Line Subdivision Double Domination in Graphs

M. H. Muddebihal, Suhas P. Gade

1Department of Mathematics Gulbarga University, Kulburgi, Karnataka, India.
2Department of Mathematics, Sangameshwar College, Solapur, Maharashtra, India.
mhmuddebihal@gmail.com, suhaspanduranggade@gmail.com

ABSTRACT - Let $S(G)$ be the subdivision graph of G. The line graph of $S(G)$, $L(S(G))$ is a graph whose vertices correspond to the edges of $S(G)$ and two vertices in $L[S(G)]$ are adjacent if and only if corresponding edges in $S(G)$ are adjacent. A subset D^d of $V[L(S(G))]$ is double domination set of $L[S(G)]$ if for every vertex $v \in V[L(S(G))], |N[v] \cap D^d| \geq 2$, that is v is in D^d and has at least one neighbour in D^d or v is in $V[L(S(G))] - D^d$ and has at least two neighbours in D^d. The line subdivision double domination number $\gamma_{dds}(G)$ is a minimum cardinality of the line subdivision double dominating set of G and is denoted by $\gamma_{dds}(G)$. In this paper, we establish some upper and lower bounds on $\gamma_{dds}(G)$ in terms of the vertices, edges and other different parameters of G and not in terms of the elements of $L[S(G)]$. Further, its relation with other different dominating parameters is also obtained. The main deal of this paper is to apply a probabilistic approach to obtain new bounds for line subdivision double domination parameter and to study their relationship with other different domination parameters of different graph valued functions.

SUBJECT CLASSIFICATION NUMBER: AMS – 05C69, 05C70.

KEYWORD: Line Subdivision Graph/Dominating set/Double domination.

I. INTRODUCTION

In this paper, all the graphs considered here are simple, finite, non-trivial, undirected and connected. The vertex set and edge set of graph G are denoted by $V(G) = p$ and $E(G) = q$ respectively. The terms not defined here are used in the sense of Harary [9]. The neighbourhood of a vertex $v \in V$ is defined by $N(v) = \{ u \in V/uv \in E \}$. The close neighbourhood of a vertex v is $N[v] = N(u) \cup \{ v \}$. The order $|V(G)|$ of G is denoted by p. A vertex cover in a graph G is a set of vertices that covers all the edges of G. The vertex covering number α_G is the minimum cardinality of a vertex cover in G. A set of vertices in a graph G is called independent set if no two vertices are adjacent. The vertex independence number β_G is the maximum cardinality of an independent set of vertices. A set D of vertices in a graph G is called dominating set of G if every vertex in $V - D$ is adjacent to some vertex in D. The domination number of G, denoted by $\gamma(G)$ is the minimum cardinality of a dominating set. The domination in graphs with many variations is now well studied in graph theory. A thorough study of domination appears in [14]. Let $S(G)$ be the subdivision graph of G. The line graph of $S(G)$ is a graph whose vertices correspond to the edges of $S(G)$ and two vertices in $L[S(G)]$ are adjacent if and only if corresponding edges in $S(G)$ are adjacent. A subset D^d of $V[L(S(G))]$ is double dominating set of $L[S(G)]$ if for every vertex $v \in V[L(S(G))]$, $|N[v] \cap D^d| \geq 2$, that is v is in D^d and has at least one neighbour in D^d or v is in $V[L(S(G))] - D^d$ and has at least two neighbours in D^d.

Observation 1: Let G be a graph that admits line subdivision double domination set D^d. Then $|D^d| \geq p + \delta(G)$ if and only if $G = P_n$ with $p \geq 3$.

Observation 2: For any connected (p, q) graph G, $p - \gamma_{dds}(G) \leq 0$.

Observation 3: For any connected (p, q) graph G, $\gamma_{dds} \leq \gamma_{dds}(G)$.

II. LOWER BOUNDS FOR $\gamma_{dds}(G)$.

We establish lower bound for $\gamma_{dds}(G)$ in terms of elements of G.

Theorem 2.1: For any connected (p, q) graph G with $p \geq 4$, $\gamma_{dds}(G) \geq \gamma_{ct}(L(G)) + 2$.

