

Line Subdivision Double Domination in Graphs

¹M. H. Muddebihal, ²Suhas P. Gade

¹Department of Mathematics Gulbarga University, Kulburgi, Karnataka, India.

²Department of Mathematics, Sangameshwar College, Solapur, Maharashtra, India.

mhmuddebihal@gmail.com, suhaspanduranggade@gmail.com

ABSTRACT - Let S(G) be the subdivision graph of G. The line graph of S(G), L(S(G)) is a graph whose vertices correspond to the edges of S(G) and two vertices in L[S(G)] are adjacent if and only if corresponding edges in S(G) are adjacent. A subset D^d of V[L(S(G))] is double domination set of L[S(G)] if for every vertex $v \in V[L(S(G))]$, $|N[v] \cap$ $D^d| \geq 2$, that is v is in D^d and has at least one neighbour in D^d or v is in $V[L(S(G))] - D^d$ and has at least two neighbours in D^d . The line subdivision double domination number $\gamma_{ddls}(G)$ is a minimum cardinality of the line subdivision double dominating set of G and is denoted by $\gamma_{ddls}(G)$. In this paper, we establish some upper and lower bounds on $\gamma_{ddls}(G)$ in terms of the vertices, edges and other different parameters of G and not in terms of the elements of L[S(G)]. Further, its relation with other different dominating parameters is also obtained. The main deal of this paper is to apply a probabilistic approach to obtain new bounds for line subdivision double domination parameter and to study their relationship with other different domination parameters of different graph valued functions.

SUBJECT CLASSIFICATION NUMBER: AMS – 05C69, 05C70.

KEYWORD: Line Subdivision Graph/Dominating set/Double domination.

I. INTODUCTION

In this paper, all the graphs considered here are simple, finite, non-trivial, undirected and connected. The vertex set and edge set of graph G are denoted by V(G) = p and E(G) = q respectively. The terms not defined here are used in the sense of Harary [9]. The neighbourhood of a vertex $v \in V$ is defined by $N(v) = \{ u \in V / uv \in E \}$. The close neighbourhood of a vertex v is $N[v] = N(v) \cup \{v\}$. The order |V(G)| of G is denoted by p. A vertex cover in a graph G is a set of vertices that covers all the edges of G. The vertex covering number $\alpha_0(G)$ is the minimum cardinality of a vertex cover in G. A set of vertices in a graph G is called independent set if no two vertices in the set are adjacent. The vertex independence number $\beta_0(G)$ is the maximum cardinality of an independent set of vertices. A set D of vertices in a graph G is called a dominating set of G if every vertex in V - D is adjacent to some vertex in D. The domination number of G, denoted by $\gamma(G)$ is the minimum cardinality of a dominating set. The domination in graphs with many variations is now well studied in graph theory. A thorough study of domination appears in [14]. Let S(G) be the subdivision graph of G. The line graph of S(G)is a graph whose vertices correspond to the edges of S(G)and two vertices in L[S(G)] are adjacent if and only if corresponding edges in S(G) are adjacent. A subset D^d of V[L(S(G))] is double dominating set of L[S(G)] if for

every vertex $v \in V[L(S(G))]$, $|N[v] \cap D^d| \ge 2$, that is v is in D^d and has at least one neighbour in D^d or v is in $V[L(S(G))] - D^d$ and has at least two neighbours in D^d . The line subdivision double dominating number $\gamma_{ddls}(G)$ is a minimum cardinality of the line subdivision double dominating set of G and is denoted by $\gamma_{ddls}(G)$. The graphvalued function related to double domination parameters have been studied in [1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, and 16]. Further in [15], studied the domination subdivision number. In this paper, we establish some upper and lower bounds on $\gamma_{ddls}(G)$ in terms of the vertices, edges and other different parameters of G and not in terms of the element of L[S(G)]. Further, its relation with other different dominating parameters is also obtained.

Observation 1: Let G be a graph that admits line subdivision double domination set D^d . Then $|D^d| \ge p + \delta(G)$ if and only if $G = P_n$ with $p \ge 3$.

Observation 2: For any connected (p,q) graph G, $p-\gamma_{ddls}(G) \le 0$.

