

Fibonacci Prime Labeling Of Cycle Related Graphs

S. Chandrakala, Assistant professor of Mathematics, T.D.M.N.S College, T. Kallikulam,

Manonmanium Sundaranar University, Tirunelveli, Tamilnadu, India. ckavi2008@gmail.com

Dr.C.Sekar, Associate professor of mathematics, Aditanar college, Tiruchendur, Tamilnadu, India.

sekar.acas@gmail.com

Abstract - A Fibonacci prime labeling of a graph G = (V(G), E(G)) with |V(G)| = n is an injective function $g:V(G) \rightarrow \{f_2, f_3, \dots, f_{n+1}\}$, where f_n is the n^{th} Fibonacci number, that induces a function $g^*: E(G) \rightarrow N$ defined by $g^*(uv) = gcd\{g(u), g(v)\} = 1 \forall uv \in E(G)$. The graph G admits a Fibonacci prime labeling is called a Fibonacci prime graph. In this paper we prove that some cycle related graphs are Fibonacci prime graphs.

Keywords: Fibonacci prime graph, barycentric subdivision, crown graph.

I. INTRODUCTION

In this paper, only finite simple undirected connected graphs are considered. The graph G has vertex set V = V (G) and edge set E = E (G). The set of vertices adjacent to a vertex u of G is denoted by N(u). For notations and terminology we refer to Bondy and Murthy [1].

The notion of prime labeling was introduced by Roger Entringer and was discussed in a paper by Tout [6].Two integers a and b are said to be relatively prime if their greatest common divisor is 1.Many researchers have studied prime graph. Fu.H[3] has proved that the path P_n on n vertices is a prime graph.Deretsky et al [2] have proved that the cycle C_n on n vertices is a prime graph .Around 1980 Roger Entringer conjectured that all trees have prime labeling which has not been settled so far.

II. PRELIMINARY DEFINITIONS

Definition 2.1

The Fibonacci number f_n is defined recursively by the equations $f_1=1$; $f_2=1$; $f_{n+1}=$ $f_n + f_{n-1}$ $(n \ge 2)$. Note 2.2

It is observe that g, $c.d(f_n, f_{n+1}) = 1 \quad \forall n \ge 1$, g. c. $d(f_n, f_{n+2}) = 1 \forall n \ge 1$. Definition 2.3

Definition 2.3

A prime labeling of a graph G is an injective function $f:V(G) \rightarrow \{1,2,...,|V(G)|\}$ such that for every pair of adjacent vertices u and v, $gcd\{f(u), f(v)\} = 1$. A graph which admits a prime labeling is called a prime graph.

Definition 2.4

A Fibonacci prime labeling of a graph G = (V, E) with |V(G)| = n is an injective function $g: V(G) \rightarrow \{f_2, f_3, \dots, f_{n+1}\}$, where f_n is the n^{th} Fibonacci number that induces a function $g^* : E(G) \rightarrow N$ defined by $g^*(uv) = g.c.d\{g(u), g(v)\} = 1 \forall uv \in E(G)$.

The graph which admits a Fibonacci prime labeling is called Fibonacci prime graph.

Definition 2.5

 $\langle G, K_{1,m} \rangle, m \ge 1$ is the graph obtained by attaching K_{1,m} to one vertex of the graph G.

Definition 2.6

Let G = (V, E) be a graph .Let e = (uv) be an edge of G and w is not a vertex of G. The edge e is subdivided when it is replaced by edge e' = uw and e'' = vw. If every edge of a graph G is subdivided then the resulting graph is called barycentric subdivision of a graph G.

III. MAIN RESULTS

Theorem 3.1

Cycle
$$C_n$$
 is a Fibonacci prime graph for $n \ge 3$.

Proof: Let v_1, v_2, \dots, v_n be the vertices of the cycle C_n . The edge set of C_n is $E(C_n) = \{v_i v_{i+1} | 1 \le i \le n-1\} \cup \{v_n v_1\}.$

Define
$$g: V(C_n) \rightarrow \{f_2, f_3 \dots \dots f_{n+1}\}$$
 as

$$g(v_i) = f_{i+1}, 1 \le i \le n$$

Then the induced function $g^* : E(G) \to N$ is defined by $g^*(xy) = g.c.d\{g(x), g(y)\} \forall xy \in E(G).$

Now,gcd{ $g(v_i), g(v_{i+1})$ } = gcd{ f_{i+1}, f_{i+2} } =1, $1 \le i \le n-1$.

and $gcd\{g(v_n), g(v_1)\} = gcd\{(f_{n+1}, f_2\} = gcd\{f_{n+1}, 1\} = 1$ Thus $f^*(xy) = g. c. d\{f(x), f(y)\} = 1, \forall xy \in E(G)$. Hence C_n is a Fibonacci prime graph.

