

Generalized Hyers-Ulam Stability of a AQ Functional Equation

^{1*}V. Govindan, Department of Mathematics,Sri Vidya Mandir Arts and Science College,Uthangarai TamilNadu, India-636 902, govindoviya@gmail.com.

²Sandra Pinelas, Departmento de Ciências Exatas e Engenharia, Academia Militar, Portugal.

sandra.pinelas@gmail.com.

³S. Murthy, Department of Mathematics,Government Arts and Science College ,Krishnagiri, Tamil Nadu, India-635 001, smurthy07@yahoo.co.in.

⁴M. Sree Shanmuga Velan, Department of Mathematics,Hosur Institute of Technology and Science Krishnagiri, Tamil Nadu, India-635 115, sreevelanmsc@gmail.com.

Abstract In this paper, the authors generalized 3-D additive-quartic functional equation of the form (1.3) is introduce in Fuzzy Normed Space. Further, stability of the functional equation verified by the generalized Hyers-Ulam method associated with direct and fixed point methods.

Keywords — Additive functional equation, Quartic functional equation, Fixed Point, Hyers-Ulam Stability, Fuzzy Normed Space.

MSC: 39B52, 32B72, 32B82.

I. INTRODUCTION

In 1984, katsaras [5] defined a fuzzy norm on a linear space to construct a fuzzy structure on the space. Since then, some mathematicians have introduced several types of fuzzy norm in different points of view. In particular, we use the definition of a fuzzy normed space given[1] to exhibit a reasonable fuzzy version of stability for the cubic and quadratic functional equation in the fuzzy normed space. The functional equation

$$f(x+y) = f(x) + f(y)$$
(1.1)

is called the Cauchy additive functional equation and it is the most famous functional equation. Since f(x) = kx is the solution of the functional equation (1.1).Then the functional equation

$$f(2x+y) + f(2x-y) = 4f(x+y) + 4f(x-y) + 24f(x) - 6f(y)$$
(1.2)

is called the Quartic functional equation. It is easy to show that the function $f(x) = x^4$ satisfies the functional equation (1.2), which is called a quartic functional equation and every solution of the quartic functional equation is said to be a quartic function.

J. M. Rassias[8,9,10] was discussed about the linear mappings and T. M. Rassias[11] also investigate the linear mappings in banach space. Govindan et al.,[3,4,6,13] prescribed some stability of the various functional equations in various kind.

Some other papers of functional equation are used to develop this paper such as [2,7,12]. In this paper, the authors investigate the stability for the Additive-Quartic functional equation is of the form

$$f\left(rx_{1} + r^{2}x_{2} + r^{3}x_{3}\right) + f\left(-rx_{1} + r^{2}x_{2} + r^{3}x_{3}\right) + f\left(rx_{1} - r^{2}x_{2} + r^{3}x_{3}\right)$$

$$+ f\left(rx_{1} + r^{2}x_{2} - r^{3}x_{3}\right) = 2\left[f\left(rx_{1} + r^{2}x_{2}\right) + f\left(r^{2}x_{2} + r^{3}x_{3}\right)\right]$$

$$+ f\left(rx_{1} + r^{3}x_{3}\right) + f\left(rx_{1} - r^{2}x_{2}\right) + f\left(r^{2}x_{2} - r^{3}x_{3}\right) + f\left(rx_{1} - r^{3}x_{3}\right)\right]$$

$$- 2\left[r^{4}\left(f\left(x_{1}\right) + f\left(-x_{1}\right)\right] + r^{8}\left(f\left(x_{2}\right) + f\left(-x_{2}\right)\right) + r^{12}\left(f\left(x_{3}\right) + f\left(-x_{3}\right)\right)\right]$$

$$- \left[r\left(f\left(x_{1}\right) - f\left(-x_{1}\right)\right) + r^{2}\left(f\left(x_{2}\right) - f\left(-x_{2}\right)\right) + r^{3}\left(f\left(x_{3}\right) - f\left(-x_{3}\right)\right)\right]$$

$$(1.3)$$

in fuzzy banach space using direct and fixed point method.

II .FUZZY STABILITY RESULTS

In this section, the authors present the basic definition in fuzzy normed space.

Definition 2.1 Let *x* be a real linear space. A function $F: X \times R \rightarrow [0,1]$ is said to be a fuzzy norm on X if for all $x, y \in X$ and all $p, q \in R$

(N1)
$$F(x,c) = 0$$
 for $c \le 0$;

(N2)
$$x = 0$$
 if and only if $F(x, c) = 1$ for all $c > 0$;

(N3)
$$F(cx,q) = F\left(x,\frac{q}{|c|}\right)$$
 if $c \neq 0$;
(N4) $F(x+y,p+q) \ge \min\left\{F(x,p),F(y,q)\right\}$;

(N5) F(x,.) is a non-decreasing function on R and $\lim_{q \to \infty} F(x,q) = 1;$

(N6) for $x \neq 0$, F(x, .) is continuous on R;

The pair (X, F) is called fuzzy normed linear space one may regard F(x, q) as the truth value of the statement the norm of x is less than or equal to the real number q.

