
International Journal for Research in Engineering Application & Management (IJREAM) 

ISSN : 2454-9150    Vol-04, Issue-04, July 2018 

621 | IJREAMV04I0440171                        DOI : 10.18231/2454-9150.2018.0554                      © 2018, IJREAM All Rights Reserved. 

 

Deadlock Analysis of Improved Round Robin CPU 

Scheduling Algorithm Using Markov Chain Model 

Rupesh Sendre, Research Scholar, Faculty of Computer Science, PAHER University, Udaipur, Rajasthan, 

India, sendre.rupesh@gmail.com 

Rahul Singhai, Sr. Asst. Professor, International Institute of Professional Studies, DAVV, Indore, Madhya 

Pradesh, India, singhai_rahul@hotmail.com 

Abstract - CPU scheduling defines the rules for deciding which of the available process in ready queue will be selected 

next and dispatched by scheduler to CPU, so that the resource utilization and overall performance of the system could 

be improved. Various traditional CPU scheduling algorithms have been proposed by several researchers each having 

their pros and cons. The improved round robin CPU scheduling algorithm [24] is one of them that reduces the average 

waiting time and increases the throughput and maintains the same level of CPU utilization. In this paper we evaluated 

the performance of this algorithm by incorporating the deadlock condition. The transition from one process to another 

process is done under markovian concept and data set based Markov chain model is proposed to study these different 

transition states. The overall performance in terms of unequal and equal numerical data are calculated and then 

comparative analysis is performed to justify the conclusion further with the help of some numerical illustrations, 

simulation study has been performed.  
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I. INTRODUCTION 

Concurrent execution is one of the important feature 

provided by operating system that improves the utilization 

of system resources by distributing them among many 

concurrently executing processes. Since the deadlock 

problem is a logical one it can arise in different contexts. 

The deadlock problem becomes more complex when a 

system has different resource types and, in general, more 

than one resource of the same type. In this case resources of 

the same type are not labeled differently. When a request is 

made for a number of resources of a particular type, any 

resources of that type may be granted. Thus, the situation of 

only one resource of each type is a special case for this [7, 

8]. 

In a multiprogramming environment, several processes may 

be executing and requesting a finite number of common 

resources simultaneously. When some resources are 

requested by a process and if that resources are not 

available at that time then the process enter into a resting 

state. Sometimes a resting process is never again able to 

change state because of the resources it has requested are 

held by another resting processes. This situation is called a 

deadlock. Deadlocks arise in process synchronization when 

processes wait for each other’s signals, or in resource 

sharing when they wait for other processes to release 

resources that they need. Deadlocked processes remain 

blocked indefinitely, which adversely affects user service, 

throughput and resource efficiency. 

This deadlock situation has arisen only because of the 

following general conditions [3-5] are operative: 

a. The access of resources by different processes is 

exclusive in time. (“mutual exclusion” condition). 

b. Few resources are already held by a process and is 

waiting for additional resources to complete its 

execution (“wait for” condition). 

c. Resources cannot be forcibly removed from the 

process holding them until the resources are 

released voluntarily after completion (“no 

preemption” condition). 

d. A circular chain of processes exists, such that each 

process holds one or more resources that are being 

requested by the next process in the chain 

(“circular wait” condition). The existence of these 

conditions effectively defines a state of deadlock 

[1, 2]. In general, three methods Deadlock 

Prevention, Deadlock Avoidance and Deadlock 

detection are used to deal with deadlock condition. 

II. RELATED WORK 

A deadlock is an undesirable situation where processes of a 

set of states that hold schedulers are locked indefinitely 

from access to schedulers held by other processes within 

the states. No processes of the states can release its own 

schedulers before completing its tasks. Therefore, the 

deadlock will last forever, unless a deadlock resolution 

procedure is performed.  Researchers have studied different 

types of anomalies found in deadlock and introduced 

various models to precisely define deadlock condition and 

also provided comprehensive analysis of deadlock. 

Banker’s algorithm for avoiding deadlock has been 

improved by using a waiting (resting) state processes over 

there and avoid deadlock in particular study [10, 15]. 
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Researcher’s presented deadlock detection technique using 

wait for graph through propagating the probe messages 

along the edges of wait for graph and deadlock resolution 

algorithm, which is based on the mutual cooperation of the 

transactions [12]. Few other researchers [23] also 

developed an algorithm for deadlock detection at local and 

global level. One more researcher presented magiclock, a 

deadlock detection technique which is eliminates 

removable lock dependencies into thread specific partitions, 

consolidates equivalent lock dependencies and searches 

over the set of lock dependency, and produced numerical 

based results to show that magiclock is significant and also 

detecting potential deadlock in multithreaded programs [13, 

14]. Author’s proposed a hierarchy of deadlock models and 

deadlock detection problems and gives a comparative study 

between deadlock models and deferent types gates (OR, 

AND, etc.) models [11]. Also, resource allocation used at 

the infrastructure level and gives the comparative analysis 

of physical resources versus virtual resources, and then  

implemented algorithm using CloudSim simulator and 

generate the experimental results for numerical data basis 

[16]. 

 Author’s studied a model-based strategy on binary 

decision diagram for efficiently retrieving the boundary 

unsafe states. Demonstrate that symbolic computation 

enables with large structure and state spaces with limited 

time and memory requirements and also presented 

computational costs are substantially reduced through the 

pertinent exploitation of the special structure that exist in 

the considered problem. Demonstrate the efficacy of the 

developed approaches through a series of computational 

experiments also establish the ability of the proposed 

methodology to effectively compute tractable 

implementation [17, 18]. One more author’s proposed 

deadlock-based study for timed Rebeca models and 

checking schedulability and also focus on events-based 

behavior for actor’s action and predict some experimental 

result for that [19].  Also, studied different approaches to 

solve the state space explosion problem using heuristic and 

metaheuristic algorithms and generate some solutions and 

proposed two new algorithms to find deadlock in complex 

software systems and produced some experimental solution 

for that [20], and a dynamic priority task scheduling 

strategy based on value evaluation to handle the different 

threat in particular scenario. The strategy is based on some 

features related to multilevel ready queue and designed an 

algorithm for real time value computation and enhancing its 

adaptability and carry out its performance optimization 

using some experiment-based strategy [21], and another 

researcher developed novel version of the resource 

allocation systems to avoid the deadlock problem and 

produce new decomposed operational modes to provide 

new policies and running data set for particular resources 

that was enable the formal characteristics and the effective 

computation of this study mode [22]. 