Observation 3: For any connected (p,q) graph G, $\gamma_{dd}(G) \leq \gamma_{ddls}(G)$.

II. LOWER BOUNDS FOR $\gamma_{ddls}(G)$.

We establish lower bound for $\gamma_{ddls}(G)$ in terms of elements of *G*.

Theorem 2.1: For any connected (p,q) graph *G* with $p \ge 4$, $\gamma_{ddls}(G) \ge \gamma_{ct}[L(G)] + \gamma_{ct}(G)$.

Proof: Let $A = \{v_1, v_2, ..., v_n\} \subseteq V(G)$ be the minimal set of vertices which covers all the vertices in G such that $|S| = \gamma_{ct}(G)$. Now in L(G), let $D = \{u_1, u_2, \dots, u_k\} \subseteq$ V[L(G)] be the minimum set of vertices such that for every $x \in N(u)$ where $x \in V[L(G)] - D, u \in D$ and $N(x) \neq \emptyset$ in V[L(G)] - D. Clearly D forms a minimal cototal dominating set of L(G). Let $B = \{v_1, v_2, \dots, v_i\} \subseteq$ V[S(G)] be the set of all non end vertices in S(G) and let $C = \{e_1, e_2, \dots, e_k\}$ be the set of edges which are incident to the vertices of B. Now in L[S(G)], suppose I = $\{u_1, u_2, \dots, u_i\} \subseteq V[L(S(G))]$ be the set of vertices with $\deg(u_i) = 1, 1 \le i \le n$. Then $D^d = I \cup C'$ where C' = $\{u_1, u_2, ..., u_m\} \subseteq C$ in L[S(G)] corresponding to the edges of C from a double dominating set of L[S(G)]. Therefore it $|D^d| \leq |D| \cup |S|$. Hence $\gamma_{ddls}(G) \leq$ follows that $\gamma_{ct}[L(G)] + \gamma_{ct}(G).$

Theorem 2.2: For any connected (p,q) graph G, $\gamma_{ct}[L(G)] + diam(G) \le \gamma_{ddls}(G)$.

Proof: Let $E' = \{e_1, e_2, \dots, e_n\} \subseteq E(G)$ be the minimal set of edges which constitute the longest path between any two distinct vertices $u, v \in V(G)$, such that d(u, v) =diam(G). Now let $A = \{v_1, v_2, \dots, v_n\} \subseteq V(G)$ be the set of all non end vertices in G. Further, let $F = \{e_1, e_2, \dots, e_k\}$ be the set of edges which are incident to the vertices of A. Now in L(G), suppose $I = \{u_1, u_2, \dots, u_i\} \subseteq V[L(G)]$ be the set of vertices with $\deg(u_i) = 1, 1 \le i \le n$. Then $D = I \cup$ F', where $F' = \{u_1, u_2, \dots, u_i\} \subseteq F$ in L(G) corresponding to the edges of F forms a cototal dominating set of L(G). Since V[L(S(G))] = E[S(G)], let $B = \{v_1, v_2, ..., v_i\} \subseteq$ V[S(G)] be the set of all nonend vertices in S(G) and let $C = \{e_1, e_2, \dots, e_k\}$ be the set of edges, which are incident to the vertices of B. Now in L[S(G)], suppose I = $\{u_1, u_2, \dots, u_i\} \subseteq V[L(S(G))]$ be the set of vertices with $\deg(u_i) = 1, 1 \le i \le n$. Then $D^d = I \cup C'$ where C' = $\{u_1, u_2, \dots, u_i\} \subseteq C$ in L[S(G)] corresponding to the edges of C form a double dominating set of L[S(G)]. It follows that $|D| \cup dist(u, v) \le |D^d|$ and hence $\gamma_{ct}[L(G)] +$ $diam(G) \leq \gamma_{ddls}(G).$

Theorem 2.3: For any connected (p,q) graph G, $\alpha_0 + \beta_0 + 1 \le \gamma_{ddls}(G)$.

