
International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-04, Issue-06, Sep 2018

307 | IJREAMV04I0642074 DOI : 10.18231/2454-9150.2018.0735 © 2018, IJREAM All Rights Reserved.

Concurrent Trie Hashing Based Checksum Signature

Integrity Verification For Secured Cloud Data Storage
1
P. Jayasree ,

2
Dr. V. Saravanan

1
Assistant Professor,

2
Associate Professor, Hindusthan College of Arts and Science, Coimbatore,

Tamilnadu, India,

1
kandasamysree@gmail.com,

2
vsreesaran@gmail.com

ABSTRACT - Cloud computing is the computing model which affords user requested services through the

internet. Several users store their data on a cloud server for enhancing their data security. The data stored in the cloud

needs to be preserving integrity. However, the existing technique does not improve the data integrity rate and

minimize the complexity. In order to improve the data integrity rate with minimal space complexity, Concurrent Trie

Hashing based Checksum Signature Integrity Verification (CTH-CSIV) Method is developed. The CTH-CSIV method

comprises two steps namely Concurrent Trie Hashing and Checksum Signature Integrity Verification. Concurrent Trie

Hash stores the cloud user data to the server using a hash function with minimal space complexity. After that,

Checksum Signature for each data is created which is kept secretly by cloud user. After storing the cloud data in the

server, the Checksum Signature Integrity Verification is carried out for checking the data integrity. The checksum is a

small-sized datum obtained from a block of input data for detecting errors in the cloud storage. If the generated

checksum present data matches with the previously generated checksum, then the data does not alter or corrupted.

This helps to obtain high security on cloud data storage. Experimental evaluation of CTH-CSIV method is carried out

on factors such as space complexity, processing time and data integrity rate with respect to a number of cloud user

data. The experimental results reveal that the CTH-CSIV method attains 18 % data integrity rate and also reduces

space complexity of secured cloud data storage by 20 % than the other state –the-art-methods.

Keyword: Cloud computing, cloud data storage, data integrity, Concurrent Trie Hash, Checksum Signature Integrity Verification.

I. INTRODUCTION

Cloud Computing offers the various applications in terms

of services through the web. During the service

provisioning, security plays a major role for protecting the

cloud user data. In cloud computing, the significant concern

to be addressed to guarantee integrity. The integrity offers

the assurance that the data is high quality and unmodified

over the entire process. After storing the data on the server,

the cloud user trusts their data in a secured manner. But

sometimes the user‟s data may be altered or removed. So,

the major concern is the data integrity checking at untrusted

servers. In order to address the integrity problem, several

methods have been introduced in this section.

Identity-based Remote Data Integrity Checking (ID-based-

RDIC) scheme was presented in [1] for secure cloud data

storage. The data integrity was not achieved effectively

with less complexity. An identity-based proxy-oriented data

uploading and remote data integrity checking (IDPUIC)

scheme [2] was introduced in public cloud. Depending on

client authorization, IDPUIC scheme recognizes private

remote data integrity checking, delegated remote data

integrity checking and public remote data integrity

examination. But, it failed to use a hash function for

integrity checking. A Cryptographic Mechanism was

developed in [3] for data security and privacy preservation

in cloud storage. The mechanism does not consider the

processing complexity as an essential requirement for

security in cloud storage.

An attribute-based cloud storage system was introduced in

[4] for preserving the data privacy from storage servers. It

takes high computational time with less data privacy level.

A Trusted Third Party with Symmetric Encryption (TTPSE)

scheme was designed in [5] for secure cloud storage. The

scheme failed to use some kind of hashing mechanism

through which searching of encrypted data in the cloud

becomes difficult.

Dynamic Merkle hash B+ tree (DMBHT) was developed in

[6] for data storage with minimum time consumption and

for verification at server and client side. But it failed to

improve reliability and scalability during the integrity

verification. A fine-grained and heterogeneous proxy re-

encryption (FH-PRE) system was introduced in [7] to

improve the confidentiality of cloud data. By using the FH-

PRE system in the cloud, cloud data was stored in cloud

server with high security and shared in a fine-grained

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-04, Issue-06, Sep 2018

308 | IJREAMV04I0642074 DOI : 10.18231/2454-9150.2018.0735 © 2018, IJREAM All Rights Reserved.

manner. Though the system improves the confidentiality,

the integrity of the cloud data remained unaddressed.