A data set based markov chain model is presented to study 

the transition states and number of scheduling schemes are 

designed and treated as its particular cases and are 

compared under the setup of markov chain model and 

finding deadlock index measure, and again some simulation 

study is performed to evaluate the comparative merits of 

specific scheme has terms, conditions and restrictions over 

the general class [6]. The Improved Round Robin (IRR) 

policy reduces the average waiting time and increases the 

throughput and maintains the same level of CPU utilization 

like traditional Round Robin provides. In this paper a 

markov chain model is done in order to determine the 

performance of this suggested IRR algorithm. We have also 

proposed some other ways to assign the scheduler to the 

next ready process. These efforts have found very efficient 

and useful. Further some numerical studies have been done 

to justify the proposed suggestions [9]. 

The set of possible values of an individual random 

variable X(n) (or X(t)) of a stochastic process {X(n), n1}, 

{X(t), tT} is known as state space, The stochastic process 

{X(n), n=0,1,2…} is called Markov chain, if, for j, k, j1, … , 

j(n-1) € N (or any subset of I). Medhi has been tested an 

elaborate study of a variety of stochastic processes and their 

applications in various fields and developed a Markov 

chain model for the study of uncertain rainfall phenomenon 

and also presented the use of stochastic process in the 

management of queues [25-27]. Naldi proposed and 

develop a Markov chain model for understanding the 

internet traffic sharing among various operators in a 

competitive market [28]. Researcher studied the use of 

Markov chain model for multilevel queue scheduler and 

also designed a scheduling scheme and compare through 

numerical based study [29, 30]. Proposed a linear data 

model-based study of improved RR CPU Scheduling 

algorithm with features of shortest job first scheduling with 

varying time quantum by using Markov chain model with 

different data set and performed some numerical based 

study [31, 32]. Author’s worked on traditional round robin 

scheme to reduce the total waiting time of an any process 

which is spend in a ready queue and improve the 

performance of existing round robin algorithm to 

understand this waiting time difference using mathematical 

formulation and calculation [24]. 

III. PROPOSED  SYSTEM 

In Improved Round Robin (IRR) CPU scheduling policy, 

the basic functions of Round Robin with an improvement 

towards the priority assigned to the processes nearing 

completion are combined. Since the time requirement for 

completion of a process Pi after (ri - 1) th round is at the 

most one-time quantum. Hence, we consider a priority 

queue (to be referred as Q2) in addition to the ready queue 

Q1. An additional queue has been used by author [9] for 

dispatching priority in context of FCFS scheduling. All 

processes, after being served by the CPU in penultimate 

round, are sent to the rear end of Q2 instead of Q1. Thus, the 

processes which need only one quantum or less will be 

terminated in the first round itself from Q1, while all others 

will be terminated on being dispatched from Q2. Therefore, 

processes going to CPU through Q1, if not terminated, may 

return back to the rear end of either Q1 or Q2. As shown in 

Fig. 3.1, this approach organizes the pending requests in 

two queues. Deadlock analysis of IRR CPU scheduling 

policy assumes cycle of four queues (Q1, Q2, Q3 & Q4) for 

the purpose of sequential allocation to scheduler; it starts 

with two processes from Q1 one process from Q2 and one 

process from Q3 (deadlock process) and one process from 

Q4 (waiting process).  
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The scheduling policy can further be improved by adopting 

some different cycle. Precise idea is to appropriately choose 

a pair of numbers p and q (p>q) that determine the number 

of processes from Q1 and Q2 for allocation to CPU in the 

cycle. An optimal choice may however, depend on the 

number of processes and the size of their CPU bursts. In the 

present work, we shall confine our discussion to p and q. 

This scheduling policy provides better estimates than the 

conventional RR policy in respect of all performance 

measures, including the throughput, without any significant 

increase in the overheads [9, 24]. 

Generalized Markov chain models in CPU scheduling 

 

Fig. 3.1: Generalized Markov chain models in CPU scheduling 

 
Fig. 3.2: Unrestricted transition diagram 

Let X(n), n ≥ 1, be a Markov chain where X(n) denotes the 

state of the scheduling at the quantum of time. The state 

space for the random variable X(n) is {Q1, Q2, Q3, Q4} where 

Q1 = Pi, Pj are combine process in first state, Q2 = Pk is 

second state, Q3 = Pd is third (deadlock) state and Q4 = Pw 

is fourth (waiting) state and scheduler X move 

stochastically over different processing states and waiting 

within different quantum of time. And fig. 3.2 shows the 

transition diagram performing transition from one state to 

another state according to CPU scheduling algorithm. Unit 

step transaction probability matrix for X(n) under general 

model is: 

 
Predefined selection for initial probabilities of states are: 

 

P [ X(n) = Pi ] = Pr1 ; P [ X(n) = Pj ] = Pr2 ; P [ X(n) = Pk ] = 

Pr3 ; P [ X(n) = Pd ] = 0 ; P [ X(n) = Pw ] = 0 ……… eq 1 

Let Sij ( i, j = 1, 2, 3,…) be the unit step transition 

probabilities of scheduler over three states then transition 

probability depend on subject to condition: 

 

S15 = ( 1 –  ); S25 = ( 1 –  ); S35 = ( 1 – 

); S45 = ( 1 –  ); S55 = ( 1 –  ); 

& 0 Sij  1, 

 

The state probabilities, after the first quantum can be 

obtained by a simple relationship: 

 