Proof: Let $A = \{v_1, v_2, \ldots, v_n\} \subseteq V(G)$ be the minimal set of vertices which covers all the vertices in G. Now in $L(G)$, $C = \{v_1, v_2, \ldots, v_n\}$ be the minimal set of vertices such that any vertex of C has at least two neighbours in $L(G)$. Clearly, $|C| = 2$. Therefore it gives $\gamma_{ct}(L(G)) + 2 = \gamma_{ct}(L(G)) + \gamma_{ct}(G)$.

Theorem 2.2: For any connected (p, q) graph G, $\gamma_{ct}(L(G)) + \text{diam}(G) \leq \gamma_{dds}(G)$.

Proof: Let $E^* = \{e_1, e_2, \ldots, e_k\} \subseteq E(G)$ be the minimal set of edges which constitute the longest path between any two distinct vertices $u, v \in V(G)$, such that $d(u, v) = \text{diam}(G)$. Now let $A = \{v_1, v_2, \ldots, v_n\} \subseteq V(G)$ be the set of all non end vertices in G. Further, let $F = \{\{v_1, v_2, \ldots, v_n\}\}$ be the set of edges which are incident to the vertices of A. Now in $L(G)$, suppose $I = \{u_1, u_2, \ldots, u_n\} \subseteq V(L(G))$ be the set of vertices with $\text{deg}(u_i) = 1, 1 \leq i \leq n$. Then $I^* = I \cup C^*$ where $C^* = \{u_1, u_2, \ldots, u_n\} \subseteq C$ in $L(G)$ corresponding to the edges of C from a double dominating set of $L(G)$. Therefore it follows that $|D^*| \leq |D| \cup |I|$. Hence $\gamma_{dds}(G) \leq \gamma_{ct}(L(G)) + \gamma_{ct}(G)$.

Theorem 2.3: For any connected (p, q) graph G, $\alpha_0 + \beta_0 + 1 \leq \gamma_{dds}(G)$.

Proof: $C = \{v_1, v_2, \ldots, v_n\} \subseteq V(G)$ be the minimal set of vertices with $\text{dist}(u, v) \geq 2$ for all $u, v \in C$, covers all the edges in G. Clearly, $|C| = \alpha_0(G)$. Further let $K = \{v_1, v_2, \ldots, v_n\} \subseteq V(G)$ be the maximum set of vertices such that $\text{dist}(u, v) \geq 2$ and $N(u) \cap N(v) = x, \forall u, v \in K$ and $x \in V(G) - K$. Clearly, $|K| = \beta_0(G)$. Now by the definition of line subdivision graph, let $F = \{u_1, u_2, \ldots, u_m\} \subseteq V(L(S(G)))$ be the set of vertices corresponding to the edges which are incident with all the vertices of $S(G)$. Let $D^* = \{u_1, u_2, \ldots, u_m\} \subseteq F$ be the set of vertices which is minimal double dominating set and covers all the vertices in line subdivision graph. Clearly D^* itself is a γ_{dds}-set of G. Therefore it follows that $|C| \cup |K| \cup 1 \leq |D^*|$ and hence $\alpha_0 + \beta_0 + 1 \leq \gamma_{dds}(G)$.

Theorem 2.4: If D^* is line subdivision double dominating set of a graph G, then $2p - |D^*| \leq |D^*|$.

Proof: Let $D^* = \{u_1, u_2, \ldots, u_m\} \subseteq V(L(S(G)))$ be line subdivision double dominating set of G and let t denote the number of edges joining the vertices of D^* to the vertices of $V(L(S(G))) - D^*$. Then $t = 2|V(L(S(G))) - D^*|$. By definition of double dominating set, every vertex u of D^* has exactly one neighbour in D^*. Thus $t = \sum_{u \in D^*} \text{deg}(u) - 1$. So $|D^*| \geq 2$. Hence $2p \geq |D^*|$.

Theorem 2.5: For any connected (p, q) graph G, $\gamma_{L(S(G)))} + i[L(S(G))) \leq \gamma_{dds}(G)$. Equality hold if $G \cong P_2$.