To evade cloud storage servers from the data modification,

a threshold encryption method combined with a protected

decentralized erasure code was developed in [8]. The

method obtains high data robustness, confidentiality and

integrity. The complexity involved during the data storage

was not minimized. An identity-based data storage and

integrity verification protocol was introduced in [9]

untrusted cloud environment. The security and

performance analysis of this protocol does not improve.

A lattice and Bloom filter methods were introduced in [10]

for reducing the consumption of cloud storage space and

dynamic integrity. The method does not improve the cloud

storage platform since it consumes more memory

consumption.

The certain issues identified from the above said reviews

such as high time and space complexity, lack of integrity

and security, reliability, failed to use a hash function for

improving the data security and so on. In order to address

the above-said issues, an efficient method called

Concurrent Trie Hashing based Checksum Signature

Integrity Verification (CTH-CSIV) is developed.

The contributions of this paper are summarized as follows,

Concurrent Trie Hashing based Checksum Signature

Integrity Verification (CTH-CSIV) method is introduced to

improve the data integrity rate and minimize space

complexity as well as processing time. For achieving these

contributions, two processes are carried out such as secured

cloud storage and data integrity verification. At first, the

cloud user stores the data on cloud server using hash value

for improving the storage security. The checksum signature

is generated for each data. Concurrent Trie Hashing is a tree

structure where each node is labeled with the key-value pair

for identifying the node location in the tree. The two

dynamic operations insertion and removal is exploited for

adding and removing the data from the tree. This helps to

minimize complexity and processing time.

Secondly, the cloud user generates the checksum signature

for the stored data. Then the cloud user checking the data

integrity by matching the newly generated checksum and

previously generated checksum. If two checksums are

matched, then the data is not modified. This helps to

improve data integrity rate.

The paper is ordered as follows. In Section 2, we review the

related works. In Section 3, the proposed CTH-CSIV

Method is described with neat diagram. Experimental

evaluation of proposed CTH-CSIV Method and state-of-art

methods are described with the dataset in section 4. Report

on the experimental performance and implementation

results in section 5. Section 6 concludes the paper.

II. RELATED WORKS

An integrality verification of completeness and zero-

knowledge property (IVCZKP) method was introduced in

[11] for integrity verification. But, Hash-based secured

storage was not performed to minimize the space

complexity. An encrypted Bloom filter was developed in

[12] for data integrity verification by identifying the data

corruption. The strategy does not guarantee the data

completeness and freshness. A privacy-preserving remote

data integrity-checking protocol was introduced in [13] for

enhancing security of cloud data storage. The protocol does

not lessen the processing time.

Data provenance method was developed in [14] for

validating the data integrity by a cloud user. But, the

hashing process was not carried out for improving the

security. A self-adaption fault-tolerant mechanism based on

access frequency (SFMAF) was introduced in [15] for

improving the secured cloud storage. The performance of

the integrity was not carried out to improve the storage

capability. An effective and protected dynamic auditing

protocol was presented [16] for data storage in cloud

computing. But, the data integrity rate was not improved.

A storage enforcing remote verification approach was

designed in [17] that utilize polynomial hash for cloud

storage verification. The scheme does not obtain high

storage security. Data partitioning technique was introduced

in [18] to increase cloud data storage security. But, the

technique failed to provide the high security for large data.

An effective and secure public verification of data integrity

approach was introduced in [19]. The approach does not

optimize the verification overhead. A public auditing

protocol was designed in [20] for providing the security on

cloud storage and verifying the data integrity. But it has

high computational complexity in integrity verification.

The above-said issues are overcome by introducing a novel

integrity verification technique.

