

K-Normal Centrosymmetric Matrix

¹Dr. N. Elumalai, ²Mrs. B. Arthi, ³S. Buvaneshwari

¹Associate Professor, ²Assistant Professor, ³M.Sc Mathematics, A.V.C. College(Autonomous),

Mannampandal, TamilNadu, India.

Abstract: The basic concepts and theorems of K-Normal Centrosymmetric matrices are introduced with examples

Keywords: Centrosymmetric, Normal centrosymmetric, K-Normal centrosymmetric matrix.

AMS Subject Classification: 15A09,15B05,15B99.

I. INTRODUCTION

Centrosymmetric matrix have practical applications in information theory ,linear system theory, linear estimate theory and numerical analysis(sec[1-3]). The concept of normal was introduced as a generalization of Hermitian matrices. Therefore the class of normal matrices includes the class of all Hermitian matrices. The class of normal matrices is important throughout matrix analysis. The K-Normal matrix have been discussed in sec[4-5].

In this paper we will discuss about the basic properties and theorems on the K-Normal Centro symmetric matrices, also we will discuss some results on centrosymmetric matrices.

Let C^{nxn} denote the set of all nxn complex matrix. A is K-Normal centrosymmetric matrix. A^{*} is calles conjugate transpose of A . Let K be a fixed product of disjoint transposition in S_n and K be the permutation matrix associated with K. Clearly K satisfies the following properties.

 $K^2 = I, K^T = K.$

II. DEFINITIONS AND THEOREMS.

Definition:1

A square matrix which is symmetric about the centre of its array of elements is called centrosymmetric thus

 $C=[a_{ij}]_{nxn}$ centrosymmetric if,

$$a_{ij} = a_{n-i+1,n-j+1}.$$

Definition:2

A centrosymmetric matrix $A \in C^{nxn}$ is said to be normal centrosymmetric If $AA^* = A^*A$.

Definition:3

A centrosymmetric matrix $A \in C^{nxn}$ is said to be K-normal centrosymmetric matrix If $AA^*K = KA^*A$.

Theorem:1

Let A, $B \in C^{nxn}$ are K-normal centrosymmetric matrix, then $A \pm B$ is also K-normal centrosymmetric matrix.

Proof:

Let A, B are K-normal centrosymmetric matrix, Then AA*K=KA*A; BB*K=KB*B

To prove: A±B is K-normal centrosymmetric matrix. We will show that,

 $(A\pm B)(A\pm B)^*K=K(A\pm B)^*(A\pm B)$

Now,

 $(A\pm B) (A \pm B)^* K = (A\pm B)(A^* \pm B^*) K$

 $=(A\pm B)(A^*K\pm B^*K)$

$$(\mathbf{A} \pm \mathbf{B})^* \mathbf{K} = \mathbf{K} (\mathbf{A} \pm \mathbf{B})^* (\mathbf{A} \pm \mathbf{B}).$$

Theorem:2

Let A, $B \in C^{nxn}$ are K-normal centrosymmetric matrices, and AB=BA,then AB is also K-normal centrosymmetric matrix.

Proof:

Eng

Let A,B are K-normal centrosymmetric matrix, Then AA*K=KA*A; BB*K=KB*B Given AB=BA.

To prove: AB is k-normal centrosymmentric matrix. We will show that (AB) (AB)*K = K(AB)* (AB) Now, (AB) (AB)*K = ABA*B*K = BAA*B*K

$$= KA^*B^*BA$$
$$= K(AB)^* (AB).$$

Theorem:3

Let A, $B \in C^{nxn}$ are K-normal centrosymmetric matrix. and AB=BA. then AB^{*} is also K-normal centrosymmetric matrix.

Proof:

Let A, B are K-normal centrosymmetric matrices. Then AA*K=KA*A and BB*K=KB*B. Given AB=BA.

To prove: AB* is k-normal centrosymmetric matrix. We will show that,

 $(AB^*)(AB^*)^*K = K(AB^*)^* (AB^*)$ Now, $(AB)(AB^*)K = K(AB)^* (AB)$ $ABB^*A^*K = K(BA)^* (BA)$ $(AB^*) (AB^*)^*K = K(AB^*)^* (AB^*)$

Theorem:4

Let $A \in C^{nxn}$ be K-normal centrosymmetric matrix, then

i) iA is K-normal centrosymmetric matrix.

ii)-iA is K-normal centrosymmetric matrix.