Proof: $C = \{ v_1, v_2, ..., v_n \} \subseteq V(G)$ be the minimal set of vertices with $dist(u, v) \ge 2$ for all $u, v \in C$, covers all the edges in *G*. Clearly, $|C| = \alpha_0(G)$. Further let $K = \{ v_1, v_2, ..., v_n \} \subseteq V(G)$ be the maximum set of vertices such

that $dist(u, v) \ge 2$ and $N(u) \cap N(v) = x, \forall u, v \in K$ and $x \in V(G) - K$. Clearly, $|K| = \beta_0(G)$. Now by the definition of line subdivision graph, let $F = \{u_1, u_2, ..., u_i\} \subseteq V[L(S(G))]$ be the set of vertices corresponding to the edges which are incident with all the vertices of S(G). Let $D^d = \{u_1, u_2, ..., u_m\} \subseteq F$ be the set of vertices which is minimal double dominating set and covers all the vertices in line subdivision graph. Clearly D^d itself is a γ_{ddls} -set of G. Therefore it follows that $|C| \cup |K| \cup 1 \le |D^d|$ and hence $\alpha_0 + \beta_0 + 1 \le \gamma_{ddls}(G)$.

Theorem 2.4: If D^d is line subdivision double dominating set of a graph *G*, then $\frac{2p}{\delta(G)+1} \leq |D^d|$.

Proof: Let $D^d = \{u_1, u_2, ..., u_i\}$ be line subdivision double dominating set of *G* and let t denote the number of edges joining the vertices of D^d to the vertices of $V[L(S(G))] - D^d$. Then $t = 2|V[L(S(G))] - D^d|$. By definition of double dominating set, every vertex *u* of D^d has exactly one neighbour in D^d . Thus $t = \sum_{u \in D^d} \deg(u) - 1$. So $|D^d|(\delta - 1) \ge t = 2|V(G) - D^d|$. Hence $\frac{2p}{\delta(G)+1} \le |D^d|$.

Theorem 2.5: For any connected (p,q) graph G, $\gamma[L(S(G))] + i[L(S(G))] \le \gamma_{ddls}(G)$. Equality hold if $G \cong P_3$.

Proof: Let $D = \{v_1, v_2, ..., v_n\} \subseteq V[L(S(G))]$ be the set of vertices which covers all the vertices in L[S(G)]. Then D is a minimal γ -set of L[S(G)]. Further if the subgraph $\langle D \rangle$ contains the set of vertices v_i , $1 \leq i \leq n$ such that $\deg(v_i) = 0$. Then D itself is an independent dominating set of L[S(G)]. Otherwise $S = D' \cup I$ where $D' \subseteq D$ and $I \subseteq V[L(S(G))] - D$ forms a minimal independent dominating set of L[S(G)]. Since V[L(S(G))] = E[S(G)] and let $I = \{u_1, u_2, ..., u_n\} \subseteq V[L(S(G))]$ be the end vertices in L[S(G)] such that any vertex $u \in V[L(S(G))] - D^d$ has at lest two neighbours in D^d and $|N[u] \cup D^d| \geq 2$. Clearly D^d forms a minimal $\gamma_{ddls}(G)$ -set of G. So that $|D| \cup |S| \leq |D^d|$ and hence it gives $\gamma[L(S(G))] + i[L(S(G))] \leq \gamma_{ddls}(G)$.

Theorem 2.6: For any connected (p,q) graph *G* with $p \ge 2$, $\left[\frac{1+\Delta(G)}{n-a}\right] \le \gamma_{ddls}(G)$.

Proof: For any connected graph $p - q \le 1$ and $\gamma_{ddls}(G) \ge 2$. Also for any graph G, $1 + \Delta(G) \ge 2$. It follows that $\left[\frac{1+\Delta(G)}{p-q}\right] \le \gamma_{ddls}(G)$.

Theorem 2.7: For any connected (p,q) graph G with $p \ge 2, 2p - 2q \le \gamma_{ddls}(G)$.

Proof: $D^d = \{v_1, v_2, ..., v_n\}$ be the minimal set of vertices which covers all the vertices in L[S(G))]. Suppose for any

vertex $v \in V[L(S(G))] - D^d$ is adjacent to at least two vertices of D^d , clearly D^d forms a double dominating set of L[S(G))]. Let any vertex $v \in D^d$ which is not adjacent to any vertex of $V[L(S(G))] - D^d$. Then $2q \ge |D^d| + 2|V(G) - D^d|$ it gives $2q \ge |D^d| + 2p - 2|D^d|$. This implies $|D^d| \ge 2p - 2q$. Hence $2p - 2q \le \gamma_{ddls}(G)$.