Figure: 1 C_6 is a Fibonacci prime graph

Theorem 3.3

The graph $< C_n, K_{1,m} >, m \ge 1$ is a Fibonacci prime graph.

Proof:

1.

Let $G = < C_n, K_{1,m} >$.

The vertex set of the cycle C_n is $V(C_n) = \{u_1, u_2, \dots, u_n\}$. Let u_1 be the common vertex of C_n and

 $K_{1,m}$.Let the remaining vertices of $K_{1,m}$ be

 $v_1, v_2, \dots \dots \dots v_m$.

Hence the vertex set of G is

 $V(G) = \{u_1, u_2, \dots, u_n, v_1, v_2, \dots, v_m\}.$ Then |V(G)| = n + m and |E(G)| = n + m. The edge set of *G* is $E(G) = \{(u_i, u_{i+1}), 1 \le i \le n, u_{n+1} = u_1\} \cup \{(u_1, v_i), 1 \le i \le m\}.$

Define

$$g: V(G) \rightarrow \{f_2, f_3 \dots \dots \dots f_{n+m+1}\}$$
 as
follows

 $g(u_i) = f_{i+1}, 1 \le i \le n$

 $g(v_i) = f_{n+i}, 1 \le i \le m + 1$ Then the induced function $g^*: E(G) \to N$ is defined by $g^*(uv) = \gcd\{g(u), g(v)\} \forall uv \in E(G).$ Clearly the vertex labels are distinct. Now, $\gcd\{g(u_i), g(u_{i+1})\} = \gcd\{f_{i+1}, f_{i+2}\} = 1$ for $1 \le m$ $i \le n-1$ Then the induced function $g^*: E(G) \to N$ is defined by $g^*(uv) = \gcd\{g(u), g(v)\} \forall uv \in E(G).$ Now, $\gcd\{g(u_i), g(u_i)\} = \gcd\{f_{i+1}, f_{i+2}\} = 1$ for $1 \le m$ $\gcd\{g(u_i), g(u_i)\} = \gcd\{f_{2i+1}, f_{2i+2}\} = 1$ $\gcd\{g(u_i), g(u_i)\} = \gcd\{f_{2i+1}, f_{2i+2}\} = 1$ $\gcd\{g(u_i), g(u_i)\} = \gcd\{f_{2i+1}, f_{2i+2}\} = 1$

 $\gcd\{g(u_n), g(u_1)\} = \gcd\{f_{n+1}, f_2\} = g. c. d\{f_{n+1}, 1\} =$

 $gcd\{g(u_1), g(v_i)\} = gcd\{f_2, f_{n+i+1}\} = 1 \text{ for } 1 \le i \le m$.

Thus $g^*(uv) = gcd\{g(u), g(v)\} = 1 \forall uv \in E(G)$. Hence G admits a Fibonacci prime labeling. Hence G is a Fibonacci prime graph. Example 3.4

Figure: 2 Fibonacci prime labeling of $< C_7, K_{1,4} >$

Theorem 3.5

Barycentric subdivision of the Cycle $C_n[C_n]$ is a Fibonacci prime graph for all *n*.

Proof:

Let $\{u_1, u_2, \dots, \dots, u_n\}$ be the vertices of cycle C_n and $\{u'_1, u'_2, \dots, \dots, u'_n\}$ be the newly inserted vertices to obtain barycentric subdivision of cycle C_n . Join each newly inserted vertices of incident edges by an edge we get new graph $C_n[c_n]$. Let $G = C_n[c_n]$. G contains 2n vertices and 3n edges.