III. CONCURRENT TRIE HASHING BASED

CHECKSUM SIGNATURE INTEGRITY

VERIFICATION

A cloud storage system provides the reliable storage service

to the number of cloud users with minimum time. A cloud

user stores their data in a cloud storage server, and accesses

them. Because, the user no longer maintaining his data in

the local repository with high security. Hence, a security for

cloud storage is major issues in cloud computing. The

security of the stored files is enhanced by data integrity

verification. Data Integrity is the accuracy of the stored data

without any alteration. It guarantees the data can only

access or altered by the authorized user. In this paper,

integrity verification method is developed to improve user

data robustness against the malicious user. The concurrent

trie hashing based checksum signature integrity verification

(CTH-CSIV) method is introduced to improve the data

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-04, Issue-06, Sep 2018

309 | IJREAMV04I0642074 DOI : 10.18231/2454-9150.2018.0735 © 2018, IJREAM All Rights Reserved.

integrity. A concurrent hash-trie is an implementation of a

hash array mapped trie to add and remove the data from the

cloud. Then the data integrity is verified through checksum

signature verification. The architecture diagram of CTH-

CSIV Method is illustrated in figure 1.

 Figure 1 Architecture diagram of CTH-CSIV Method

As shown in figure 1, architecture diagram of CTH-CSIV

Method is described to obtain high integrity on stored data

in a cloud server. Let us consider the number of cloud users

 sends their data to

store on a cloud server. The hash value is generated for

each data and generates the checksum for that hash value.

Then the data are stored in a cloud server. Whenever a

cloud user verifies the integrity of their stored data in the

cloud server, the checksum is recomputed for that hash

value. Then the cloud user verifies the integrity by

matching the newly computed checksum and already stored

checksum at the time of data storage. If two checksum

values are matched, then the cloud data does not altered by

any malicious users. Otherwise, the integrity is not

achieved. By this way, integrity is enhanced. The integrity

verification process is explained in following sections.

3.1 Concurrent Trie Hashing based cloud data storage

The first step in the CTH-CSIV Method is to store the user

data on the cloud server. Cloud storage provides the

services to users for storing their data to remote servers.

The Concurrent Trie Hashing technique is employed for

storing the cloud user data on the server with the help of

hash function. Concurrent Trie Hashing is the

implementation of a hash array mapped trie to perform the

concurrent insert and remove operations for cloud user data

in the tree. This hashing technique is memory efficient than

the other hash-based storage system. A trie is a digital tree

exploited to upload a dynamic set of data. A Concurrent

Trie includes number of advantages over binary search

trees. The advantage of Trie is memory efficient thus

minimizes the time and space complexity. The hash array

mapped trie utilizes the total 32-bit space for hash values.

The Concurrent Trie Hashing technique is an ordered tree

structure, which is used mostly for storing the data in a

compact way. A tree data structure includes a collection of

nodes such as root node, branch node and leaf nodes where

each node consisting a value. The root node is the top node

in a tree. A branch node is a node which contains at least

one children and the branch is also identified as an external

node. A leaf node has no children.

To preserve the storage space of cloud server, every node in

a tree contains 32 bits bitmap where each bit illustrates the

occurrence of a branch node followed by an array of length

equal to the Hamming weight of the bitmap. The bitmap is

a bit array data structure that efficiently stores bits.

Hamming weight is a number of symbols that are dissimilar

from the zero-symbol of the alphabet exploited. The

structure of concurrent trie is shown in figure 2.

Figure 2 structure of Concurrent Trie

As shown in figure 2, Concurrent Trie based data storage is

described and it has data and array blocks. Each internal

node is an element array. The nodes in the tree stores key-

value pairs. A key-value pair used in the Concurrent Trie

includes a set of linked data items such as a key and the

value. A key is a unique identifier for a number of data and

the value is a pointer to identify the location of that data in

a bit array. The main advantage of key-value pair is to

identify the user where the data is stored in the cloud server

resulting minimizing the time complexity in the data

verification process. The above figure shows the root node

of the tree has an empty string.

A Concurrent Trie data structure consist number of

nodes and it is mathematically expressed as,

 * () (1)

From (1), where represents the Hash Trie, denotes the

number of nodes in tree and () represents a hash

function of data . Subsequently, every node has two

different sub-trees, generally represented as left and right.

 (

) (2)

From (2),
 and

 indicates left and right nodes

respectively. Every node uses an array to store the data with

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-04, Issue-06, Sep 2018

310 | IJREAMV04I0642074 DOI : 10.18231/2454-9150.2018.0735 © 2018, IJREAM All Rights Reserved.

hash function. Concurrent Trie Hashing technique stores

the various user data in bits of the

array using hash functions. Then, the hash value of the user

data is denoted as .