Proof: Let $D = \{v_1, v_2, \ldots, v_n\} \subseteq V(L(S(G)))$ be the set of vertices which covers all the vertices in $L[S(G)]$. Then D is a minimal γ-set of $L[S(G)]$. Further if the subgraph $G < D$ contains the set of vertices $v_1, 1 \leq i \leq n$ such that $\text{deg}(v_i) = 0$. Then D itself is an independent dominating set of $L[S(G)]$. Otherwise $S = D \cup I$ where $D \subseteq D$ and $I \subseteq V[L(S(G))] - D$ forms an independent dominating set of $L[S(G)]$. So that $|D \cup I| \leq |D^*|$ and hence it gives $\gamma_{L(S(G))} + i[L(S(G))] \leq \gamma_{dds}(G)$.

Theorem 2.6: For any connected (p, q) graph G with $p \geq 2$, $\gamma_{dds}(G) \leq \gamma_{dds}(G)$.

Proof: For any connected graph $p - q \leq 1$ and $\gamma_{dds}(G) \leq 2$. Also for any graph G, $1 + \Delta(G) \geq 2$. It follows that $\gamma_{dds}(G) \leq \gamma_{dds}(G)$.

Theorem 2.7: For any connected (p, q) graph G with $p \geq 2, 2p - 2q \leq \gamma_{dds}(G)$.

Proof: $D^* = \{v_1, v_2, \ldots, v_n\} \subseteq V(G)$ be the minimal set of vertices which covers all the vertices in $L[S(G)]$. Suppose for any
vertex \(v \in V[L(S(G))] - D^d \) is adjacent to at least two vertices of \(D^d \), clearly \(D^d \) forms a double dominating set of \(L[S(G)] \). Let any vertex \(v \in D^d \) which is not adjacent to any vertex of \(V[L(S(G))] - D^d \). Then \(2q \geq |D^d| + 2|V(G) - D^d| \) it gives \(2q \geq |D^d| + 2p - 2|D^d| \). This implies \(|D^d| \geq 2p - 2q \). Hence \(2p - 2q \leq \gamma_{dats}(G) \).

Theorem 2.8: For any connected \((p, q)\) graph \(G \), \(\frac{2p+q-1}{2} \leq \gamma_{dats}(G) \).

Proof: Let \(D^d \subseteq V[L(S(G))] \) be a \(\gamma_{dats} \)-set of \(G \). Since \(V[L(S(G))] - D^d \) is disconnected,

\[
q \leq |D^d - V| + |D^d - V| + 1 \\
\leq 2|D^d - D| - 2p + 1 \text{ it implies that} \\
2p + q - 1 \leq 2|D^d|. \text{ Hence} \frac{2p+q-1}{2} \leq \gamma_{dats}(G).
\]

Theorem 2.9: For any connected \((p, q)\) graph \(G \) with \(p \geq 2 \) vertices, \(\delta(G) + 1 \leq \gamma_{dats}(G) \).

Proof: Let \(D^d = \{ v_1, v_2, ..., v_n \} \subseteq L[S(G)] \) be a \(\gamma_{dats} \)-set of \(G \). Then there exists a vertex \(u \in D^d \) such that \(u \) is not adjacent to any vertex \(V[L(S(G))] - D^d \). Thus \(\deg(u) \leq \gamma_{dats}(G) - 1 \). Since \(\delta(G) \leq \deg(u) \) implies that \(\delta(G) + 1 \leq \gamma_{dats}(G) \).

III. UPPER BOUNDS FOR \(\gamma_{dats}(G) \).

We establish upper bounds for \(\gamma_{dats}(G) \) in terms of elements of \(G \).