Theorem 2.8: For any connected (p,q) graph $G, \frac{2p+q-1}{2} \le \gamma_{ddls}(G)$.

Proof: Let $D^d \subseteq V[L(S(G))]$ be a γ_{ddls} -set of G. Since $\langle V[L(s(G))] - D^d \rangle$ is disconnected,

 $q \leq |D^d - V| + |D^d - V| + 1$ $\leq 2|D^d| - 2p + 1 \text{ it implies that}$ $2p + q - 1 \leq 2|D^d|. \text{ Hence } \frac{2p+q-1}{2} \leq \gamma_{ddls}(G).$

Theorem 2.9: For any connected (p,q) graph *G* with $p \ge 2$ vertices, $\delta(G) + 1 \le \gamma_{ddls}(G)$.

Proof: Let $D^d = \{v_1, v_2, ..., v_n\} \subseteq L[S(G))$] be a γ_{ddls} -set of G. Then there exists a vertex $u \in D^d$ such that u is not a adjacent to any vertex of $V[L(s(G))] - D^d$. Thus $\deg(u) \leq (\gamma_{ddls}G) - 1$. Since $\delta(G) \leq \deg(u)$ implies that $\delta(G) + 1 \leq \gamma_{ddls}(G)$.

III. UPPER BOUNDS FOR $\gamma_{ddls}(G)$.

We establish upper bounds for $\gamma_{ddls}(G)$ in terms of elements of *G*.

Theorem 3.1: For any connected (p, q) graph G, $\gamma_{ddls}(G) \le p + \left[\frac{diam(G)}{2}\right]$.

Proof: Let $J = \{e_1, e_2, ..., e_n\} \subseteq E(G)$ be the edge set constituting the longest path between two distinct vertices $u, v \in V(G)$ such that d(u, v) = diam(G). Since V[L(S(G))] = E[S(G)] there exists a vertex set $D^d =$ $\{v_1, v_2, ..., v_n\}$ such that any vertex $v \in V[L(S(G))] - D^d$ is adjacent to at least two vertices of D^d and $|N[v] \cap D^d| \ge$ 2 it follows $|D^d| \ge 2$. We know that the diametric path includes at least two vertices. This implies that $2|D^d| \le$ 2p + diam(G). Clearly implies that $\gamma_{ddns}(G) \le p + \left\lfloor \frac{diam(G)}{2} \right\rfloor$.

Theorem 3.2: For any connected (p,q) graph G, $p + \Delta(G) \le \gamma_{ddls}(G) + \gamma(G)$.

Proof: Let $C = \{v_1, v_2, ..., v_k\} \subseteq V(G)$ be the set of vertices with $\deg(v) \ge 2, \forall v \in C$. Then there exists at least one vertex $v \in C$ such that $\deg(v) = \Delta(G)$. Now without loss of generality in L[S(G)], since V[L(S(G))] = E[S(G)], there exists a set $D^d = \{u_1, u_2, ..., u_m\} \subseteq V[L(S(G))]$ in L[S(G)] covers all the vertices of L[S(G)] such that any vertex $u \in V[L(S(G))] - D^d$ is adjacent to at

least two vertices of D^d . Clearly D^d is a minimal double dominating set of L[S(G)]. It follows that $|D^d| \cup |D| \ge p + \Delta(G)$ which implies that $\gamma_{ddls}(G) + \gamma(G) \ge p + \Delta(G)$.

Theorem 3.3: For any connected (p,q) graph G, $\gamma_{ddls}(G) \leq diam(G) + \gamma(G) + \alpha_0$.

