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Abstract: In this paper, we apply the operations like converse, matrix, complement, composition, associated directed 

graph on relations of a Tadpole graph to its line graph to analyze how they are interlinked each other. In and out 

degrees of the associated digraph show the nature of the given graph. 
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I. INTRODUCTION 

The graph       is denoted by          where   is 

called the vertex set and   is called the edge set [1]. A 

Tadpole graph is denoted by      we mean the graph 

obtained by joining a cycle graph    to a path graph    

with a bridge [2]. 

Example.      a typical Tadpole graph is in Figure 1. 

 

 

 

 

 

 

 

 

 

Figure 1.Tadpole graph        

 

A line graph of a simple graph          is obtained 

by associating a vertex with each edge of the graph and 

connecting two vertices with an edge if and only if the 

corresponding edges of   have a vertex in common [3]. 

Line graph for the above graph is in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.Line graph of a Tadpole graph        

 

Remark: To maintain the standardization of a graph (Figure 

2.) we represent the   ’s (from Figure 1.) to    ’s (in Figure 

2.) where     to  . 

 

Let   and   be two sets, then a subset of     is called 

a relation   from   to   where     {            

     }, Here           then       is related to       by   

and can be written as    .  Let   be a relation on a finite 

set   then the complement of a relation   is defined as 

         . Consider the sets   {            }   
  {           } of orders    and     respectively. Let  

  is a relation from   to  , then       , if (      )    & 

     , if (      )    and matrix     formed by these 

    s is called matrix of the relation denoted by      

where             [4]. 

Let   be a relation on a finite set  . Draw the circle for 

each element of  . These circles are called vertices. Draw 

an arrow called edges between the vertices. The resulting 

pictorial representation of   is called directed graph or 

digraph of  . 

II. RESULTS AND DISCUSSION 

In this section, we first find the two finite sets   and   

from Figure 1. and Figure 2. to write the relations   &  . 

From Figure 1. we get the set of vertices say   

{                  } and from Figure 2. say 

  {                  }. Since a relation is a subset of the 

Cartesian product of two sets, we apply the set-theoretic 

operations to construct new relations from the arrived 

relations under the different cases of relations. 

Case 1.   is a binary relation on   . 

Let   {                  },   {                  } and 

  {
(      ) (      ) (      ) (      ) (      ) 

(      ) (      ) (      ) (      ) (      )
} 

 

Then, the converse of    is 

   {
(      ) (      ) (      ) (      ) (      ) 

(      ) (      ) (      ) (      ) (      )  
} 

 

Here, we observe that     . 

 

 

Matrix of   is 
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Directed graph of     : 

 

 

 

 

 

 

 

 

 

From the directed graph of      , we have 

 

Vertex    

 

   

 

   

 

   

 

   

 

In degree 2 2 3 2 1 

Out degree 2 2 3 2 1 

 

From the above table we observe that In and Out degrees of 

each vertex are same. 

 

Complement of   is 

  {

                                        
                                        
                                       

} 
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Directed graph of  : 

 

 

 

 

 

 

 

 

 

 

From the directed graph of  , we have 

 

Vertex    

 

   

 

   

 

   

 

   

 

In degree 3 3 2 3 4 

Out degree 3 3 2 3 4 

 

From the above table we observe that In and Out degrees of 

each vertex are same. 

 

Case 2.   is a binary relation on   

 

Let   {                  },   {                  } and 

 

  {
(      ) (      ) (      ) (      ) (      ) (      ) 

(      ) (      ) (      ) (      ) (      ) (      )
} 

 

Then, the converse of    is 

   {

(      ) (      ) (      ) (      ) (      ) 

(      ) (      ) (      ) (      ) (      ) 

(      ) (      )

} 

 

Here, we observe that      . 

Matrix of   is 
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Directed graph of      : 

 

 

 

 

 

 

 

 

 

From the directed graph of      , we have 
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In degree 2 3 3 3 1 

Out degree 2 3 3 3 1 

 

From the above table we observe that In and Out degrees of 

each vertex are same. 

 

Complement of   is 
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Directed graph of  : 
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From the directed graph of  , we have 

 

Vertex    

 

   

 

   

 

   

 

   

 

In degree 3 2 2 2 4 

Out degree 3 2 2 2 4 

From the above table we observe that In and Out degrees of 

each vertex are same. 

 

Case 3. The relations   and   from   to  . 

Let   {                  },   {                  } 

 

  {
(      ) (      ) (      ) (      ) (      ) 

(      ) (      ) (      ) (      ) (      )
}  and 

 

  {
(      ) (      ) (      ) (      ) (      ) (      ) 

(      ) (      ) (      ) (      ) (      ) (      )
} 

 

Then, the union of   and   is 
 

    {

(      ) (      ) (      ) (      ) (      ) 

(      ) (      ) (      ) (      ) (      ) 

(      ) (      )

}  

 

Note:       
 

Matrix of the union of   and   is 
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Note:             

 

Directed graph of      : 
 

 

 

 

 

 

 

 

Note: Directed graph of         Directed graph of    

 

From the directed graph of      , we have 

 

Vertex    

 

   

 

   

 

   

 

   

 

In degree 2 3 3 3 1 

Out degree 2 3 3 3 1 

 

Note: In and Out degrees of the directed graph of        

       is same as In and Out degrees of the directed graph  

       of    . 

 

The intersection of   and   is 

 

    {
(      ) (      ) (      ) (      ) (      ) 

(      ) (      ) (      ) (      ) (      )
} 

 

Note:        

Matrix of the intersection of   and   is 

 

       

(

 
 

     
     
 
 
 

 
 
 

 
 
 

 
 
 

 
 
 )

 
 

 

 

Note:             

 

 

Directed graph of      : 
 

 

 

 

 

 

 

 

Note: Directed graph of         Directed graph of    

 

From the directed graph of      , we have 

 

Vertex    

 

   

 

   

 

   

 

   

 

In degree 2 2 3 2 1 

Out degree 2 2 3 2 1 

 

Note: In and Out degrees of the directed graph of        

       is same as In and Out degrees of the directed graph  

       of    . 

 

The composition of   and   is  
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Matrix of the composition of   and   is 
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Directed graph of      : 
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From the directed graph of      , we have 

 

Vertex    

 

   

 

   

 

   

 

   

 

In degree 4 5 4 4 2 

Out degree 4 4 5 3 3 

 

The composition of   and   is 
 

    

{
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Matrix of the composition of   and   is 
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Directed graph of      : 

 

 

 

 

 

 

 

 

 

From the directed graph of      , we have 
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In degree 4 4 4 4 3 

Out degree 4 4 5 3 2 

 

The composition of   and    is 

 

    

{
 

 
                                        
                                        
                                        

               }
 

 
 

 

Matrix of the composition of   and    is 
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Directed graph of         : 

 

 

 

 

 

 

 

 

 

 

 

From the directed graph of         , we have 

 

Vertex    

 

   

 

   

 

   

 

   

 

In degree 4 4 4 3 2 

Out degree 4 4 4 3 2 

 

The composition of   and   is 
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Matrix of the composition of   and   is 
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Directed graph of         : 

 

 

 

 

 

 

 

 

 

From the directed graph of         , we have 

 

Vertex    

 

   

 

   

 

   

 

   

 

In degree 4 5 5 4 3 

Out degree 4 5 5 4 3 

From the above table we observe that In and Out degrees of 

each vertex are same. 
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III. CONCLUSION 

The above results show the application of set-theoretic 

operations and its analysis on a special graph called 

Tadpole graph with its line graph and nature of the given 

graph. 
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