Theorem 3.1: For any connected \((p, q)\) graph \(G \),

\[
\gamma_{dats}(G) \leq p + \left\lceil \frac{diam(G)}{2} \right\rceil.
\]

Proof: Let \(J = \{ e_1, e_2, ..., e_k \} \subseteq E(G) \) be the edge set constituting the longest path between two distinct vertices \(u, v \in V(G) \) such that \(d(u, v) = diam(G) \). Since \(V[L(S(G))] = E(S(G)) \) there exists a vertex set \(D^d = \{ v_1, v_2, ..., v_n \} \) such that any vertex \(v \in V[L(S(G))] \) and let \(D^d \) is adjacent to at least two vertices of \(D^d \) and \(|N[v] \cap D^d| \geq 2 \) it follows \(|D^d| \geq 2 \). We know that the diametric path includes at least two vertices. This implies that \(2|D^d| \leq 2p + diam(G) \). Clearly implies that \(\gamma_{dats}(G) \leq p + \left\lceil \frac{diam(G)}{2} \right\rceil \).

Theorem 3.2: For any connected \((p, q)\) graph \(G \), \(p + \Delta(G) \leq \gamma_{dats}(G) + \gamma(G) \).

Proof: Let \(C = \{ v_1, v_2, ..., v_k \} \subseteq V(G) \) be the set of vertices with \(\deg(v) \geq 2 \), \(\forall v \in C \). Then there exists at least one vertex \(v \in C \) such that \(\deg(v) = \Delta(G) \). Now without loss of generality in \(L[S(G)] \), since \(V[L(S(G))] = E(S(G)) \), there exists a set \(D^d = \{ u_1, u_2, ..., u_m \} \subseteq V[L(S(G))] \) in \(L[S(G)] \) covers all the vertices of \(L[S(G)] \) such that any vertex \(u \in V[L(S(G))] \) - \(D^d \) is adjacent to at least two vertices of \(D^d \). Clearly \(D^d \) is a minimal double dominating set of \(L[S(G)] \). It follows that \(|D^d| + |D| \geq p + \Delta(G) \) which implies that \(\gamma_{dats}(G) + \gamma(G) \geq p + \Delta(G) \).

Theorem 3.3: For any connected \((p, q)\) graph \(G \),

\[
\gamma_{dats}(G) \leq diam(G) + \gamma(G) + a_0.
\]

Proof: Let \(C = \{ v_1, v_2, ..., v_n \} \subseteq V(G) \) be the minimum set of vertices which covers all the edges in \(G \) with \(|C| = a_0 \). Further there exists an edge set \(J \subseteq J \), where \(J \) is the set of edges which are incident with the vertices of \(C \), constituting the longest path in \(G \) such that \(|J| = \text{diam}(G) \). Let \(D = \{ v_1, v_2, ..., v_n \} \subseteq C \) be the minimal set of vertices which covers all the vertices in \(G \). Clearly \(D \) forms a minimal dominating set of \(G \). Now in \(L[S(G)] \), let \(F = \{ u_1, u_2, ..., u_m \} \subseteq V[L(S(G))] \) and let \(D^d = \{ u_1, u_2, ..., u_m \} \subseteq F \) such that any vertex \(u \in V[L(S(G))] - D^d \) is adjacent to at least two vertices of \(D^d \) and \(|N[u] \cap D^d| \geq 2 \). Clearly \(D^d \) forms a minimal \(\gamma_{dats}(G) \)-set of \(G \). Therefore it follows that \(|D^d| \leq |J| \cup |D| \cup |C| \) and hence \(\gamma_{dats}(G) \leq \text{diam}(G) + \gamma(G) + a_0 \).

Theorem 3.4: For any nontrivial tree \(T \), \(\gamma_{dats}(G) \leq p + m \), \(m \) is the number of cutvertices in \(T \).

Proof: Let \(A = \{ v_1, v_2, ..., v_n \} \) be the set of all cutvertices in \(T \) with \(|A| = m \). Suppose \(C \subseteq V[S(G)] \), \(\deg(v) \geq 2 \), \(\forall v \in C, 1 \leq i \leq n \) be the set of vertices in \(S(G) \) and let \(J = \{ e_1, e_2, ..., e_k \} \) be the set of edges which are incident to the vertices of \(C \). Now in \(L(S(T)) \), let \(I = \{ u_1, u_2, ..., u_n \} \subseteq V[L(S(G))] \) be the set of vertices with \(\deg(u) \geq 2, 1 \leq i \leq n \). Then \(D^d = I \cup F \) where \(F = \{ u_1, u_2, ..., u_m \} \subseteq J \) in \(L(S(T)) \) corresponding to the edges of \(J \) form a double dominating set of \(L(S(T)) \). Clearly it follows that \(|I \cup F| \leq p + |A| \) and hence \(\gamma_{dats}(G) \leq p + m \).