Proof: Let $C = \{v_1, v_2, \dots, v_n\} \subseteq V(G)$ be the minimum set of vertices which covers all the edges in G with $|C| = \alpha_0(G)$. Further there exists an edge set $J' \subseteq J$, where J is the set of edges which are incident with the vertices of C, constituting the longest path in G such that |J'| =diam(G). Let $D = \{v_1, v_2, \dots, v_n\} \subseteq C$ be the minimal set of vertices which covers all the vertices in G, clearly D forms a minimal dominating set of G. Now in L[S(G)], let $F = \{u_1, u_2, \dots, u_n\} \subseteq V[L(S(G))]$ $D^d =$ and let $\{u_1, u_2, \dots, u_m\} \subseteq F$ such that any vertex $u \in V[L(S(G))] - D^d$ is adjacent to at least two vertices of D^d and $|N[u] \cap D^d| \ge 2$. Clearly D^d forms a minimal $\gamma_{ddls}(G)$ -set of G. Therefore it follows that $|D^d| \leq |J'| \cup$ $|D| \cup |C|$ and hence $\gamma_{ddls}(G) \leq diam(G) + \gamma(G) + \alpha_0$.

Theorem 3.4: For any nontrivial tree T, $\gamma_{ddls}(G) \le p + m$, m is the number of cutvertices in T.

Proof: Let $A = \{v_1, v_2, ..., v_n\}$ be the set of all cutvertices in *T* with |A| = m. Suppose $C \subseteq V[S(G)]$, $\deg(v_i) \ge 2, \forall v_i \in C, 1 \le i \le n$ be the set of vertices in S(G) and let $J = \{e_1, e_2, ..., e_k\}$ be the set of edges which are incident to the vertices of *C*. Now in L(S(T)) let $I = \{u_1, u_2, ..., u_n\} \subseteq$ V[L(S(T))] be the set of vertices with $\deg(u_i) \ge 2, 1 \le i \le n$. Then $D^d = I \cup F'$ where $F = \{u_1, u_2, ..., u_m\} \subseteq J$ in L(S(T)) corresponding to the edges of *J* form a double dominating set of L(S(T)). Clearly it follows that $|I \cup F'| \le p \cup |A|$ and hence $\gamma_{ddls}(G) \le p + m$.

Theorem 3.5: For any connected (p,q) graph G with $p \ge 3, p+1 \le \gamma_{ddls}(G) \le p+2.$

Proof: Let $D^d = \{v_1, v_2, ..., v_n\}$ be a minimal line subdivision dominating set of G. Then every vertex in $V[L(S(G))] - D^d$ is dominated by at least two vertices in D^d . Therefore $2 \le p + 1 \le |D^d|$. This implies that $|V[L(S(G))] - D^d| \ge 0$ it gives $|V[L(S(G))]| \ge |D^d|$. Since $|V(G)| \le |V[L(S(G))]|$. Thus $p + 1 \le \gamma_{ddls}(G) \le p + 2$.

Theorem 3.6: For any connected (p,q) graph G, $\gamma_{ddls}(G) \le p + \left\lfloor \frac{\Delta(G)}{2} \right\rfloor$.

Proof: Let v be a vertex of degree $\Delta(G)$. Let F be the set of independent edges in $\langle N(v) \rangle$. Let $D^d \subseteq V[L(S(G))]$ be a γ_{ddls} -set of G. Since $|F| \leq \left\lfloor \frac{\Delta(G)}{2} \right\rfloor$, therefore $|D^d| \leq |V(G) \cup N(v) - F|$

$$\leq p + \Delta(G) - \left\lfloor \frac{\Delta(G)}{2} \right\rfloor$$

 $\leq p + \left\lfloor \frac{\Delta(G)}{2} \right\rfloor$. Hence the result.

Theorem 3.7: For any connected (p,q) graph G, $\gamma_{ddls}(G) \leq p + q - \delta(G)$.

Proof: Let $D^d \subseteq V[L(S(G))]$ be a line subdivision double dominating set of G such that any vertex $u \in V[L(S(G))] - D^d$ has at least two neighbours in D^d . Therefore D^d be a γ_{ddls} -set of G. Suppose there exists a vertex $u \in D^d$ adjacent to vertices of D^d . Thus $\leq |D^d - V(G)| + \deg(u) \geq |D^d - V(G)| + \delta(G)$. This implies that $\gamma_{ddls}(G) \leq p + q - \delta(G)$.