P [ X(1) = Pi ] =  P [ X(0) = Pi ] P [ X(1) = Pi / X
(0) = Pi] + P [ 

X(0) = Pj ] P [ X(1) = Pi / X
(0) = Pj ] + P [ X(0) = Pk ] P [ X(1) = 

Pi / X
(0) = Pk ] + P [ X(0) = Pd ] P [ X(1) = Pi / X

(0) = Pd ] + P 

[ X(0) = Pw ] P [ X(1) = Pi / X
(0) = Pw ] 

P [ X(1) = Pi ] =  ; P [ X(1) = Pj ] =  

; P [ X(1) = Pk ] =  ; P [ X(1) = Pd ] = 

 ;  P [ X(1) = Pw ] =    ..........eq. 2 

 

Similarly, state probabilities after second quantum can be 

obtained by simple relationship: 

 

P [ X(2) = Pi ] =  P [ X(1) = Pi ] P [ X(2) = Pi / X
(1) = Pi ] + P [ 

X(1) = Pj ] P [ X(2) = Pi / X
(1) = Pj ] + P [ X(1) = Pk ] P [ X(2) = 

Pi / X
(1) = Pk ] + P [ X(1) = Pd ] P [ X(2) = Pi / X

(1) = Pd ] + P 

[ X(1) = Pw ] P [ X(2) = Pi / X
(1) = Pw ] 

P [ X(2) = Pi ] = ( ) Si1  ; P [ X(2) = Pj] 

=  ( ) Si2  ;  

P [ X(2) = Pk] =  ( ) Si3  ; P [ X(2) = Pd] 

=  ( ) Si4 ; P [ X(2) = Pw] =  ( 

) Si5  ............eq. 3 

 

The generalized expressions for n quantum are: 

 

P [ X(n) = Pi ] =   ........        

; 

P [ X(n) = Pj] =    ........        

; 

P [ X(n) = Pk] =    ........      

  ; 

P [ X(n) = Pd] =    ........      

    

P [ X(n) = Pw] =    ........      

    ............eq. 4 

 

IV. DEADLOCK ANALYSIS OF IRR CPU SCHEDULING 

SCHEMES  

The following are the schemes that are obtained by 

imposing some restrictions and condition on the transition 

model of IRR algorithm under possibility of deadlock.  

A. Scheme - I  

At any stage, after dispatching two processes from Q1, if Q2 

is found to be empty, another pair of processes will be 

dispatched from Q1. this scheme is described in fig. 4.1. 

 A new process can only enter to first queue Q1 and 

executing the two processes Pi and Pj , if state Q2 ( 

i.e. process Pk) is found to be empty, then another 

pair of processes (Pi and Pj) will be dispatched 

from state Q1. Scheduler comes to Q4 only if state 

Q1 and Q2 are empty. 

 Define Q4 = Pw is a waiting state. 
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 When two or more cooperating process from queue 

Q1 and Q2 are assigned to CPU and executed 

concurrently then neither of the process may able 

to execute towards completion as there are some 

resources that are commonly used by them and 

required to complete their execution but due to 

unavailability of these resources all the process 

from Q1 and Q2 are reached to a deadlock 

situation. Under these circumstances the processes 

from Q1 and Q2 are permanently blocked. 

 Define Q3 = Pd is a deadlock state. 

 
Fig. 4.1: Restricted transition diagram 

 

Thus, the initial probabilities under scheme-I are: 

 

P [ X(0) = Pi ] = 1 ; P [ X(0) = Pj ] = 0 ; P [ X(0) = Pk ] = 0 ; 

P [ X(0) = Pd ] = 0 ; P [ X(0) = Pw ] = 0 

Unit step transaction probability matrix for X(n) under 

scheme-I is: 

 
 

By using eq. 2 the state probabilities after the first-time 

quantum are: 

 

P [ X(1) = Pi ] = 0 ; P [ X(1) = Pj ] = S12  ; P [ X(1) = Pk ] = 

S13 ; P [ X(1) = Pd ] = S14 ; P [ X(1) = Pw ] = S15 

 

By using eq. 3 the state probabilities after the second time 

quantum are: 

 

P [ X(2) = Pi ] =  P [ X(1) = Pi ] P [ X(2) = Pi / X
(1) = Pi ] + P [ 

X(1) = Pj ] P [ X(2) = Pi / X
(1) = Pj ] + P [ X(1) = Pk ] P [ X(2) = 

Pi / X
(1) = Pk ] + P [ X(1) = Pd ] P [ X(2) = Pi / X

(1) = Pd ] + P 

[ X(1) = Pw ] P [ X(2) = Pi / X
(1) = Pw ] 

P [ X(2) = Pi ] = S13 S31 +  S15 S51 

P [ X(2) = Pj ] =P [ X(1) = Pi ] P [ X(2) = Pj/ X
(1) = Pi ] + P [ 

X(1) = Pj ] P [ X(2) = Pj/ X
(1) = Pj ] + P [ X(1) = Pk ] P [ X(2) = 

Pj/ X
(1) = Pk ] + P [ X(1) = Pd ] P [ X(2) = Pj / X

(1) = Pd ] + P 

[ X(1) = Pw ] P [ X(2) = Pj / X
(1) = Pw ] 

P [ X(2) = Pj ] = S25 S52 

P [ X(2) = Pk ]=P [ X(1) = Pi ] P [ X(2) = Pk / X
(1) = Pi ] + P [ 

X(1) = Pj ] P [ X(2) = Pk/ X
(1) = Pj ] + P [ X(1) = Pk ] P [ X(2) = 

Pk/ X
(1) = Pk ] + P [ X(1) = Pd ] P [ X(2) = Pk / X

(1) = Pd ] + P 

[ X(1) = Pw ] P [ X(2) = Pk / X
(1) = Pw ] 

P [ X(2) = Pk ] = S13 S31 +  S35 S53 

P [ X(2) = Pd ] =P [ X(1) = Pi ] P [ X(2) = Pd / X
(1) = Pi ] + P [ 

X(1) = Pj ] P [ X(2) = Pd/ X
(1) = Pj ] + P [ X(1) = Pk ] P [ X(2) = 

Pd/ X
(1) = Pk ] + P [ X(1) = Pd ] P [ X(2) = Pd / X

(1) = Pd ] + P 

[ X(1) = Pw ] P [ X(2) = Pd / X
(1) = Pw ] 