Definition 2.2 Let (X, F) be a fuzzy normed linear space.

Let $\{x_n\}$ be a sequence in X. Then x_n is said to be convergent if there exists $x \in X$ such that $\lim_{n \to \infty} (x_n - x, q) = 1$ for all t > 0. In that case x is called the limit of the sequence x_n and we denote it by

 $F - \lim_{n \to \infty} x_n = x \,.$

Definition 2.3 A sequence $\{x_n\}$ be in x is called Cauchy if for each $\varepsilon > 0$ and each q > 0 there exists n_0 such that for all $n \ge n_0$ and all $\delta > 0$, we have $F(x_{n+\delta} - x_n, q) > 1 - \varepsilon$

Definition 2.4 Every convergent sequence in fuzzy normed space is Cauchy. If each Cauchy sequence is convergent, then the fuzzy norm is said to be complete and fuzzy normed space is called a fuzzy Banach space.

In section 3 and 4, assume that X, (Z, F) and

 $\begin{pmatrix} Y, F' \end{pmatrix} \text{ are linear space, fuzzy normed space and fuzzy } \\ \text{Banach space respectively. We define a function } \\ R: X \to Y \text{ by } \\ R(x_1, x_2, x_3) = f(rx_1 + r^2x_2 + r^3x_3) + f(-rx_1 + r^2x_2 + r^3x_3) \\ + f(rx_1 - r^2x_2 + r^3x_3) + f(rx_1 + r^2x_2 - r^3x_3) - 2[f(rx_1 + r^2x_2) \\ + f(r^2x_2 - r^3x_3) + f(rx_1 - r^3x_3)] + 2[r^4(f(x_1) + f(-x_1)] \\ + r^8(f(x_2) + f(-x_2)) + r^{12}(f(x_3) + f(-x_3))] + \\ [r(f(x_1) - f(-x_1)) + r^2(f(x_2) - f(-x_2)) + r^3(f(x_3) - f(-x_3))]] \text{ for all } x_1, x_2, x_3 \in X . \end{cases}$

II. STABILITY OF THE FUNCTIONAL EQUATION (1.3) - DIRECT METHOD

In this section, we establish the stability of (1.3) in fuzzy Banach space using direct method.

Theorem 3.1 Let $\beta \in \{-1,1\}$. Let $\chi: X^3 \to Z$ be a mapping with $0 < \left(\frac{d}{r^4}\right) < 1$ $F'\left(\chi\left(r^{\beta k}x_1, r^{\beta k}x_2, r^{\beta k}x_3\right), \delta\right) \ge F'\left(d^\beta \chi(x,0,0), \delta\right)$

for all $x \in X$ and all $\delta > 0$, d > 0 and

$$\lim_{k \to \infty} F'\left(\chi\left(r^{\beta k}x_1, r^{\beta k}x_2, r^{\beta k}x_3\right), r^{4\beta k}\delta\right) = 1 \qquad (3.2)$$

for all $x_1, x_2, x_3 \in X$ and all $\delta > 0$. Suppose that a function $R: X \to Y$ satisfies the inequality

$$F\left(R\left(x_{1}, x_{2}, x_{3}\right), \delta\right) \ge F'\left(\chi\left(x_{1}, x_{2}, x_{3}\right), \delta\right)$$
(3.3)

for all r > 0 and $x_1, x_2, x_3 \in X$ the limit

$$G(x) = F - \lim_{k \to \infty} \frac{f(r^{\beta k} x)}{r^{4\beta k}}$$
(3.4)

exists for all $x \in X$ and the mapping $G: X \to Y$ is a unique quartic mapping such that

$$F(f(x) - G(x), \delta) \ge F'(\chi(x, 0, 0), 4\delta | r^4 - d|)$$
(3.5)

for all $x \in X$ and for all $\delta > 0$.

Proof. First assume that $\beta = 1$. Replacing (x_1, x_2, x_3) by

$$(x, 0, 0)$$
, in (3.3), we have

$$F\left(\left(4f\left(rx\right)-4r^{4}f\left(x\right)\right),\delta\right) \ge F'\left(\chi\left(x,0,0\right),\delta\right)$$
(3.6)

for all $x \in X$ and for all $\delta > 0$. Replacing x by $r^{\kappa} x$ in (3.6), we obtain

$$F\left(\frac{f\left(r^{k+1}x\right)}{r^{4}} - f\left(r^{k}x\right), \frac{\delta}{4r^{4}}\right) \ge F'\left(\chi\left(r^{k}x, 0, 0\right), \delta\right)$$
(3.7)

for all $x \in X$ and for all $\delta > 0$. Using (3.1), (N3) in (3.7), we have

$$F\left(\frac{f\left(r^{k+1}x\right)}{r^{4}} - f\left(r^{k}x\right), \frac{\delta}{4r^{4}}\right) \ge F'\left(\chi\left(r^{k}x, 0, 0\right), \frac{\delta}{d^{k}}\right)$$
(3.8)

for all $x \in X$ and for all $\delta > 0$, it is easy to verify from (3.8), that

$$F\left(\frac{f\left(r^{k+1}x\right)}{r^{4(k+1)}} - \frac{f\left(r^{k}x\right)}{r^{4k}}, \frac{\delta}{4r^{4(k+1)}}\right) \ge F'\left(\chi\left(r^{k}x, 0, 0\right), \frac{\delta}{d^{k}}\right)$$

