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I. INTRODUCTION 

Fourier matrices are complex Hadamard matrices and they 

have many applications in conformal field theory. 

Conformal field theory has many applications in Physics. 

(vide [1], [2], [4], [7] and [8])  

An square matrix of size n with entries 1 and -1 is called 

Hadamard matrix if  HHT =nIn. 

Following are some examples of Hadamard matrices: 
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The order of Hadamard matrix is of the form 4t, where t is 

a positive integer. But whether there exist a Hadamard 

matrix of every order 4t? It is one of the longest-standing 

open problem in Mathematics. 

(vide [5]) 

  A complex Hadamard matrix M is a square matrix of 

order n with unimodular entries such that MM
θ

 where Mθ  

is transconjugate of matrix M. 

Following are the examples of some complex Hadamard 

matrices: 
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A complex Hadamard matrix is called dephased if all the 

entries in its first row and first column are 1 and it is known 

that every Hadamard matrix is equivalent to a dephased. 

Fourier matrices are particular Hadamard matrices defined 

as a square matrix Fn of size n and of the form 
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Where e is an (n-1)×1 column matrix with each entry 1, 
Te  

is transpose of matrix e and Q is an (n-1)×(n-1) square 

matrix defined as 
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Following are the some examples of Fourier 

matrices:
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 (Vide [3], [5],[9], [10] and  [11]) 

II. MAIN WORK 

Manjhi and Kumar [6] introduce some methods of 

constructions of Fourier matrices F3, F5 and F7 with the 

help of Coherent configuration by taking suitable 

combinations of adjacency matrices of these Coherent 

Configurations. 

I this paper methods of construction of Fourier matrices 

F3, F5 and F7  are introduced by the use of suitable 

permutation group. In the forwarded methods the methods 

of construction of core matrix Q is given.  

 

1. Construction of Fourier matrix F3 

 

Consider the permutation group G={I, (12)} over the set 

of symbols {1, 2}. 

The matrix representation of representation of elements 

of G are given below: 
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Now consider the linear combination 
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2. Construction of Fourier Matrices F5 of order 5 

Consider the cyclic permutation group 

 G= {I, (1342), (1243), (14) (23)} over the set of symbols  

X={1, 2, 3, 4}. 

The matrix representation of representation of elements 

of G are given below: 
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Now consider the following combination 
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this matrix is equivalent to Q of Fourier matrix F5 as by the 

by the permutations of 2nd and 3rd columns in Q’ we get the 

matrix Q of F5 . 

3. Construction of Fourier matrix F7 

Consider the cyclic permutation group 

G={I, (142)(356), (154623), (124)(365), (132645), 

(16)(25)(34)}=<(132645)> over the set of symbols 

X={1,2,3,4,6,6} 

 

The matrix representation of representation of elements of 

G are given below: 
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Now consider the following combination 
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This matrix Q’ is equivalent to matrix Q of Fourier matrix 

F7 as by the following elementary operations we get Q of F7 

5342 and CCCC   

III. CONCLUSION 

From the above results we conclude that Fourier matrices 

of order 3, 5 and 7 can be constructed with the help of 

suitable permutation groups. Also these results give some 

insight about the type of permutation groups that are 

needed for the construction of Fourier matrices of prime 

order. 

IV. FUTURE WORK 

The above constructions can be generalized of all prime 

order p.  
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