P [ X(2) = Pd ] = S44 S44  

P [ X(2) = Pw ] =P [ X(1) = Pi ] P [ X(2) = Pw / X
(1) = Pi ] + P [ 

X(1) = Pj ] P [ X(2) = Pw/ X(1) = Pj ] + P [ X(1) = Pk ] P [ X(2) = 

Pw/ X(1) = Pk ] + P [ X(1) = Pd ] P [ X(2) = Pw / X
(1) = Pd ] + P 

[ X(1) = Pw ] P [ X(2) = Pw / X
(1) = Pw ] 

P [ X(2) = Pw ] = S15 S51 + S25 S52 +  S35 S53 

 

Similarly, third time quantum are: 

 

P [ X(3) = Pi ] = (S13 S31 +  S35 S53) S31 + ( S15 S51 + S25 S52 +  
S35 S53) S51 

P [ X(3) = Pj ] = (S13 S31 +  S15 S51) S12 + (S15 S51 + S25 S52 +  
S35 S53) S52  

P [ X(3) = Pk ] = (S13 S31 +  S15 S51) S13 + ( S25 S52) S23 + (S15 

S51 + S25 S52 +  S35 S53) S53 

P [ X(3) = Pd ] = (S13 S31 +  S15 S51) S14 + ( S25 S52 ) S24 + (S13 

S31 +  S35 S53) S34 + (S44 S44) S44 

P [ X(3) = Pw ] = (S13 S31 +  S15 S51) S15 + ( S25 S52) S25 + (S13 

S31 +  S35 S53) S35 

 

Similarly, fourth time quantum are: 

 

P [ X(4) = Pi ] = { (S13 S31 +  S15 S51) S13 + ( S25 S52) S23 + (S15 

S51 + S25 S52 +  S35 S53) S53 } S31 + { (S13 S31 +  
S15 S51) S15 + ( S25 S52) S25 + (S13 S31 +  S35 

S53) S35 } S51 

P [ X(4) = Pj ] = { (S13 S31 +  S35 S53) S31 + ( S15 S51 + S25 S52 

+  S35 S53) S51 } S12 + { (S13 S31 +  S15 S51) S15 

+ ( S25 S52) S25 + (S13 S31 +  S35 S53) S35 } S52 

P [ X(4) = Pk ] = { (S13 S31 +  S35 S53) S31 + ( S15 S51 + S25 S52 

+  S35 S53) S51 } S13 + { (S13 S31 +  S15 S51) S12 

+ (S15 S51 + S25 S52 +  S35 S53) S52 } S23 +
 { 

(S13 S31 +  S15 S51) S15 + ( S25 S52) S25 + (S13 

S31 +  S35 S53) S35 } S53
 

P [ X(4) = Pd ] = { (S13 S31 +  S35 S53) S31 + ( S15 S51 + S25 S52 

+  S35 S53) S51 } S14 + { (S13 S31 +  S15 S51) S12 

+ (S15 S51 + S25 S52 +  S35 S53) S52 } S24 +
 { 

(S13 S31 +  S15 S51) S13 + ( S25 S52) S23 + (S15 

S51 + S25 S52 +  S35 S53) S53 } S34 +
 { (S13 S31 +  

S15 S51) S14 + ( S25 S52 ) S24 + (S13 S31 +  S35 

S53) S34 + (S44 S44) S44 } S44 

P [ X(4) = Pw ] = { (S13 S31 +  S35 S53) S31 + ( S15 S51 + S25 S52 

+  S35 S53) S51 } S15 + { (S13 S31 +  S15 S51) S12 

+ (S15 S51 + S25 S52 +  S35 S53) S52 } S25 +
 { 

(S13 S31 +  S15 S51) S13 + ( S25 S52) S23 + (S15 

S51 + S25 S52 +  S35 S53) S53 } S35 

Similarly, we can find fifth, sixth and so on time quantum. 

B. Scheme - II  

If Q1 is left with a single process, Q2 will have its turn 

immediately after the dispatch of the single process from 

Q1. Fig 4.2 described the scheme under restriction of some 

transitions. These restrictions are: 

 A new process enters to queue Q1 only. 

 Scheduler cannot jump to Q4 from Q1 without 

passing Q2. 

 If Q1 is left with a single process, Q2 will have its 

turn immediately after the dispatch of the single 

process from Q1. 
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 Now a process from Q1 is assigned and executed 

and it is assumed that this process is not able to 

complete execution within first time quantum due 

to the occurrence of any I/O request or any halt 

condition, so it gets suspended. and then process 

from Q2 is assigned and started execution but its 

execution is also get suspended due to the same 

reason for which the process from Q1 was 

suspended. So, both the processes from Q1 and Q2 

are not able to execute towards completion and 

reaches to a deadlock condition. 

  Resting of scheduler on Q4 ends up only if a new 

process enters in Q1, otherwise resting continues. 

 
Fig. 4.2: Restricted transition diagram 

 

Thus, the initial probabilities under scheme-II are: 

 

P [ X(0) = Pi ] = 1 ; P [ X(0) = Pj ] = 0 ; P [ X(0) = Pk ] = 0 ; 

P [ X(0) = Pd ] = 0 ; P [ X(0) = Pw ] = 0 

 

Unit step transaction probability matrix for X(n) under 

scheme-II is: 

 
 

By using eq. 2 the state probabilities after the first-time 

quantum are: 

 

P [ X(1) = Pi ] = 0 ; P [ X(1) = Pj ] = S12  ; P [ X(1) = Pk ] = 

S13 ; P [ X(1) = Pd ] = S14 ; P [ X(1) = Pw ] = S15 

 

By using eq. 3 the state probabilities after the second time 

quantum are: 

 