(3.9)

holds for all $x \in X$ and for all $\delta > 0$. Replacing δ by $d^k \delta$ in (3.9)

$$F\left(\frac{f\left(r^{k+1}x\right)}{r^{4(k+1)}} - \frac{f\left(r^{k}x\right)}{r^{4k}}, \frac{d^{k}\delta}{4r^{4(k+1)}}\right) \ge F\left(\chi\left(r^{k}x, 0, 0\right), \delta\right)$$
(3.10)

for all $x \in X$ and for all $\delta > 0$, it is easy to see that

$$\frac{f\left(r^{k+1}x\right)}{r^{4(k+1)}} - f\left(x\right) = \sum_{i=0}^{k-1} \left[\frac{f\left(r^{i+1}x\right)}{r^{4(i+1)}} - \frac{f\left(r^{i}x\right)}{r^{4i}}\right] (3.11)$$

for all $x \in X$. From the equations (3.10) and (3.11), we get

(3.1)

$$F\left(\frac{f\left(r^{k}x\right)}{r^{4k}} - f\left(x\right), \sum_{i=0}^{k-1} \frac{d^{i}\delta}{4r^{4(i+1)}}\right)$$

$$\geq \min \bigcup_{i=1}^{\omega} \left\{\frac{f\left(r^{i+1}x\right)}{r^{4(i+1)}} - \frac{f\left(r^{i}x\right)}{r^{4i}}, \frac{d^{i}\delta}{4r^{4(i+1)}}\right\}$$

$$\geq \min \bigcup_{i=1}^{k-1} F'\left(\chi\left(x,0,0\right),\delta\right)$$

$$\geq F'\left(\chi\left(x,0,0\right),\delta\right)$$
(3.12)

for all $x \in X$ and for all $\delta > 0$. Replacing x by $r^m x$ in (3.12) and using (3.1) and (N3), we obtain

$$F\left(\frac{f\left(r^{k+m}x\right)}{4\left(k+m\right)} - \frac{f\left(r^{m}x\right)}{r^{4m}}, \frac{m+k-1}{i=0} - \frac{d^{i}\delta}{4r\left(i+1\right)}\right)$$
$$\geq F'\left(\chi\left(x,0,0\right), \frac{\delta}{d^{m}}\right)$$
(3.13)

for all $x \in X$ and for all $\delta > 0$. And all $m, k \ge 0$. Replacing δ by $d^m \delta$ in (3.13), we get

$$F\left(\frac{f\left(r^{k+m}x\right)}{\frac{4(k+m)}{r}} - \frac{f\left(r^{m}x\right)}{r^{4m}}, \sum_{\substack{i=m\\i=m}}^{m+k-1} \frac{d^{i}\delta}{4r^{4(i+1)}}\right)$$
$$\geq F'\left(\chi\left(x,0,0\right),\delta\right)$$

for all $x \in X$ and for all $\delta > 0$. And all $m, k \ge 0$. Using (N3) in (3.13), we have

$$F\left(\frac{f\left(r^{k+m}x\right)}{r^{4(k+m)}} - \frac{f\left(r^{m}x\right)}{r^{4m}}, \delta\right)$$

$$\geq F'\left(\chi(x,0,0), \frac{\delta}{\frac{m+k-1}{\sum_{i=m}^{L}\frac{d^{i}}{4r^{4(i+1)}}}}\right)$$
(2.14)

(3.15) for all $x \in X$ and for all $\delta > 0$. And all $m, k \ge 0$. Since $0 < d < r^4$ and $\sum_{i=0}^k \left(\frac{d}{r^4}\right)^i < \infty$. The Cauchy criterion for

convergence and (N5) implies that $\left\{\frac{f\left(r^{k}x\right)}{r^{4k}}\right\}$ is a Cauchy

sequence in (Y, F') is a fuzzy Banach space. This sequence

converges to some point $G(x) \in Y$ so one can define the

mapping
$$G: X \to Y$$
 by $G(x) = F - \lim_{k \to \infty} \frac{f(r^{\beta k}x)}{r^{4\beta k}}$

for all $x \in X$. Letting m = 0 in (3.15), we receive

$$F\left(\frac{f\left(r^{k}x\right)}{r^{4k}} - f\left(x\right), \delta\right) \ge F\left(\chi\left(x, 0, 0\right), \frac{\delta}{\sum_{i=0}^{k-1} \frac{d^{i}}{4r^{4(i+1)}}}\right)$$