Proof:

Let A be K-normal centrosymmetric matrix. Then AA*K=KA*A.

To prove: i) iA is k-normal centrosymmetric matrix.

We will show that, $(iA)(iA)^*K=K(iA)^*(iA)$

Now,

 $AA^*K = KA^*A$ $-i^2AA^*K = -i^2KA^*A$ $(iA)(-i) A^*K = K(-i) A^* (iA)$ $(iA) (iA)^*K = K(iA)^* (iA)$

- ∴iA is also K-normal centro symmetric matrix.
- ii) -iA is K-normal centro symmetric matrix.

We will show that,

 $(-iA) (-iA)^*K = K (-iA)^* (iA)$ Now,

 $AA^*K = KA^*A$

 $= -i^2 K A^* A$

 $(-i) \quad i AA^*K = K(i)(-i) A^*A$

 $(-iA) (-iA)^*K = K (-iA)^* (-iA)$

∴-iA is K-normal centrosymmetric matrix.

Theorem:5

Let $A \in C^{nxn}$ and A^+ be the moore penrose inverse of A, then A is K-normal centrosymmetric matrix, Iff A^+ is Knormal cenrosymmetric matrix.

Proof:

Let A be a K-normal centrosymmetric matrix. Then $AA^*K=KA^*A$ To prove: A⁺ is k-normal centrosymmetric matrix. We will show that, $(A^+) (A^+)^*K = K(A^+)^* (A^+)$

Now, $AA^*K = KA^*A$

NOW, AA $\mathbf{K} = \mathbf{K} \mathbf{A} \mathbf{A}$

 $A^{+}(A^{+})^{*}K = K(A^{+})^{*}A^{+}$

 $\therefore A^+$ is K-normal centrosymmetric matrix.

Let us assume that, A⁺ is K-normal centrosymmetric matrix.

we will show that, $AA^*K=KA^*A$ Now, $(A^+) (A^+)^*K = K(A^+)^*(A^+)$ $AA^*K = KA^*A$

 \therefore A is K-normal centrosymmetric matrix.

III. Result

Let $A \in C^{nxn}$ are K-normal centrosymmetric matrix, then

i) \overline{A} is K-normal centrosymmetric matrix.

ii) A^T is K-normal centrosymmetric matrix.

iii) A^{*} is K-normal centrosymmtric matrix.

Example:

1.Let
$$A = \begin{bmatrix} 1 & 2 & i \\ 2 & -i & 2 \\ i & 2 & 1 \end{bmatrix}$$
 $B = \begin{bmatrix} 0 & 1 & i \\ 1 & -i & 1 \\ i & 1 & 0 \end{bmatrix}$
 $k = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ then
 $(A \pm B)(A \pm B)^* K = \begin{bmatrix} 5 & 3 & 6 \\ 3 & 1 & 3 \\ 6 & 3 & 5 \end{bmatrix}$

 $=K(A\pm B)^{*}(A\pm B).$

REFERENCE

- [1] Ann Lec; Secondary symmetric and skew symmetric secondary orthogonal matrices; (i) period,Math Hungary,7, 63-70(1976).
- [2] Cantoni and P.Butler; Eigenvalues and Eigen vectors of symmetric centrosymmetric matrices, Linear Algebra Appl. 13 (1976), 275 288.
- [3] James R. Weaver; Centro symmetric (crosssymmetric) matrices, their basic properties, Eigen values and Eigen vectors, Amer. Math, Monthly 92 (1985), 711 – 717.
- [4] Krishnamoorthy.S.,Gunasekaran.K., and Arumugam.K. :On Con K-normal matrices;International journal of Current Research Vol.4,Issue,01, PP. 167-169,January,(2012).
- [5] Krishnamoorthy.S.,Gunasekaran.K., and Arumugam.K. : Products of Conjugate k-normal matrices; International journal of Mathematics Trends and Technology, Vol.4,Issue.11, PP.369-385(2013).
- [6] Elumala.N., Arthi.B.,:Properties of k-centrosymmetric and k-skew centrosymmetric matrices. International journal of pure and Applied Mathematical Science Volume-10, 99-106; July,(2017).unasekaran.K., and Arumugam.K.

-i²AA*K