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Abstract - Kumaraswamy Modified Inverse Weibull distribution and Lehmann -Type Laplace distribution-Type II 

based software reliability growth models are framed in this paper, for early detection of software failure based on time 

between failure observations. A set of software failure data is assumed to follow Kumaraswamy Modified Inverse 

Weibull distribution and Lehmann-Type Laplace distribution-Type II. Unconstrained optimization technique is used to 

estimate the parameters of Kumaraswamy Modified Inverse Weibull distribution and the parameters of Lehmann-

Type Laplace distribution-Type II are estimated by Profile Likelihood Method. It is proved that Lehmann-Type 

Laplace distribution-Type II fits better for the software failure data than the Kumaraswamy Modified Inverse Weibull 

distribution by using AIC and BIC techniques. Kumaraswamy Modified Inverse Weibull distribution and Lehmann-

Type Laplace distribution-Type II based control mechanisms are framed to detect the failure points for a set of 

software data taken. 

Keywords - Lehmann-Type Laplace distribution Type II (LLD-II), Profile Likelihood, Kumaraswamy Modified 

Inverse Weibull distribution (KMIW), Unconstrained optimization technique, Akaike Information Criterion(AIC), 

Bayesian Information Criterion (BIC), Non-Homogeneous Poisson Process (NHPP). 

I. INTRODUCTION 

Assessing software is important to evaluate and 

predict the reliability and performance of software 

system. By identifying the failures in the software, they 

can be eradicated and hence in turn increases the reliability 

and life time of the assessed software. To assess software, 

Software Reliability Growth Models (SRGM) are framed 

[4].  

In practical software engineering, the Non-Homogeneous 

Poisson Process (NHPP) [4] based SRGM are proved to be 

successful. To evaluate the mean value function )(xm  

i.e., the expectation of the number of failures experienced 

upto a certain point is the main issue in NHPP model. It is 

assumed that the number of failures follows Poisson 

distribution.  

 Statistical Process Control   (SPC) [11] is used to monitor 

software reliability process. An efficient and appropriate 

SPC tool in testing software reliability is the control chart. 

Mean value control chart taking failure number along X-

axis, successive differences of )(xm  along Y-axis and 

three parallel lines to X-axis for Lower Control 

Limit(LCL), Upper Control Limit(UCL) and Control 

Limit(CL) is used. Alarming signal and better quality are 

indicated by points below LCL and above UCL 

respectively. It is indicated that the software process is in 

stable condition by the points falling within the control 

limits,. 

In recent years, several authors framed SRGM based on 

NHPP models. Out of them the commonly used are 

Weibull, Exponential Geometric, Goel-Okumoto [7], 

Lehmann Type Laplace Distribution-Type I (LLD-I) [2], 

Pareto type III [10], , Lehmann-Type Laplace distribution-

Type II [3] models. 

In this paper, it is proved that Lehmann-Type Laplace 

distribution-Type II (LLD-II) has a better fit when 

compared to Kumaraswamy Modified Inverse Weibull 

distribution for a Software failure data [7] using Akaike 

Information Criterion (AIC) [1] and Bayesian Information 

Criterion (BIC) [9]. Control mechanisms are developed 

using KMIW and LLD-Type II for the two datesets of 

software failure data.  

The paper is organized as follows. Section 2 describes the 

models viz., KMIW and LLD-II along with their 

parameter estimation. In section 3, a set of software failure 

data are considered to show that LLD-II is a better fit than 

KMIW. In section 4, NHPP model for KMIW and LLD-II 

are given and to find the failure detection points based on 
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control limits of the software, KMIW and LLD-II control 

mechanisms are framed. Section 5 concludes the paper.  

II. SOFTWARE RELIABILITY GROWTH 

MODELS 

2.1 Kumaraswamy Modified Inverse Weibull (KMIW) 

Software Reliability Growth Model 

 

Kumaraswamy Modified Inverse Weibull [5] distribution has 

five parameters. Its cumulative distribution function is 
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where 0,,,,, bx   

  - Shape parameter 

  - Scale parameter represents the characteristics 

life 

  - Scale parameter 

b, - parameters whose role is to introduce 

symmetry and produce distribution  

         with heavier tails. 

Estimation of parameters 

Maximum likelihood method is used to estimate the five 

parameters of KMIW distribution. KMIW distribution has 

the likelihood function  
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Then its corresponding log-likelihood function is 
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Using unconstrained optimization technique, the 

maximum of log l in (2.1.4) can be found. The parameter 

values that give this maximum value are the optimum 

values. 

 

2.2 Lehmann-Type Laplace Type II Software 

Reliability Growth Model 

LLD-II has the probability density function [8] as 
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where the shape parameter 0 , the scale parameter 

0 , is the location parameter 0 . 

Its corresponding cumulative distribution function is 
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Parameter estimation 

Profile Likelihood method is used to estimate the 

parameters of LLD-II. For the observed data, the log-

likelihood function can be represented as 
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where   ixiI |1 and 

  22112 ||,||,| nInIxiI i   and 21 nnn  . 
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By evaluating,                     
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using numerical techniques and MATLAB tools, the 

parameters  ,,  are estimated. 

III. 3. ESTIMATION AND GOODNESS OF FIT 

3.1 Data Set  

Let the cumulative time between failures be defined by the 

random variable X. Cumulative time between failures of a 

software product taken from AT & T is shown in Table 

3.1.1. 