(3.16)

for all $x \in X$. Letting $k \to \infty$ in (3.16) and using (N6), we have

$$F(f(x)-G(x),\delta) \ge F'(\chi(x,0,0),4\delta(r^4-d))$$

for all $x \in X$ and for all $\delta > 0$. To prove G satisfies (1.3), replacing (x_1, x_2, x_3) by $(r^k x_1, r^k x_2, r^k x_3)$ in (3.3), we get

$$F\left(\frac{1}{r^{4k}}R\left(r^{k}x_{1},r^{k}x_{2},r^{k}x_{3}\right),\delta\right) \\ \geq F\left(\chi\left(r^{k}x_{1},r^{k}x_{2},r^{k}x_{3}\right),r^{4k}\delta\right)$$
(3.17)

for all $\delta > 0$ and all $x_1, x_2, x_3 \in X$. Hence G satisfies the quartic functional equation (1.3). In order to prove G(x) is unique. We let G'(x) be another quartic functional equation satisfying (1.3) and (3.5). Hence

$$F\left(G\left(x\right) - G'\left(x\right), \delta\right) = F\left(\frac{G\left(r^{k}x\right)}{r^{4k}} - \frac{G'\left(r^{k}x\right)}{r^{4k}}\right)$$

$$\geq \min\left\{F\left(\frac{G\left(r^{k}x\right)}{r^{4k}} - \frac{f\left(r^{k}x\right)}{r^{4k}}, \frac{\delta}{2}\right), F\left(\frac{f\left(r^{k}x\right)}{r^{4k}} - \frac{G'\left(r^{k}x\right)}{r^{4k}}, \frac{\delta}{2}\right)\right\}$$

$$\left(1 + \frac{4k}{r^{4k}} + \frac{4k}{r^{4k}} + \frac{1}{r^{4k}}\right)$$

$$0 \ge F'\left(\chi\left(r^{k}x,0,0\right),\frac{4r^{4k}\delta\left(r^{4}-d\right)}{2}\right)$$
$$\ge F'\left(\chi\left(x,0,0\right),\frac{4r^{4k}\delta\left(r^{4}-d\right)}{2d^{k}}\right)$$

for all $x \in X$ and for $\delta > 0$. Since,

$$\lim_{k \to \infty} \frac{4r^{4k}\delta(r^4 - d)}{2d^k} = \infty,$$

we obtain
$$F'\left(\chi\left(r^k x, 0, 0\right), \frac{4r^{4k}\delta(r^4 - d)}{2d^k}\right) = 1$$

Thus
$$F(G(x) - G'(x), \delta) = 1$$
 for all $x \in X$ and for $\delta > 0$. Hence $G(x) = G'(x)$. Therefore $G(x)$ is unique.

For $\beta = -1$, we can prove the result by a similar method. This completes the proof of the Theorem.

The following corollary is an immediate consequence of the Theorem 3.1, concerning the stability of (1.3).

Corollary 3.2 Suppose that the function $R: X \to Y$ satisfies the inequality

$$F\left(R\left(x_{1}, x_{2}, x_{3}\right), \delta\right) \geq \begin{cases} F'\left(\varepsilon, \delta\right) \\ F'\left(\varepsilon \sum_{i=1}^{3} \left\|x_{i}\right\|^{s}, \delta\right), \\ F'\left(\varepsilon \left(\sum_{i=1}^{3} \left\|x_{i}\right\|^{3s} + \prod_{i=1}^{3} \left\|x_{i}\right\|^{s}\right), \delta\right), \end{cases}$$

for all $x_1, x_2, x_3 \in X$ and all $\delta > 0$, where \mathcal{E}, s are constants. Then there exists a unique quartic mapping $G: X \to Y$ such that

$$F\left(f\left(x\right)-G\left(x\right),\delta\right) \ge \begin{cases} F'\left(\varepsilon,4\delta\left|r^{4}-1\right|\right) \\ F'\left(\varepsilon\left\|x\right\|^{s},4\delta\left|r^{4}-r^{s}\right|\right); s \neq 4 \\ F'\left(\varepsilon\left\|x\right\|^{3s},4\delta\left|r^{4}-r^{3s}\right|\right); s \neq \frac{4}{3} \end{cases}$$

for all $x \in X$ and for $\delta > 0$.

