiting which 

gives good throughput comparatively to previous 

schemes. 

ii. Equal: The transition states pattern in these graphs 

are identical in fig. 7.16, fig. 7.17 and fig. 7.18. 

But, the probability of scheduler in wait state is 

low, which results of good performance of the IRR 

scheduling in these data sets than scheme-I and 

scheme-II. Other state probabilities according to 

quantum variation… The special remark for this 

process-scheduling scheme-I, scheme-II and 

scheme-III is that probability for the state Pk is 

very high. Therefore, there are more chance for 

jobs contained in Pk to be processed than Pi and Pj. 

VIII. CONCLUSION 

In this paper we have done performance analysis and 

comparison between three schemes of the improved round 

robin scheduling using Markov chain model and by 

incorporating equal and unequal probability matrix with 

number of data sets which have functions of restriction in 

terms of some state transition. The equal transition 

probabilities precedence to quantum independency and the 

information overlapping in scheme-I and scheme-II which 

are less restricted scheduling. In the unequal probability 

matrix, elements make a better picture of transition within 

states. In these earlier scheduling schemes, the probability 

precedence the waiting state is high which show that a loss 

of system efficiency and serious downfall in performance of 

IRR. The graphical pattern does not depend much on 

quantum variation that is high effect of equal and unequal 

probability elements which gives very lesser chance for 

processing. Moreover, in these schemes, the different state 

has less probability which a good indication for poor 

scheduling algorithms. Therefore, both schemes are not 

recommended for further utilization. But in the scheme-III 

provide a stable pattern of probability variation over 

quantum almost in all the three data sets. For the variation 

becomes independent of changes in terms of quantum and 

wait state probabilities are decreased than other states in 

both equal an unequal transition matrix. Further, the pattern 

in having not much variation over changing data. This is an 

interesting function which leads to the stability of the whole 

system that is useful over the earlier two schemes. 

Therefore, efficiency of this highly imposing restricted 

scheduling scheme-III in terms of security measure is 
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highly efficient, useful, and recommendable to improve the 

performance of study. 
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