The vertices of G is $V(G) = \{u_i \mid 1 \le i \le n\} \cup \{u'_i \mid 1 \le i \le n\}$. The edge set of G is $E(G) = \{u_i u'_i \mid 1 \le i \le n\} \cup \{u_{i+1}'u_i \mid 1 \le i \le n-1\} \cup \{u'_1 u_n\} \cup \{u'_1 u'_{i+1} \mid 1 \le i \le n-1\} \cup \{u'_1 u'_n\}$. Define $g: V(G) \to \{f_2, f_3, \dots, f_{2n+1}\}$ as follows $g(u'_i) = f_{2i+1}, 1 \le i \le n$ $g(u_i) = f_{2i+1}, 1 \le i \le n$. Then the induced function $g^*: E(G) \to N$ is defined by $g^*(uv) = \gcd\{g(u), g(v)\} \forall uv \in E(G)$. Now, $\gcd\{g(u_i), g(u'_i)\} = \gcd\{f_{2i+1}, f_{2i}\} = 1$ $\gcd\{g(u'_1), g(u'_{i+1})\} = \gcd\{f_{2i}, f_{2i+1}\} = 1$ $\gcd\{g(u'_1), g(u'_{i+1})\} = \gcd\{f_{2i}, f_{2i+1}\} = 1$ $\gcd\{g(u'_1), g(u'_{i+1})\} = \gcd\{f_{2i}, f_{2i+1}\} = 1$ $\gcd\{g(u_1), g(u'_n)\} = \gcd\{f_{2i}, f_{2i+1}\} = 1$

Thus $g^*(uv) = \gcd\{f(u), f(v)\}\$ = $1 \forall uv \in E(G).$

Hence G admits Fibonacci prime labeling .Hence G is a Fibonacci prime graph.

Example 3.6

Figure: 3 Fibonacci prime labeling of $C_5[C_5]$

Theorem 3.7

The crown graph C_n^* is a Fibonacci prime graph. Proof

Let *G* be a crown graph C_n^* . Let $V(G) = \{u_1, u_2, \dots, u_n, v_1, v_2, \dots, v_n\}.$ The edge set $E(G) = \{u_i v_i | 1 \le i \le n\} \cup \{u_i u_{i+1} | 1 \le i \le n-1\} \cup$ $\{u_n u_1\}.$ Then |V(G)| = 2n and |E(G)| = 2n. Define $g: V(G) \rightarrow \{f_2, \dots, f_{2n+1}\}$ by $g(u_i) = f_{2i+1}, 2 \le i \le n$

 $g(v_i) = f_{2i+1}, 2 \le i \le n$

The induced function $g^*: E(G) \to N$ by $g^*(uv) = \gcd\{g(u), g(v)\} \forall e = uv \in E(G)$ *Now*, $gcd\{g(u_i), g(v_i)\} = gcd\{f_{2i}, f_{2i+1}\}$ $= 1 \quad for \quad 1 \leq i \leq n$ $g.c.d\{g(u_i), g(v_i)\} = g.c.d\{f_{2i}, f_{2i+1}\} =$ 1 for $1 \le i \le n$ $g.c.d\{g(u_i),g(u_{i+1})\} = g.c.d\{f_{2i},f_{2i+1}\} = rch$ in En 1 for $1 \leq i \leq n$.

Thus $g^*(uv) = \gcd\{f(u), f(v)\}$ $=1 \forall uv \in E(G).$

Thus G admits a Fibonacci prime labeling. Hence G is a Fibonacci prime graph.

Example 3.8

IV. CONCLUSION

We proved that cycle related graphs, crown graph are all Fibonacci prime graphs .We extend the study to other families of graph.

REFERENCES

[1] Bondy J.A and Murthy U.S.R, "Graph Theory and Application" (North Holland). New York (1976).

[2] Deretsky .T, Lee.S.M and Mitchem .J, "On Vertex Prime Labeling of Graphs in Graph Theory, Combinatorics Alavi .J, Chartrand. G, and Applications", Vol.I Oellerman.O, and Schwenk. A Proceedings of the 6th international conference Theory and Applications of Graphs, Wiley, New York, (1991) 359-369.

[3] Fu, H.L and Huang .K.C., " On prime Labelings", Discrete Mathematics, 127(1994), 181-186.

[4] Gallian J.A, "A Dynamic survey of Graph labeling", The Electronic Journal of Combinatorics, 18(2011), 147, #DS6.

[5] Meena.S and Vaithilingam.K "Prime Labeling for some Helm Related Graphs", International Journal of innovative research in science, Engineering and Technology, Vol.2, 4 April 2009.

[6] Tout.A, Dabboucy .A.N and Howalla. K, "Prime Labeling of Graphs", Nat.Acad .Sci letters 11 (1982) 365-368

[7] Vaidya S.K and Kanmani K.K "Prime Labeling for some cycle Related Graphs", Journal of Mathematics Research vol.2. No.2.pp 98-104, May 2010.