Proposition 3.3 Let $\beta \in \{-1,1\}$. Let $\chi: X^3 \to Z$ be a mapping with $0 < \left(\frac{d}{r}\right) < 1$

$$F'\left(\chi\left(r^{\beta k}x_{1}, r^{\beta k}x_{2}, r^{\beta k}x_{3}\right), \delta\right) \ge F'\left(d^{\beta}\chi(x, 0, 0), \delta\right)$$

for all $x \in X$ and all $\delta > 0, d > 0$ and

 $\lim_{k \to \infty} F'\left(\chi\left(r^{\beta k}x_1, r^{\beta k}x_2, r^{\beta k}x_3\right), r^{\beta k}\delta\right) = 1$

for all $x_1, x_2, x_3 \in X$ and all $\delta > 0$. Suppose that a function $R: X \to Y$ satisfies the inequality $F\left(R\left(x_1, x_2, x_3\right), \delta\right) \ge F'\left(\chi\left(x_1, x_2, x_3\right), \delta\right)$

for all r > 0 and $x_1, x_2, x_3 \in X$ the limit

$$G(x) = F - \lim_{k \to \infty} \frac{f(r^{\beta k}x)}{r^{\beta k}}$$

exists for all $x \in X$ and the mapping $G: X \to Y$ is a unique additive mapping such that

$$F\left(f\left(x\right) - G\left(x\right), \delta\right) \ge F'\left(\chi\left(x, 0, 0\right), 2\delta \left| r - d \right|\right)$$

for all $x \in X$ and for all $\delta > 0$.

Corollary 3.4 Suppose that the function $R: X \to Y$ satisfies the inequality

$$F\left(R\left(x_{1}, x_{2}, x_{3}\right), \delta\right) \geq \begin{cases} F'\left(\varepsilon, \delta\right) \\ F'\left(\varepsilon \sum_{i=1}^{3} \left\|x_{i}\right\|^{s}, \delta\right), \\ F'\left(\varepsilon \left(\sum_{i=1}^{3} \left\|x_{i}\right\|^{3s} + \prod_{i=1}^{3} \left\|x_{i}\right\|^{s}\right), \delta\right), \end{cases}$$

for all $x_1, x_2, x_3 \in X$ and all $\delta > 0$, where ε, s are constants. Then there exists a unique additive mapping $G: X \to Y$ such that

$$F\left(f\left(x\right)-G\left(x\right),\delta\right) \ge \begin{cases} F'\left(\varepsilon,2\delta\left|r-1\right|\right)\\ F'\left(\varepsilon\left\|x\right\|^{s},2\delta\left|r-r^{s}\right|\right); s \neq 1 & \text{f} \\ F'\left(\varepsilon\left\|x\right\|^{3s},2\delta\left|r-r^{3s}\right|\right); s \neq \frac{1}{3} \end{cases}$$

or all $x \in X$ and for $\delta > 0$.

IV. Stability of the Functional Equation (1.3) – Fixed Point Method

In this section, the authors investigate the generalized Ulam-Hyers stability of the functional equation (1.3) in fuzzy normed space using fixed point method.

For to prove the stability result we define the following ψ_i is a constant such that

$$\psi_i = \begin{cases} r & if \ i = 0\\ \frac{1}{r} & if \ i = 1 \end{cases}$$

and Ω is the set such that $\Omega = \{p \mid p : X \to Y, p(0) = 0\}$. **Theorem 4.1** Let $R: X \to Y$ be a mapping for which there exists a function $\chi: X^3 \to Z$ with condition

$$\lim_{k \to \infty} F\left(\chi\left(\psi_i^k x_1, \psi_i^k x_2, ..., \psi_i^k x_n\right), \psi_i^{4k} \delta\right) = 1$$
(4.1)

for all $x_1, x_2, x_3 \in X$ and $\delta > 0$ and satisfying the inequality

$$F\left(R\left(x_{1}, x_{2}, x_{3}\right), \delta\right) \ge F'\left(\chi\left(x_{1}, x_{2}, x_{3}\right), \delta\right)$$
(4.2)

for all $x_1, x_2, x_3 \in X$ and $\delta > 0$. If there exists L = L[i] such that the function $x \to \rho(x)$ has the property

$$F'\left(L\frac{1}{\psi_{i}^{4}}\rho(\psi_{i}x),\delta\right) = F'(\rho(x),\delta)$$
(4.3)

for all $x \in X$ and $\delta > 0$. Then there exists unique quartic function $G: X \to Y$ satisfying the functional equation (1.3) and

$$F(f(x)-G(x),\delta) \ge F'\left(\frac{L^{1-i}}{1-L}\rho(x),\delta\right)$$

for all $x \in X$ and $\delta > 0$.

Proof. Let d be a general metric on $\,\Omega$, such that

$$d(p,q) = \inf \left\{ k \in (0,\infty) / F(p(x) - q(x),\delta) \right\}$$
$$\geq F'(\rho(x),k\delta), \ x \in X, \delta > 0$$