Theorem 3.5: For any connected \((p, q)\) graph \(G \) with \(p \geq 3, p + 1 \leq \gamma_{dats}(G) \leq p + 2 \).

Proof: Let \(D^d = \{ v_1, v_2, ..., v_n \} \) be a minimal line subdivision dominating set of \(G \). Then every vertex in \(V[L(S(G))] - D^d \) is dominated by at least two vertices in \(D^d \). Therefore \(2 \leq p + 1 \leq |D^d| \). This implies that \(|V[L(S(G))] - D^d| \geq 0 \) it gives \(|V[L(S(G))]| \geq |D^d| \). Since \(|V(G)| \leq |V[L(S(G))]| \). Thus \(p + 1 \leq \gamma_{dats}(G) \leq p + 2 \).

Theorem 3.6: For any connected \((p, q)\) graph \(G \),

\[
\gamma_{dats}(G) \leq p + \left\lceil \frac{\Delta(G)}{2} \right\rceil.
\]

Proof: Let \(v \) be a vertex of degree \(\Delta(G) \). Let \(F \) be the set of independent edges in \(< N(v) > \). Let \(D^d \subseteq V[L(S(G))] \) be a \(\gamma_{dats} \)-set of \(G \). Since \(|F| \leq \left\lceil \frac{\Delta(G)}{2} \right\rceil \), therefore \(|D^d| \leq |V(G)| \cup N(v) - F |
\[
 \leq p + \Delta(G) - \left\lfloor \frac{\Delta(G)}{2} \right\rfloor \leq p + \frac{\Delta(G)}{2} \text{ Hence the result.}
\]

Theorem 3.7: For any connected \((p, q)\) graph \(G\),
\(\gamma_{\text{data}}(G) \leq p + q - \delta(G)\).

Proof: Let \(D^d \subseteq V[L(S(G))]\) be a line subdivision double dominating set of \(G\) such that any vertex \(u \in V[L(S(G))]\) \(\setminus D^d\) has at least two neighbours in \(D^d\). Therefore \(D^d\) be a \(\gamma_{\text{data}}\)-set of \(G\). Suppose there exists a vertex \(u \in D^d\) adjacent to vertices of \(D^d\). Thus \(\leq |D^d - V(G)| + \deg(u) \geq |D^d - V(G)| + \delta(G)\). This implies that \(\gamma_{\text{data}}(G) \leq p + q - \delta(G)\).

Theorem 3.8: For any connected \((p, q)\) graph \(G\) with
\(p \geq 2, 2 \leq \gamma_{\text{data}}(G) \leq 2q\).

Proof: Let \(D^d\) be a minimum line subdivision double dominating set of \(G\). Then
\[
|D^d| \leq |V(G) \cup E(G)| - 1 \leq p + q - (p - q) \leq 2q. \text{ Hence the result.}
\]

IV. NORDHAUS-GADDUM TYPE RESULTS

Theorem 4.1: For any connected \((p, q)\) graph \(G\) with
\(p \geq 3\) vertices,

1. \(\gamma_{\text{data}}(G) + \gamma_{\text{data}}(\overline{G}) \leq 2p + 4\).
2. \(\gamma_{\text{data}}(G) \cdot \gamma_{\text{data}}(\overline{G}) \leq p^2 + 4p + 4\).

V. CONCLUSION

Domination in graph is one of the major research area in graph theory. Currently many interesting and important research area taking place in this area. Double domination is a particular type of domination and the double domination in graphs is relative new research area and hence there is a wide scope for studies in this particular area of domination theory. In this paper, we establish some upper and lower bounds on \(\gamma_{\text{data}}(G)\). Further, its relation with other different dominating parameters are investigated. Nordhaus-Gaddum type results are also obtained for this parameter.

REFERENCES