P [ X(2) = Pi ] =  P [ X(1) = Pi ] P [ X(2) = Pi / X
(1) = Pi ] + P [ 

X(1) = Pj ] P [ X(2) = Pi / X
(1) = Pj ] + P [ X(1) = Pk ] P [ X(2) = 

Pi / X
(1) = Pk ] + P [ X(1) = Pd ] P [ X(2) = Pi / X

(1) = Pd ] + P 

[ X(1) = Pw ] P [ X(2) = Pi / X
(1) = Pw ] 

P [ X(2) = Pi ] = S13 S31 +  S15 S51 

P [ X(2) = Pj ] =P [ X(1) = Pi ] P [ X(2) = Pj/ X
(1) = Pi ] + P [ 

X(1) = Pj ] P [ X(2) = Pj/ X
(1) = Pj ] + P [ X(1) = Pk ] P [ X(2) = 

Pj/ X
(1) = Pk ] + P [ X(1) = Pd ] P [ X(2) = Pj / X

(1) = Pd ] + P 

[ X(1) = Pw ] P [ X(2) = Pj / X
(1) = Pw ] 

P [ X(2) = Pj ] = 0 

P [ X(2) = Pk ]=P [ X(1) = Pi ] P [ X(2) = Pk / X
(1) = Pi ] + P [ 

X(1) = Pj ] P [ X(2) = Pk/ X
(1) = Pj ] + P [ X(1) = Pk ] P [ X(2) = 

Pk/ X
(1) = Pk ] + P [ X(1) = Pd ] P [ X(2) = Pk / X

(1) = Pd ] + P 

[ X(1) = Pw ] P [ X(2) = Pk / X
(1) = Pw ] 

P [ X(2) = Pk ] = S13 S31 +  S35 S53 

P [ X(2) = Pd ] =P [ X(1) = Pi ] P [ X(2) = Pd / X
(1) = Pi ] + P [ 

X(1) = Pj ] P [ X(2) = Pd/ X
(1) = Pj ] + P [ X(1) = Pk ] P [ X(2) = 

Pd/ X
(1) = Pk ] + P [ X(1) = Pd ] P [ X(2) = Pd / X

(1) = Pd ] + P 

[ X(1) = Pw ] P [ X(2) = Pd / X
(1) = Pw ] 

P [ X(2) = Pd ] = S44 S44  

P [ X(2) = Pw ] =P [ X(1) = Pi ] P [ X(2) = Pw / X
(1) = Pi ] + P [ 

X(1) = Pj ] P [ X(2) = Pw/ X(1) = Pj ] + P [ X(1) = Pk ] P [ X(2) = 

Pw/ X(1) = Pk ] + P [ X(1) = Pd ] P [ X(2) = Pw / X
(1) = Pd ] + P 

[ X(1) = Pw ] P [ X(2) = Pw / X
(1) = Pw ] 

P [ X(2) = Pw ] = S15 S51 + S35 S53  

 

Similarly, third time quantum are: 

 

P [ X(3) = Pi ] = (S13 S31 +  S35 S53) S31 + ( S15 S51 + S35 S53) 

S51 

P [ X(3) = Pj ] = (S13 S31 +  S15 S51) S12  

P [ X(3) = Pk ] = (S13 S31 +  S15 S51) S13 + (S15 S51 + S35 S53) 

S53 

P [ X(3) = Pd ] = (S13 S31 +  S15 S51) S14 + ( S13 S31 +  S35 S53) 

S34 + (S44 S44) S44 

P [ X(3) = Pw ] = (S13 S31 +  S15 S51) S15 + ( S13 S31 +  S35 S53) 

S35  

 

Similarly, fourth time quantum are: 

 

P [ X(4) = Pi ] = { (S13 S31 +  S15 S51) S13 + (S15 S51 + S35 S53) 

S53 } S31 + { (S13 S31 +  S15 S51) S15 + ( S13 S31 

+  S35 S53) S35 } S51 

P [ X(4) = Pj ] = { (S13 S31 +  S35 S53) S31 + ( S15 S51 + S35 S53) 

S51 } S12  

P [ X(4) = Pk ] = { (S13 S31 +  S35 S53) S31 + ( S15 S51 + S35 S53) 

S51 } S13 + { (S13 S31 +  S15 S51) S12 } S23 +
 { 

(S13 S31 +  S15 S51) S15 + ( S13 S31 +  S35 S53) 

S35 } S53
 

P [ X(4) = Pd ] = { (S13 S31 +  S35 S53) S31 + ( S15 S51 + S35 S53) 

S51} S14 + { (S13 S31 +  S15 S51) S12 } S24 +
 { 

(S13 S31 +  S15 S51) S13 + (S15 S51 + S35 S53) S53 

} S34 +
 { (S13 S31 +  S15 S51) S14 + ( S13 S31 +  

S35 S53) S34 + (S44 S44) S44} S44 

P [ X(4) = Pw ] = { (S13 S31 +  S35 S53) S31 + ( S15 S51 + S35 S53) 

S51} S15 + { (S13 S31 +  S15 S51) S15 + ( S13 S31 

+  S35 S53) S35 } S35  

Similarly, we can find fifth, sixth and so on time quantum. 

C. Scheme - III  

If Q1 is left with no process, Q2 will function as a single 

ready queue. The following transition are restricted in this 

scheme: 

 A new process can only enter to Q2. 

 Transition from Q1 to Q4 is restricted. 

 Now a process from Q2 is assigned and executed 

and it is assumed that this process is not able to 

complete execution within first time quantum due 

to the occurrence of any I/O request or any halt 

condition, so it gets suspended. and then process 

from Q1 is assigned and started execution but its 

execution is also get suspended due to the same 

reason for which the process from Q2 was 

suspended. So, both the processes from Q2 and Q1 
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are not able to execute towards completion and 

reaches to a deadlock condition. 

 Transition must occur in sequence from Q2 to Q1, 

Q1 to Q2, Q1 to Q4 and then Q2 to Q4 to be shown 

in fig. 4.3. 