It is easy to see that (Ω, d) is complete. Define $T : \Omega \to \Omega$

by
$$Tp(x) = \frac{1}{\psi_i^4} p(\psi_i x), \ \forall x \in X.$$

For $p, q \in \Omega$, we get
 $d(p,q) = k \Rightarrow F(p(x) - q(x)) \ge F'(\rho(x), k\delta)$
 $\Rightarrow F\left(\frac{p(\psi_i x)}{\psi_i^4} - \frac{q(\psi_i x)}{\psi_i^4}, \delta\right) \ge F'(\rho(\psi_i x), k\psi_i^4\delta)$
 $\Rightarrow F(Tp(x) - Tq(x), \delta) \ge F'(\rho(\psi_i x), k\psi_i^4\delta)$
 $\Rightarrow F(Tp(x) - Tq(x), \delta) \ge F'(\rho(x), kL\delta)$
 $\Rightarrow d(Tp(x) - Tq(x), \delta) \ge kL$
 $\Rightarrow d(Tp - Tq, \delta) \ge kd(p,q), \forall p, q \in \Omega.$

Therefore T is strictly contractive mapping on Ω with Lipschitz constant L, replacing (x_1, x_2, x_3) by (x, 0, 0) in

(4.2), we get

$$F\left(4f\left(rx\right) - 4r^{4}f\left(x\right),\delta\right) \ge F\left(\chi\left(x,0,0\right),\delta\right)$$
(4.5)

for all $x \in X$ and $\delta > 0$. Using (N3) in (4.5), we have

$$F\left(\frac{f(rx)}{r^4} - f(x), \delta\right) \ge F'\left(\frac{1}{4r^4}\chi(x, 0, 0), \delta\right) (4.6)$$

for all $x \in X$ and $\delta > 0$ with the help of (4.3), when i = 0. It follows from (4.6) that

$$\Rightarrow F\left(\frac{f(rx)}{r^{4}} - f(x), \delta\right) \ge F\left(L\rho(x), \delta\right)$$
$$\Rightarrow d\left(Tf(x), \delta\right) \ge L = L^{1} = L^{1-i}$$
(4.7)

Replacing x by $\frac{x}{x}$ in (4.5), we receive

$$F\left(f\left(x\right)-r^{4}f\left(\frac{x}{r}\right),\delta\right) \ge F\left(\frac{1}{4}\chi\left(\frac{x}{r},0,0\right),\delta\right)^{\alpha} \text{ in Eng} F\left(R\left(x_{1},x_{2},x_{3}\right),\delta\right) \ge \begin{cases} (3) \\ F\left(\varepsilon\left\{\sum_{i=1}^{3}\left\|x_{i}\right\|^{s}\right\},\delta\right),\\ (4.8) \end{cases}$$

for all $x \in X$ and $\delta > 0$ when i = 1 it follows from we arrive

$$\Rightarrow F\left(f\left(x\right) - r^{4}f\left(\frac{x}{r}\right), \delta\right) \ge F'\left(\rho\left(x\right), \delta\right)$$
$$\Rightarrow T\left(f - Tf\right) \le 1 = L^{0} = L^{1-i} \tag{4.9}$$
Then from (4.7) and (4.9), we get
$$\Rightarrow T\left(f, Tf\right) \le L^{1-i} < \infty.$$

Now from the fixed point alternative in both cases it follows that there exists a fixed point G of T in Ω such that

$$G(x) = F - \lim_{k \to \infty} \frac{f(\psi^k x)}{\psi^{4k}}$$
(4.10)

for all $x \in X$ and $\delta > 0$. Replacing (x_1, x_2, x_3) by

$$\begin{pmatrix} \psi_i^k x_1, \psi_i^k x_2, \psi_i^k x_3 \end{pmatrix} \text{ in (4.2), we get} \\ F \left(\frac{1}{\psi_i^{4k}} R \left(\psi_i^k x_1, \psi_i^k x_2, \psi_i^k x_3 \right), \delta \right) \\ \ge F' \left(\chi \left(\psi_i^k x_1, \psi_i^k x_2, \psi_i^k x_3 \right), \psi_i^{4k} \delta \right)$$

for all $\delta > 0$ and all $x_1, x_2, x_3 \in X$. By proceeding the some procedure in the theorem (3.7), we can prove the function $G: X \to Y$ is quartic and its satisfies the functional equation (1.3) by a fixed point alternative. Since G is unique fixed point of T in the set $\Delta = \left\{ f \in \Omega / d(f, G) < \infty \right\}.$ Therefore G is a unique function such that

$$F(f(x) - G(x), \delta) \ge F'(\rho(x), k\delta)$$
(4.11)

for all $x \in X$ and $\delta > 0$. Again using the fixed point alternative, we get

$$d(f,G) \leq \frac{1}{1-L} d(f,Tf)$$

$$\Rightarrow d(f,G) \leq \frac{L^{1-i}}{1-L}$$

$$\Rightarrow F(f(x) - G(x),\delta) \geq F'\left(\rho(x)\frac{L^{1-i}}{1-L},\delta\right)$$
(4.12)

This completes the proof of the Theorem.

The following corollary is an immediate consequence of Theorem 4.1 concerning the stability of (1.3).