Figure 3 cloud user data storage

Figure 3 shows the Concurrent Trie used for generating the

hash value for each data and stores the data in array blocks.

Before the data storage, the cloud user creates checksum for

each hash value. Checksums are small-sized data attained

from a block of digital data for checking the entire data

integrity. The checksum generation process creating

checksum and store for future reference. It is done with two

processes. First, the input data is reduced to a small string

termed a checksum. Secondly, the checksum is stored in a

database for integrity verification. The generated checksum

is only known to the cloud user. The process of checksum

generation is shown in figure 4.

Figure 4 Flow process of checksum generation

As shown in figure 4, the flow process of checksum

generation is defined to create the reduced string from the

original data (i.e. data with a hash value). These generated

strings are known by the cloud user but it is not stored in

the cloud server.

 () (3)

From (3), denotes a created checksum for the hash value

of data (). The data with hash value is stored in a cloud

server using Concurrent Trie. The tree is used to increases

the data storage process with minimum memory usage

hence it reduces the space complexity. Concurrent Trie

array is a data structure includes a number of elements (i.e.

cloud user data). Each data is stored by one array index.

The concurrent trie performs two operations namely insert

and remove at the same time. Whenever, a cloud user

wants to insert the data into a tree, the server receives user

data and it performs the update operation. The insertion

uses the key to find an empty entry. If an empty entry is

determined, new leaf nodes are generated in the tree. Then

the data is stored in leaf node which resulting extends the

hash trie with the new level. Therefore, the insertion

operation extends the concurrent trie with additional level.

The remove operation in concurrent trie is another major

operation which ensures that the unwanted memory is freed

and that the trie is kept compact. Whenever the cloud user

wants to remove the data from the tree, the removal

operation is performed. The remove operation eradicates

need for the additional level of the trie. During the removal

operation, the data which is stored in the leaf node is

removed from the tree. Then the leaf node is connecting to

the particular root node. As a result, the concurrent trie

hashing performs both concurrent insertion operations as

well as removes operations to improve the storage

efficiency in a cloud server.

3.2 Checksum signature integrity verification

The cloud user wants to verify their data which hasn't been

modified by untrusted parties. The cloud user data

corrupted in various manners such as faulty storage media,

errors in transmission, and write errors during copying or

moving, software bugs, and so on. Hence, the verification is

an essential process to improve the security of cloud data

storage. The integrity is verified by the cloud user using

checksum signature. Before the verification process, the

cloud user again generated the checksum signature for

stored data.

 () (4)

From (4), denotes a newly generated checksum for the

stored data () if the currently generated checksum

() for current data matches with the already generated

checksum , there is high probability that data is not

accidentally altered or corrupted. If the two checksums does

not match, then the process returns a verification error.

Figure 5 flow process of integrity verification

Figure 5 illustrates a flow process of integrity verification

through the checksum value. The cloud user verifies the

data integrity with the two checksum value. It is expressed

as follows,

 {

 (5)

From (5), denotes a cloud user. Based on the above

results, the data integrity is verified to improve the security

on cloud data storage. The algorithmic description of

Integrity

verification

by cloud

user

Integrity ok

or not

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-04, Issue-06, Sep 2018

311 | IJREAMV04I0642074 DOI : 10.18231/2454-9150.2018.0735 © 2018, IJREAM All Rights Reserved.

Concurrent Trie Hashing based Checksum Signature

Integrity Verification is explained as follows,

Input: No. of Cloud user Data

Output: Improve data integrity and Reduce space

complexity

1: Begin

2: For each cloud user data

3: Generate hash function ()

4: Generate checksum

5: Store () to bit array in cloud server

\\ Data Insertion operation

6. If insert to tree then

7. create new leaf node

8. (())

9. end if

\\ Data removal Operation

10. If remove from tree then

11. Removes unwanted leaf node from the tree

12. (())