 

Fig. 4.3: Restricted transition diagram 

 

Thus, the initial probabilities under scheme-III are: 

 

P [ X(0) = Pi ] = 0 ; P [ X(0) = Pj ] = 0 ; P [ X(0) = Pk ] = 1 ; 

P [ X(0) = Pd ] = 0 ; P [ X(0) = Pw ] = 0 

 

Unit step transaction probability matrix for X(n) under 

scheme-III is: 

 

 
 

By using eq. 2 the state probabilities after the first-time 

quantum are: 

 

P [ X(1) = Pi ] = 0 ; P [ X(1) = Pj ] = 0  ; P [ X(1) = Pk ] = S13 ; 

P [ X(1) = Pd ] = S14 ; P [ X(1) = Pw ] = S15 

 

By using eq. 3 the state probabilities after the second time 

quantum are: 

 

P [ X(2) = Pi ] =  P [ X(1) = Pi ] P [ X(2) = Pi / X
(1) = Pi ] + P [ 

X(1) = Pj ] P [ X(2) = Pi / X
(1) = Pj ] + P [ X(1) = Pk ] P [ X(2) = 

Pi / X
(1) = Pk ] + P [ X(1) = Pd ] P [ X(2) = Pi / X

(1) = Pd ] + P 

[ X(1) = Pw ] P [ X(2) = Pi / X
(1) = Pw ] 

P [ X(2) = Pi ] = S13 S31  

P [ X(2) = Pj ] =P [ X(1) = Pi ] P [ X(2) = Pj/ X
(1) = Pi ] + P [ 

X(1) = Pj ] P [ X(2) = Pj/ X
(1) = Pj ] + P [ X(1) = Pk ] P [ X(2) = 

Pj/ X
(1) = Pk ] + P [ X(1) = Pd ] P [ X(2) = Pj / X

(1) = Pd ] + P 

[ X(1) = Pw ] P [ X(2) = Pj / X
(1) = Pw ] 

P [ X(2) = Pj ] = S23 S32 

P [ X(2) = Pk ]=P [ X(1) = Pi ] P [ X(2) = Pk / X
(1) = Pi ] + P [ 

X(1) = Pj ] P [ X(2) = Pk/ X
(1) = Pj ] + P [ X(1) = Pk ] P [ X(2) = 

Pk/ X
(1) = Pk ] + P [ X(1) = Pd ] P [ X(2) = Pk / X

(1) = Pd ] + P 

[ X(1) = Pw ] P [ X(2) = Pk / X
(1) = Pw ] 

P [ X(2) = Pk ] = S13 S31 + S23 S32 + S35 S53 

P [ X(2) = Pd ] =P [ X(1) = Pi ] P [ X(2) = Pd / X
(1) = Pi ] + P [ 

X(1) = Pj ] P [ X(2) = Pd/ X
(1) = Pj ] + P [ X(1) = Pk ] P [ X(2) = 

Pd/ X
(1) = Pk ] + P [ X(1) = Pd ] P [ X(2) = Pd / X

(1) = Pd ] + P 

[ X(1) = Pw ] P [ X(2) = Pd / X
(1) = Pw ] 

P [ X(2) = Pd ] = S44 S44  

P [ X(2) = Pw ] =P [ X(1) = Pi ] P [ X(2) = Pw / X
(1) = Pi ] + P [ 

X(1) = Pj ] P [ X(2) = Pw/ X(1) = Pj ] + P [ X(1) = Pk ] P [ X(2) = 

Pw/ X(1) = Pk ] + P [ X(1) = Pd ] P [ X(2) = Pw / X
(1) = Pd ] + P 

[ X(1) = Pw ] P [ X(2) = Pw / X
(1) = Pw ] 

P [ X(2) = Pw ] = S35 S53 

 

Similarly, third time quantum are: 

 

P [ X(3) = Pi ] = (S13 S31 + S23 S32 + S35 S53) S31  

P [ X(3) = Pj ] = (S13 S31 + S23 S32 + S35 S53) S32  

P [ X(3) = Pk ] = (S13 S31) S13 + ( S23 S32) S23 + (S35 S53) S53 

P [ X(3) = Pd ] = (S13 S31) S14 + ( S23 S32) S24 + ( S13 S31 + S23 

S32 + S35 S53) S34 + (S44 S44) S44 

P [ X(3) = Pw ] = (S13 S31) S15 + ( S23 S32) S25 + ( S13 S31 + S23 

S32 + S35 S53) S35 

 

Similarly, fourth time quantum are: 

 

P [ X(4) = Pi ] = { (S13 S31) S13 + ( S23 S32) S23 + (S35 S53) S53} 

S31  

P [ X(4) = Pj ] = { (S13 S31) S13 + ( S23 S32) S23 + (S35 S53) S53} 

S32 

P [ X(4) = Pk ] = { (S13 S31 + S23 S32 + S35 S53) S31 } S13 + { 

(S13 S31 + S23 S32 + S35 S53) S32 } S23 +
 { (S13 

S31) S15 + ( S23 S32) S25 + ( S13 S31 + S23 S32 + 

S35 S53) S35} S53
 

P [ X(4) = Pd ] = { (S13 S31 + S23 S32 + S35 S53) S31 } S14 + { 

(S13 S31 + S23 S32 + S35 S53) S32 } S24 + { (S13 

S31) S13 + ( S23 S32) S23 + (S35 S53) S53 } S34 +
 

{ (S13 S31) S14 + ( S23 S32) S24 + ( S13 S31 + S23 

S32 + S35 S53) S34 + (S44 S44) S44 } S44 

P [ X(4) = Pw ] = { (S13 S31 + S23 S32 + S35 S53) S31 } S15 + { 

(S13 S31 + S23 S32 + S35 S53) S32 } S25 + { (S13 

S31) S13 + ( S23 S32) S23 + (S35 S53) S53 } S35 

 

Similarly, we can find fifth, sixth and so on time quantum. 
 

