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I. INTRODUCTION 

Centrosymmetric matrix have practical applications in 

information theory ,linear system theory, linear estimate 

theory and numerical analysis(sec[1-3]). The concept of 

normal was introduced as a generalization of Hermitian 

matrices. Therefore the class of normal matrices includes 

the class of all Hermitian matrices. The class of normal 

matrices is important throughout matrix analysis. The K-

Normal matrix have been discussed in sec[4-5].  

In this paper we will discuss about the basic properties and 

theorems on the K-Normal Centro symmetric matrices, 

also we will discuss some results on centrosymmetric 

matrices. 

Let Cnxn  denote the set of all nxn complex matrix. A is K-

Normal centrosymmetric matrix. A* is calles conjugate 

transpose of A . Let K be a fixed product of disjoint 

transposition in Sn and K be the permutation matrix 

associated with K. Clearly K satisfies the following 

properties. 

K2= I, KT=K. 

II. DEFINITIONS AND THEOREMS. 

Definition:1 

A square matrix which is symmetric about the centre of its 

array of elements is called centrosymmetric thus  

C=         centrosymmetric if, 

                         =               

Definition:2 

A centrosymmetric matrix A     is said to be normal 

centrosymmetric  If  A   =   A. 

Definition:3 

A centrosymmetric matrix A     is said to be K-normal 

centrosymmetric matrix   If  A  K = K  A. 

Theorem:1 

Let A, B     are K-normal centrosymmetric matrix, then 

A±B is also K-normal centrosymmetric matrix.  

 

Proof: 

Let A, B are K-normal centrosymmetric matrix, Then                                        

A  K=K  A;   B  K=K  B 

To prove: A±B is K-normal centrosymmetric matrix. 

We will show that, 

               (A±B)      K=K       (A±B) 

Now, 

(A±B)       K= (A±B)(   ±  )K 

                                                                                                          

=(A±B)(   K±  K) 

           

                 K = K       (A±B). 

Theorem:2 

Let A, B     are K-normal centrosymmetric matrices, 

and AB=BA,then AB is also K-normal centrosymmentric 

matrix. 

Proof: 

Let A,B are K-normal centrosymmetric matrix, Then                                    

A  K=K  A; B  K=K  B 

Given AB=BA. 

To prove: AB is k-normal centrosymmentric matrix. 

We will show that 

 (AB)      K = K      (AB) 

Now,  (AB)      K = AB    K 

                               = BA    K 

= K    BA 

= K      (AB). 

Theorem:3 

Let A, B     are K-normal centrosymmentric matrix. 

and AB=BA. then      is also K-normal centrosymmetric 

matrix. 

Proof: 

Let A, B are K-normal centrosymmetric matrices.  

Then   A  K=K  A  and  B  K=K  B. 

Given  AB=BA. 

To prove:     is k-normal centrosymmetric matrix. 

We will show that, 
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(   )      K = K       (   ) 

Now,       

(AB)(    )K = K      (AB) 

       AB    K = K      (BA)   

(   )       K = K       (   ) 

Theorem:4 

Let A    be K-normal centrosymmetric matrix, then 

        i)  iA is K-normal centrosymmetric matrix. 

        ii)-iA is K-normal centrosymmetric matrix. 

Proof: 

             Let A be K-normal centrosymmetric matrix. 

            Then A  K=K  A. 

To prove:  i) iA is k-normal centrosymmetric matrix. 

We will show that,   (iA)      K=K      (iA) 

Now, 

                 A  K = K  A 

                  -i2A  K = -i2 K  A 

              (iA)(-i)   K = K(-i)    (iA) 

              (iA)      K = K      (iA) 

      iA is also K-normal centro symmetric matrix. 

   ii) -iA is K-normal centro symmetric matrix. 

 We will show that,  

 (-iA)       K = K        (iA) 

Now, 

           A  K = K  A                                     A  K 

=    K  A        

   (-i)   i A  K = K(i)(-i)   A                                                      

   (-iA)       K = K        (-iA)  

   -iA is K-normal centrosymmetric matrix. 

Theorem:5 

Let A     and    be the moore penrose inverse of A, 

then A is K-normal centrosymmetric matrix, Iff    is K-

normal cenrosymmetric matrix. 

Proof: 

Let A be a K-normal centrosymmetric matrix. 

       Then A  K=K  A 

To prove:     is k-normal centrosymmetric matrix. 

We will show that, 

          K =             

Now,   A  K = K  A 

                        

          is K-normal centrosymmetric matrix. 

Let us assume that,    is K-normal centrosymmetric 

matrix. 

we will show that,   A  K=K  A 

Now,                         

    A  K = K  A  

A is K-normal centrosymmetric matrix. 

 

III. Result 

  Let A    are K-normal centrosymmetric matrix,then    

 i)     is K-normal centrosymmetric matrix. 

ii)     is K-normal centrosymmetric matrix. 

iii)     is K-normal centrosymmtric matrix. 

Example: 

1.Let A=
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 then 

(A±B)(A±B)*K= 
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=K(A±B)*(A±B). 
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