13. Connect the subtree to particular root node

14. end if

\\ Checksum integrity verification

15. For each ()

16. Cloud user generates checksum

17. then

18. not altered or modified

19. else

20. is corrupted

21. end if

22. end for

23:End

Algorithm 1 Concurrent Trie Hashing based Checksum

Signature Integrity Verification

Algorithm 1 clearly describes the concurrent trie hashing

based checksum signature integrity verification for

improving the integrity of cloud storage and minimizing

space complexity. The cloud user sends the request to store

their data to the cloud server. The hash value for each user

data is generated. Then the checksum signature is generated

for each hashed data. This checksum is only known to the

cloud user for verifying the data integrity. Then the hashed

data is stored in the tree using bit array. Followed by, the

insertion and removal operation is executed to add new data

in a tree and remove the data from the tree. During the

insertion operation, the cloud server creates a new leaf node

with the key-value pair. Then the new data is inserted into

the created leaf node. In removal operation, the particular

leaf node and their key-value pair are removed. Then the

subtree is connected to the particular root node. After

storing the data into a tree, the integrity verification is

carried out using checksum value. Whenever the cloud user

verifies the data integrity, the user again regenerated the

checksum for hashed data. Then the newly generated

checksum is matched with a previously computed

checksum. If the two checksum values are correctly

matched, then the stored data is not altered. If the

checksums do not match, then the stored data is corrupted.

As a result, CTH-CSIV method enhances the data storage

with minimum space complexity and also improves the

integrity.

IV. EXPERIMENTAL SETTINGS

Experimental evaluation of CTH-CSIV Method and

existing ID-based RDIC scheme [1] and IDentity-base

Proxy-oriented data uploading and remote data Integrity

Checking (IDPUIC) scheme[2] are implemented using Java

language with CloudSim simulator environment. The

Amazon EC2 dataset is used for implementation of

proposed CTH-CSIV method and existing methods.

Amazon EC2 dataset is a cloud computing web service

provided by Amazon Web Services (AWS). Amazon EC2

dataset provides data storage using CloudSim simulator

with the available resources. After storing the data to a

cloud server, the cloud user verifies the integrity of that

data. Amazon EC2 dataset information is taken from [21].

The performance evaluation of CTH-CSIV Method is

compared with existing methods such as RDIC scheme [1]

and IDPUIC scheme [2] with the certain parameters such as

space complexity, processing time and data integrity rate

with respect to a number of cloud user data.

V. RESULT ANALYSIS

Result analysis of the CTH-CSIV method is discussed in

this section. The experimental results of proposed and

existing methods are compared using parameters such as

space complexity, processing time, and data integrity rate

with aid of tables and graph values.

5.1 Impact of space complexity

Space complexity is defined as an amount of storage space

required to store the cloud user data in the tree. The space

complexity is calculated using a mathematical formula,

 () (6)

From (6), denotes a space complexity, represents a

number of cloud user data. It is measured in terms of mega

bytes (MB).

Sample mathematical calculation for space complexity

Proposed CTH-CSIV: number of cloud user data is 10

and space utilized for storing single cloud user data is

4.6MB, then

ID-based RDIC scheme: number of cloud user data is 10

and space for employed storing single cloud user data is 5.2

MB, then

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-04, Issue-06, Sep 2018

312 | IJREAMV04I0642074 DOI : 10.18231/2454-9150.2018.0735 © 2018, IJREAM All Rights Reserved.

IDPUIC scheme: number of cloud user data is 10 and

space taken for storing single cloud user data is 5.8MB,

then

Table 1 Tabulation for Space complexity

Table 1 describes the experimental results of space

complexity with respect to a number of cloud user data. For

the experimental consideration, the number of cloud user

data is taken from 10 to 100. The performance of space

complexity is analyzed with three different methods of

CTH-CSIV, ID-based RDIC scheme [1] and IDPUIC

scheme [2]. From the table value, the space complexity

using CTH-CSIV method is lesser when compared to

existing methods. Based on the above results, the graph is

drawn in below figure 6.