V. SIMULATION STUDY WITH NUMERICAL ANALYSIS 

USING DATA SETS 

In order to analyze three schemes mentioned in section 

4.1, 4.2 and 4.3 under Markov chain model with unequal 

and equal transition following different data sets are used: 

A. Data Set – I 

Scheme I: Let initial probabilities are: Pr1 = 1; Pr2 = 0 ; Pr3 

= 0 ; Pr4 = 0 and Pr5 = 0 

Consider data set of unequal and equal probabilities matrix 

are follows: 

  
 

Table 5.1.1: The transition probabilities P[ X(n) = Qi ] for unequal 

and equal cases: 
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Scheme II: Let initial probabilities are: Pr1 = 1; Pr2 = 0 ; 

Pr3 = 0 ; Pr4 = 0 and Pr5 = 0  

Consider data set of unequal and equal probabilities matrix 

are follows: 

 
 

Table 5.1.2: The transition probabilities P[ X(n) = Qi ] for unequal 

and equal cases: 

 
 

Scheme III: Let initial probabilities are: Pr1 = 0 ; Pr2 = 0 ; 

Pr3 = 1 ; Pr4 = 0 and Pr5 = 0 

Consider data set of unequal and equal probabilities matrix 

are follows: 

 
 

Table 5.1.3: The transition probabilities P[ X(n) = Qi ] for unequal 

and equal cases: 

 
 

B. Data Set – II 

Scheme I: Let initial probabilities are: Pr1 = 1; Pr2 = 0 ; Pr3 

= 0 ; Pr4 = 0 and Pr5 = 0 

Consider data set of unequal and equal probabilities matrix 

are follows: 

 
 

Table 5.2.1: The transition probabilities P[ X(n) = Qi ] for unequal 

and equal cases: 

 

 

Scheme II: Let initial probabilities are: Pr1 = 1; Pr2 = 0 ; 

Pr3 = 0 ; Pr4 = 0 and Pr5 = 0  

Consider data set of unequal and equal probabilities matrix 

are follows: 

 
 

Table 5.2.2: The transition probabilities P[ X(n) = Qi ] for unequal 

and equal cases: 

 
 

Scheme III: Let initial probabilities are: Pr1 = 0 ; Pr2 = 0 ; 

Pr3 = 1 ; Pr4 = 0 and Pr5 = 0 

Consider data set of unequal and equal probabilities matrix 

are follows: 

 
 

Table 5.2.3: The transition probabilities P[ X(n) = Qi ] for unequal 

and equal cases: 
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C. Data Set – III 

Scheme I: Let initial probabilities are: Pr1 = 1; Pr2 = 0 ; Pr3 

= 0 ; Pr4 = 0 and Pr5 = 0 

Consider data set of unequal and equal probabilities matrix 

are follows: 

 
 

Table 5.3.1: The transition probabilities P[ X(n) = Qi ] for unequal 

and equal cases: 

 

 

Scheme II: Let initial probabilities are: Pr1 = 1; Pr2 = 0 ; 

Pr3 = 0 ; Pr4 = 0 and Pr5 = 0  

Consider data set of unequal and equal probabilities matrix 

are follows: 

 
 

Table 5.3.2: The transition probabilities P[ X(n) = Qi ] for unequal 

and equal cases: 

 
 

Scheme III: Let initial probabilities are: Pr1 = 0 ; Pr2 = 0 ; 

Pr3 = 1 ; Pr4 = 0 and Pr5 = 0 

Consider data set of unequal and equal probabilities matrix 

are follows: 

 
 

Table 5.3.3: The transition probabilities P[ X(n) = Qi ] for unequal 

and equal cases: 

 

 

D. Data Set – IV 

Scheme I: Let initial probabilities are: Pr1 = 1; Pr2 = 0 ; Pr3 

= 0 ; Pr4 = 0 and Pr5 = 0 

Consider data set of unequal and equal probabilities matrix 

are follows: 

 
 

Table 5.4.1: The transition probabilities P[ X(n) = Qi ] for unequal 

and equal cases: 

 

 

Scheme II: Let initial probabilities are: Pr1 = 1; Pr2 = 0 ; 

Pr3 = 0 ; Pr4 = 0 and Pr5 = 0  

Consider data set of unequal and equal probabilities matrix 

are follows: 

 
 

Table 5.4.2: The transition probabilities P[ X(n) = Qi ] for unequal 

and equal cases: 
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Scheme III: Let initial probabilities are: Pr1 = 0 ; Pr2 = 0 ; 

Pr3 = 1 ; Pr4 = 0 and Pr5 = 0 

Consider data set of unequal and equal probabilities matrix 

are follows: 

 
 

Table 5.4.3: The transition probabilities P[ X(n) = Qi ] for unequal 

and equal cases: 

 

 

E. Data Set – V 

Scheme I: Let initial probabilities are: Pr1 = 1; Pr2 = 0 ; Pr3 

= 0 ; Pr4 = 0 and Pr5 = 0 

Consider data set of unequal and equal probabilities matrix 

are follows: 

 
 

Table 5.5.1: The transition probabilities P[ X(n) = Qi ] for unequal 

and equal cases: 

 

 

Scheme II: Let initial probabilities are: Pr1 = 1; Pr2 = 0 ; 

Pr3 = 0 ; Pr4 = 0 and Pr5 = 0  

Consider data set of unequal and equal probabilities matrix 

are follows: 

 
 

Table 5.5.2: The transition probabilities P[ X(n) = Qi ] for unequal 

and equal cases: 

 
 

Scheme III: Let initial probabilities are: Pr1 = 0 ; Pr2 = 0 ; 

Pr3 = 1 ; Pr4 = 0 and Pr5 = 0 

Consider data set of unequal and equal probabilities matrix 

are follows: 

 
 

Table 5.5.3: The transition probabilities P[ X(n) = Qi ] for unequal 

and equal cases: 

 

 

F. Data Set – VI 

Scheme I: Let initial probabilities are: Pr1 = 1; Pr2 = 0 ; Pr3 

= 0 ; Pr4 = 0 and Pr5 = 0 

Consider data set of unequal and equal probabilities matrix 

are follows: 

 
 

Table 5.6.1: The transition probabilities P[ X(n) = Qi ] for unequal 

and equal cases: 
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Scheme II: Let initial probabilities are: Pr1 = 1; Pr2 = 0 ; 