Table 3.1.1 Cumulative Time between failures 

 Failure Number 

Time between 

failure times in 

CPU units 

Cumulative time 

between failures 

1 5.5 5.5 

2 1.83 7.33 

3 2.75 10.08 

4 70.89 80.97 

5 3.94 84.91 

6 14.98 99.89 

7 3.47 103.36 

8 9.96 113.32 

9 11.39 124.71 

10 19.88 144.59 

11 7.81 152.4 

12 14.59 166.99 

13 11.42 178.41 

14 18.94 197.35 

15 65.3 262.65 

16 0.04 262.69 

17 125.67 388.36 

18 82.69 471.05 

19 0.45 471.5 

20 31.61 503.11 

21 129.31 632.42 

22 47.6 680.02 

 

For the data set in Table 3.1.1, the parameters, log 

likelihood values, AIC and BIC of corresponding 

distributions are given in the following Table 3.1.2. 

 

Table 3.1.2. Goodness of fit using AIC and BIC 
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IV. SOFTWARE FAILURE DATA ANALYSIS 

4.1 NHPP Model 

 The mean value function )(xm  and intensity 

function )(x for finite value NHPP models are given as 

follows 

)()( xaFxm 
           (4.1.1)
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Where, faults number in the software is shown as ‘a’.  

NHPP models has the joint density function as 







n

i

i

xm
xeL n

1

)(
)(                           (4.1.2) 

( )

1

( )n

n
aF x

i

i

L e af x




             (4.1.3) 

Partially differentiating log L  with respect to ‘a’ and 

equating to zero 
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For KMIW, the mean value function and intensity function 

using (2.1.1) and (2.1.2) are 
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Expected number of failures, using (2.1.1) and (4.1.4), is 
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the value of ‘a’ for dataset  is 6937.26a . 

For LLD-II, the mean value function and intensity function 

using (2.2.1) and (2.2.2) are 
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From (4.1.9), the value of ‘a’ for the data set  is 23.2099.

  

 
 

4.2 Control Mechanism 

 A control chart for the data set would be based on 0.9973 

probability limits of the cumulative time between 

failures[6]. The solutions of the following equations are 

these probability limits and central line respectively, 

taking equitailed probabilities 
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The respective solutions of these equations in standard 

form be denoted as lcu XXX ,, . Then
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The graph between failures’ serial numbers and 

corresponding successive differences of )(xm
 

together 

with the 3 curves for 
lcu XXX ,,  gives the control 

chart[11]. 

 

4.2.1 KMIW Control Mechanism 

For the data set, the equitailed probabilities 0.99865, 0.5, 

0.00135 are equated to the mean value function (4.2.2). 

Then the control limits are given as 
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The successive differences of the mean value function is 

given in Table 4.2.1. 

Table 4.2.1 Successive differences of the mean value 

function 

Failure Number 
Mean Value 

function m(x) 

Successive 

differences of m(x) 

1 0.1359 0.2992 

2 0.4351 0.7037 

3 1.1387 12.1478 

4 13.2865 0.2834 

5 13.5699 0.9389 

6 14.5089 0.1912 

7 14.7001 0.5042 

8 15.2043 0.5079 

9 15.7122 0.7479 

10 16.4619 0.2565 

11 16.7183 0.4331 

12 17.1515 0.3035 

13 17.4549 0.4470 

14 17.9019 1.1654 

15 19.0674 5.822710
-4

 

16 19.0679 1.3679 

17 20.4359 0.5878 

18 21.0236 0.0028 

19 21.0264 0.1855 

20 21.2119 0.6089 

21 21.8208 0.1792 

22 22 - 

Figure 4.2.1 is mean value chart for KMIW SRGM. The 

chart shows that the at failure numbers 15 and 18, failures 

are detected. 
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Figure 4.2.1 

4.2.3 LLD-II Control Mechanism 
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Table 4.2.3 gives successive differences of LLD-II.                         

Table 4.2.3 Successive differences of mean value 

function 

Failure Number 
Mean value 

function m(x) 

Successive 

differences of m(x) 

1 0.0507 0.1847 

2 0.2354 0.2748 

3 0.5103 6.0542 

4 6.5644 0.2845 

5 6.8489 1.0381 

6 7.8870 0.2309 

7 8.1180 0.6436 

8 8.7616 0.7025 

9 9.4641 1.1453 

10 10.6093 0.4234 

11 11.0327 0.7532 

12 11.7859 0.5569 

13 12.3427 0.8644 

14 13.2071 2.4862 

15 15.6933 0.0013 

16 15.6946 3.1790 

17 18.8736 1.3165 

18 20.1901 0.0059 

19 20.1961 0.3893 

20 20.5854 1.1341 

21 21.7195 0.2802 

22 21.9997 - 

Figure 4.2.3 is the Mean Value Chart from which it is 

found that LLD-II SRGM will detect the failures at 15 and 

18 failure numbers. 
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Figure 4.2.3 

V. CONCLUSION 

A set of software failure data is allowed to follow two 

distributions KMIW and LLD-II individually each. 

Estimation of parameters for the set of data is done using 

unconstrained optimization technique for KMIW and 

profile likelihood method for LLD-II. It is proved using 

AIC and BIC techniques that LLD-II is a better fit for the 

set of data when compared with KMIW. Then control 

mechanisms for KMIW and LLD-II are framed and the 

failure points are detected for the software failure data. 
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