Corollary 4.2 Suppose that a function $R: X \to Y$ satisfies the inequality

for all $x_1, x_2, x_3 \in X$ and $\delta > 0$, where \mathcal{E}, S are constants with $\varepsilon > 0$. Then there exists an unique quartic function $G: X \to Y$ such that

$$F\left(f\left(x\right)-G\left(x\right),\delta\right) \ge \begin{cases} F'\left(\varepsilon,4\delta\left|r^{4}-1\right|\right)\\ F'\left(\varepsilon\left\|x\right\|^{s},4\delta\left|r^{4}-r^{s}\right|\right); s \neq 4\\ F'\left(\varepsilon\left\|x\right\|^{3s},4\delta\left|r^{4}-r^{3s}\right|\right); s \neq \frac{4}{3}\\ \end{cases}$$

$$(4.14)$$

$$\begin{aligned} & \text{for all } x \in X \text{ and } \delta > 0. \\ & \text{Proof. Setting} \\ & x(x_1, x_2, x_3) \leq \begin{cases} e_1 \\ e_1 \\ |x_1|^{-1}| |x_1|^{-1} + \frac{3}{2\pi} ||x_1|^{-3} \rangle, \\ & e_1 \\ |x_1|^{-1}| |x_1|^{-1} + \frac{3}{2\pi} ||x_1|^{-3} \rangle, \\ & e_1 \\ |x_1|^{-1}| |x_1|^{-1} + \frac{3}{2\pi} ||x_1|^{-3} \rangle, \\ & e_1 \\ |x_1|^{-1}| |x_1|^{-1} + \frac{3}{2\pi} ||x_1|^{-3} \rangle, \\ & e_1 \\ |x_1|^{-1}| |x_1|^{-1} + \frac{3}{2\pi} ||x_1|^{-3} \rangle, \\ & e_1 \\ |x_1|^{-1}| |x_1|^{-1} + \frac{3}{2\pi} ||x_1|^{-3} \rangle, \\ & e_1 \\ |x_1|^{-1} + x_2, x_3 \in X \text{ . Then} \\ & f'(x)(w_1^{-1} x_1^{-1} w_1^{-1} w_2^{-1} x_3), w_1^{-4} \otimes \delta), \\ & e_1 \\ & f'(x)(w_1^{-1} x_1^{-1} w_1^{-1} w_2^{-1} x_3), w_1^{-4} \otimes \delta), \\ & f'(x)(w_1^{-1} x_1^{-1} w_1^{-1} w_2^{-1} x_3), w_1^{-4} \otimes \delta), \\ & f'(x)(w_1^{-1} x_1^{-1} w_1^{-1} w_1^{-1} w_2^{-1} w_1^{-3} x_3), \\ & f'(x)(w_1^{-1} x_1^{-1} w_1^{-1} w_1^{-1$$

Case 4.
$$L = r^{4-s}$$
 for $s < 4$ if $i = 1$

$$F\left(f\left(x\right) - G\left(x\right), \delta\right) \le F\left(\frac{L^{1-i}}{1-L}\rho\left(x\right), \delta\right) = F\left(\frac{1}{1-r^{4-s}}\frac{\varepsilon \|x\|^{s}}{4r^{s}}, \delta\right)$$

$$\le F\left(\varepsilon \|x\|^{s}, 4\left(r^{s} - r^{4}\right)\delta\right)$$

International Journal for Research in Engineering Application & Management (IJREAM) ISSN: 2454-9150 Vol-04, Issue-06, Sep 2018

Case 5.
$$L = r^{3s-4}$$
 for $s > \frac{4}{3}$ if $i = 0$
 $F(f(x) - G(x), \delta) \le F'\left(\frac{L^{1-i}}{1 - L}\rho(x), \delta\right) = F'\left(\frac{r^{3s-4}}{1 - r^{3s-4}}\frac{\varepsilon ||x||^{3s}}{4r^{3s}}, \delta\right)$
 $\le F'\left(\varepsilon ||x||^{3s}, 4\left(r^4 - r^{3s}\right)\delta\right)$

Case 6. $L = r^{4-3s}$ for $s < \frac{4}{3}$ if i = 1 $F\left(f(x) - G(x), \delta\right) \le F\left(\frac{L^{1-i}}{1-L}\rho(x), \delta\right) = F\left(\frac{1}{1-r^{4-3s}}\frac{\varepsilon ||x||^{3s}}{4r^{3s}}, \delta\right)$ $\le F\left(\varepsilon ||x||^{3s}, 4\left(r^{3s} - r^{4}\right)\delta\right)$

Hence the proof is complete.