Pr3 = 0 ; Pr4 = 0 and Pr5 = 0  

Consider data set of unequal and equal probabilities matrix 

are follows: 

 
 

Table 5.6.2: The transition probabilities P[ X(n) = Qi ] for unequal 

and equal cases: 

 
 

Scheme III: Let initial probabilities are: Pr1 = 0 ; Pr2 = 0 ; 

Pr3 = 1 ; Pr4 = 0 and Pr5 = 0 

Consider data set of unequal and equal probabilities matrix 

are follows: 

 
 

Table 5.6.3: The transition probabilities P[ X(n) = Qi ] for unequal 

and equal cases: 

 

VI. GRAPHICAL ANALYSIS 

Graphical analysis is performed under above mentioned 

schemes in section 5.1, 5.2, 5.3, 5.4, 5.5 and 5.6 with 

different data sets considering unequal and equal 

probability matrix by gradually increasing the various 

quantum values. This analytical presentation on graphs 

about the variation P [ X(n) = Qi ] over six different lower 

and upper data sets are as follows: 

A. Data Set – I 

 
Fig. 6.1                                                      Fig. 6.4 

 

 
Fig. 6.2                                                     Fig. 6.5 

 
Fig. 6.3                                                     Fig. 6.6 

 

Remark: In data set – I, we observed that, the transition 

states pattern in these graphs are identical and the 

probability of scheduler in the absorbing (deadlock) state is 

very low value as compare to other states, that means, the 

probability of reaching a deadlock state is getting low that 

increases the performance of the scheduler. The special 

remark for this process scheduling is that probability for the 

state Pk is very high. Therefore, there are more chance for 

jobs contained in state Pk to be processed than Pi and Pj. 

 

B. Data Set – II 

 
Fig. 6.7                                                      Fig. 6.10 

 

 
Fig. 6.8                                                     Fig. 6.11 
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Fig. 6.9                                                     Fig. 6.12 

 

Remark: In data set – II, we observed that, the probability 

of scheduler in the absorbing (deadlock) state is slightly 

high value as compare to other states over different 

quantum which is a sign of increasing the performance 

efficiency of the CPU scheduler in the data sets. The 

probability of state Pk is higher than the other data sets. 

Most of the transition probabilities are almost equal in fig. 

6.10, 6.11 and 6.12. Therefore, this data set provides 

chance for job processing in deadlock state. 

C. Data Set – III 

 
Fig. 6.13                                                      Fig. 6.16 

 

 
Fig. 6.14                                                     Fig. 6.17 

 

 
Fig. 6.15                                                     Fig. 6.18 

 

Remark: In data set – III, we observed that, the graphical 

pattern (fig. 6.13, 6.14 and 6.15) state probability for 

unequal data set the absorbing (deadlock) state has higher 

chance of receiving the scheduler as compare to other 

working state (Pi Pj and Pk) and waiting state (Pw), the 

graphical pattern (fig. 6.16, 6.17 and 6.18) state probability 

for equal data set initially n ≥ 4, we find equal chances of 

receiving the scheduler for all the queues. Therefore, it 

increased the performance of scheduler. 

 

D. Data Set – IV 

 
Fig. 6.19                                                      Fig. 6.22 

 

 
Fig. 6.20                                                     Fig. 6.23 

 

 
Fig. 6.21                                                     Fig. 6.24 

 

Remark: In data set – IV, we observed that, the probability 

of system moving to absorbing state (deadlock state) is 

high. As no of quantum n ≥ 4, reflect changing in pattern 

and the probability of working state (Pi , Pj and Pk) and 

including waiting state (Pw) are flying comparatively high. 

Therefore, we find that equal chance of receiving the job of 

scheduler. 

E. Data Set – V 

 
Fig. 6.25                                                      Fig. 6.28 

 

 
Fig. 6.26                                                     Fig. 6.29 

 

 
Fig. 6.27                                                     Fig. 6.30 
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Remark: In data set – V, we observed that, the probability 

of system moving to absorbing (deadlock) state is very 

high. As number of quantum n ≥ 3, reflect changing in 

pattern. The remarkable point is that the probability of 

deadlock state (Pd) is higher than other state (Pi , Pj , Pk and 

Pw). This shows a loss of efficiency so that scheduler spend 

more time on the deadlock state than working state. 

F. Data Set – VI 

 
Fig. 6.31                                                      Fig. 6.34 

 

 
Fig. 6.32                                                     Fig. 6.35 

 

 
Fig. 6.33                                                     Fig. 6.36 

 

Remark: In data set – VI, we observed that, the probability 

of system moving to absorbing (deadlock) state is very 

high. As number of quantum n = 1, 2, 3, … , increase 

probability of Pi , Pj , Pk and Pw state constantly reduces that 

can see in fig. 6.31, 6.32, 6.33, 6.34, 6.35 and 6.36. At the 

same time chances for system shifting to deadlock state 

little high. This shows a loss of efficiency so that scheduler 

spend more time on the deadlock state than working state. 

VII. CONCLUSION 

In this paper, we evaluated the performance of improved 

round robin scheduling algorithm by introducing deadlock 

condition and did comparative analysis of three schemes 

using Markov chain model and analyzed unequal and equal 

probability matrix with number of data sets which have 

functions of restriction in terms of some state transition that 

effect of absorbing (deadlock) state. 

In the initial probability of the transition state when we 

used lower values than we got a stable pattern of 

probability of variation over quantum almost in all the three 

data sets (data set-I, II and III). As we decreased the initial 

probabilities in terms of quantum then the probability of 

occurrence of deadlock also decreased proportionally. 

Therefore, there are more chance to get execute for jobs 

contained in state Q1 and Q2. Further, the transition state for 

higher value probability lead to quantum independency and 

the information overlapping in data sets (data set-IV, V and 

VI), which indicates a loss of system efficiency and serious 

degradation in performance of deadlock analysis of IRR 

scheduling algorithm. Therefore, data sets (data set-IV, V 

and VI) are not recommended for efficient utilization. 
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