Theorem 3.8: For any connected (p,q) graph G with $p \ge 2, 2 \le \gamma_{ddls}(G) \le 2q$.

Proof: Let D^d be a minimum line subdivision double dominating set of G. Then

 $|D^d| \le |V(G) \cup E(G)| - 1$

 $\leq p + q - (p - q) \leq 2q$. Hence the result.

IV. NORDHAUS-GADDUM TYPE RESULTS

Theorem 4.1: For any connected (p,q) graph G with $p \ge 3$ vertices,

(I) $\gamma_{ddls}(G) + \gamma_{ddls}(\overline{G}) \le 2p + 4.$

(II) $\gamma_{ddls}(G)$. $\gamma_{ddls}(\bar{G}) \le p^2 + 4p + 4$.

V. CONCLUSION

Domination in graph is one of the major research area in graph theory. Currently many interesting and important research area taking place in this area. Double domination is a particular type of domination and the double domination in graphs is relative new research area and hence there is a wide scope for studies in this particular area of domination theory. In this paper, we establish some upper and lower bounds on $\gamma_{ddls}(G)$. Further, its relation with other different dominating parameters are investigated. Nordhaus-Gaddum type results are also obtained for this parameter.

REFERENCES

- J. Amjadi (2015), "An upper bound on the double domination number of trees", Kragujevac Journal of Mathematics, Vol. 39, pp. 133-139.
- [2] M. Blidia, M. Chellali, T. W. Haynes and M. A. Henning (2006), "Independent and double domination in tree", Utilitas Mathemtica Vol. 70, pp.159-173, 2006.

- [3] M. Blidia, M. Chellai and L. Volkmann (2006), "Bounds on the 2-domination number of graphs", Utilitas Math., Vol. 71, pp. 209-216.
- [4] M. Blidia, M. Chellali, and L.Volkmann (2006),
 "Some Bounds on the p-Domination Number in Trees", Discrete Mathematics, Vol. 306, pp. 2031-2037.
- [5] E. J. Cockayne, B. Gamble and B. Shepherd (1985),"An Upper Bound for the k- Domination Number of a Graph". Journal of Graph Theory, Vol. 9, pp. 533-534.
- [6] O. Favaron, A. Hansberg, and L. Volkmann (2008), "On k-Domination and Degree in Graphs", Journal of Graph Theory, Vol. 57, pp. 33-40.
- [7] J.F. Fink and M.S. Jacobson (1985), "n-domination in graphs, Graph Theory with Application to Algorithms and Computer Science". John Wiley and sons. New York, pp. 282-300.
- [8] J.F. Fink and M.S. Jacobson (1985), "On n-domination, n-dependence and forbidden subgraphs", Graph Theory with Application to Algorithms and Computer Science. John Wiley and sons. New York, pp. 301-311.
- [9] F. Harary (1972) Graph Theory, Addison-Wesley, Reading, Mass.
- [10] F.Harary and T. W. Haynes (2000), "Double domination in graphs", Ars Combinatorica, Vol. 55, pp. 201-213.
- [11] Jochen Harant and Michael A. Henning, (2005), "On double domination in graphs", Discussiones Mathematicae Graph Theory, Vol. 25, pp. 29-34.
- [12] M. A. Henning (2005), "Graphs with large double domination numbers", Discussiones Mathematicae Graph Theory, Vol. 25, pp. 13-28.
- [13] A.Hansberg and L. Volkmann (2009), "Upper Bounds on the k-Domination Number and the k-Roman Domination Number". Discrete Applied Mathematics, Vol. 157, pp. 1634-1639.
- [14] T.W. Haynes, S.M. Hedetniemi, P.J. Slater (1998),"Fundamental of Domination in graphs", Marcel Dekker, Inc., New York.
- [15] T.W. Haynes, S.M. Hedetniemi, S. T. Hedetniemi, J. Knisely and L. C.Vander Merwe (2001), Domination Subdivision numbers, Discuss. Math.Graph Theory, Vol. 21, pp. 239-253.
- [16] C. S. Liao and G.J. Chang (2002), Algorithmic aspect of k-tuple domination in graphs, Taiwanese journal of Mathematics, Vol. 6, pp. 415-420.