Proposition 4.3 Let $R: X \to Y$ be a mapping for which there exists a function $\chi: X^3 \to Z$ with condition

$$\lim_{k \to \infty} F'\left(\chi\left(\psi_i^k x_1, \psi_i^k x_2, ..., \psi_i^k x_n\right), \psi_i^k \delta\right) = 1$$

for all $x_1, x_2, x_3 \in X$ and $\delta > 0$ and satisfying the inequality

$$F\left(R\left(x_{1}, x_{2}, x_{3}\right), \delta\right) \ge F'\left(\chi\left(x_{1}, x_{2}, x_{3}\right), \delta\right)$$

for all $x_1, x_2, x_3 \in X$ and $\delta > 0$. If there exists L = L[i] such that the function $x \to \rho(x)$ has the property

$$F'\left(L\frac{1}{\psi_i}\rho(\psi_i x),\delta\right) = F'\left(\rho(x),\delta\right)$$

for all $x \in X$ and $\delta > 0$. Then there exists unique additive function $G: X \to Y$ satisfying the functional equation (1.3) and

$$F(f(x)-G(x),\delta) \ge F'\left(\frac{L^{1-i}}{1-L}\rho(x),\delta\right)$$

for all $x \in X$ and $\delta > 0$.

Corollary 4.2 Suppose that a function $R: X \to Y$ satisfies the inequality

$$F\left(R\left(x_{1}, x_{2}, x_{3}\right), \delta\right) \geq \begin{cases} F'\left(\varepsilon, \delta\right), \\ F'\left(\varepsilon\left\{\sum_{i=1}^{3} \left\|x_{i}\right\|^{s}\right\}, \delta\right), \\ F'\left(\varepsilon\left\{\prod_{i=1}^{3} \left\|x_{i}\right\|^{s} + \sum_{i=1}^{3} \left\|x_{i}\right\|^{3s}\right\}, \delta\right), \end{cases}$$

for all $x_1, x_2, x_3 \in X$ and $\delta > 0$, where ε, s are constants with $\varepsilon > 0$. Then there exists an unique additive function

 $G: X \to Y$ such

that

$$F\left(f\left(x\right)-G\left(x\right),\delta\right) \ge \begin{cases} F'\left(\varepsilon,2\delta\left|r-1\right|\right)\\F'\left(\varepsilon\left\|x\right\|^{s},2\delta\left|r-r^{s}\right|\right);s\neq 1\\F'\left(\varepsilon\left\|x\right\|^{3s},2\delta\left|r-r^{3s}\right|\right);s\neq \frac{1}{3}\end{cases}$$

for all $x \in X$ and $\delta > 0$.

REFERENCES

- T. Bag and S. K. Samanta, Finite Dimensional Fuzzy Normed Linear Spaces, J. Fuzzy Math., Vol. 11, no.3, pp. 687-705, 2003.
- [2] I. S. Chang and Y. H. Lee, Approximate Quadratic-Additive Mappings in Fuzzy Normed Spaces, Discrete Dyn. Nat. Soc., Article ID 494781, 7 pages.
- [3] V. Govindan, S.Murthy and M.Saravanan, Solution and stability of New type of (aaq,bbq,caq,daq) Mixed Type Functional Equation in Various Normed spaces: using two different methods. Int. J. Math. Appl., Vol. 5, no. 1- B, pp. 187-211, 2017.
- [4] V.Govindan, S.Murthy, G.Kokila, Hyers-Ulam Stability of AQ functional equation, Int. J. Math. computer sci., Vol. 6, no.1, pp. 1852-1859, 2018.
- [5] A. K. Katsaras, Fuzzy topological vector spaces II, Fuzzy Sets and Systems, Vol. 12, pp. 143-154, 1984.
- [6] S.Murthy and V.Govindhan, General solution and generalized hu (Hyers – Ulam) Statbility of New Dimension cubic functional equation in Fuzzy Ternary Banach Algebras: Using Two different Methods. Int. J. Pure and Applied Math., Vol.113, no. 6, 2017.
- [7] S.Murthy,V.Govindan, M.Saravanan,GeneralizedHyers-Ulam Stability of mixed type functional equation in Banach and fuzzy banach space using direct and fixed point methods, Int. J Scientific Eng. Research, Vol. 1, no. 1, pp. 01-11, 2018.
- [8] J. M. Rassias, On Approximately Linear Mappings, J. Funct. Anal., USA, Vol. 46, pp. 126-130, 1982.
- [9] J. M. Rassias, On Approximately of Approximately Linear Mappings by Linear Mappings, Bull. Sc. Mat., Vol. 108, pp. 445-446, 1984.
- [10] J. M. Rassias, Solution of the Ulam Problem for Cubic Mapping, An. Univ. Timic. Soaraser. Math-In form., Vol. 38, no. 1, pp. 121-132, 2000.
- [11] Th. M. Rassias, On the Stability of the Linear Mapping in Banach Spaces, Proc. Amer.Math. Soc., Vol. 72, 297-300, 1978.
- [12] K. Ravi, J.M. Rassias, Sandra Pinelas and R. Jamuna, A Fixed Point Approach to the Stabilityof a Quadratic Quartic Functional Equation in Paranormed Spaces, PanAmerican Mathematical Journal, Vol. 24, no. 2, pp. 61–84, 2014.
- [13] Sandra Pinelas, V. Govindan and K. Tamilvanan, Stability of Non-Additive Functional Equation, IOSR J. Math., Vol. 14, no. 2-I, pp. 60-78, 2018.