Figure 6 Performance results of Space complexity

Figure 6 depicts the performance results of space

complexity versus a number of cloud user data. The cloud

user stores their data in the cloud server in a secured

manner. The secured cloud storage is achieved by verifying

the data integrity. Experimental performances of three

different methods are illustrated in Figure 6. The number of

user data is taken as input for evaluating the space

complexity involved during secured cloud storage. The

experimental results reported that the CTH-CSIV method

utilizes the minimum storage space for storing the multiple

user data in a cloud server. This significant improvement of

CTH-CSIV method is achieved by using Concurrent Trie

Hashing technique. The Concurrent Trie is used for

efficient data storage. Concurrent Trie constructs the tree

with a number of nodes such as root node, branch node and

leaf node. Each node has a key-value pair for identifying

the location of data which is stored. Concurrent Trie stores

the hash value of that data instead of storing the original

data. Since the original data consumes more space in the

cloud storage. In order to overcome this problem, CTH-

CSIV method initially generates the hash value for each

user data. Then the hashed data are stored in the tree using

bit array. In addition, the unwanted data are removed from

the tree that minimizes the storage space. As a result, CTH-

CSIV method utilizes the less space for storing the multiple

user data on a cloud server.

Let us consider the ten different runs to perform the

experimental evaluation. After performing the ten runs, the

proposed values are compared with existing methods. Then

the average is taken for the comparison results. The average

value shows that the CTH-CSIV method effectively

minimizes the space complexity of cloud data storage by

15% and 25% when compared to existing ID-based RDIC

scheme [1] and IDPUIC scheme [2] respectively.

5.2 Impact of processing time

Processing time is defined as an amount of time required

for storing the user data in a cloud server. The formula for

calculating the processing time is expressed as follows,

 () (7)

From (7), denotes a processing time, denotes a

number of cloud user data. is measured in terms of

milliseconds (ms).

Sample mathematical calculation for processing time

Proposed CTH-CSIV: Number of cloud user data is 10

and processing time required for single cloud user data is

1.8 ms, then

ID-based RDIC scheme: Number of cloud user data is 10

and processing time taken for single cloud user data is

2.2ms, then

IDPUIC scheme: No. of cloud user data is 10 and

processing time utilized for single cloud user data is 2.6ms,

then

Table 2 Tabulation for processing time

IDPUIC

scheme

processing time (ms)

CTH-CSIV ID-based RDIC

scheme

IDPUIC scheme

10 18 22 26

20 24 30 34

30 30 36 42

40 32 44 52

50 40 45 55

60 42 54 66

70 46 50 63

80 44 58 66

90 52 64 72

100 61 68 76

Table 2 shows the experimental results of processing time

for storing the user data to the cloud server using three

different methods namely CTH-CSIV, ID-based RDIC

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-04, Issue-06, Sep 2018

313 | IJREAMV04I0642074 DOI : 10.18231/2454-9150.2018.0735 © 2018, IJREAM All Rights Reserved.

scheme [1] and IDPUIC scheme [2]. The table value clearly

shows that the processing time using proposed CTH-CSIV

method is minimized when compared to other existing ID-

based RDIC scheme [1] and IDPUIC scheme [2]. The

graphical results of processing time are shown in figure 7.

Figure 7 Performance results of processing time

Figure 7 illustrates the performance results of processing

time with respect to number of cloud user data. The

number of cloud user data is taken for experimental

evaluation is varied from 10 to 100. The input data is taken

in „X‟ direction whereas the performance results of

processing time are obtained in „Y‟ direction. In figure 7,

three different colors of the curve indicate the performance

results of three different methods of CTH-CSIV, ID-based

RDIC scheme [1] and IDPUIC scheme [2]. The processing

time using proposed CTH-CSIV method is minimized as

compared to other existing methods. This significant

improvement is achieved by applying the concurrent Trie

hashing-based data storage. Concurrent Trie hashing stores

the number of user data in the cloud server by generating

the hash value. The hash values of the data are stored in a

bit array. Besides, with the help of hash function, CTH-

CSIV method efficiently stores the user requested data in a

tree. As a result, CTH-CSIV method securely stores the

multiple user data in a cloud server with minimum time.

The average results show that the CTH-CSIV method

effectively minimizes the processing time of secured cloud

data storage by 18% and 30% when compared to existing

ID-based RDIC scheme [1] and IDPUIC scheme [2]

respectively.

1.3 Impact of data integrity rate

Data integrity rate is measured as the ratio of a number of

cloud user data is stored without any modifications to the

total number of cloud user data. The data integrity rate is

evaluated using following mathematical formula,

(8)

From equation (8), denotes a data security rate and

„ denotes number of cloud user data. Data integrity rate

is measured in terms of percentage (%).

Sample mathematical calculation for data integrity rate

Proposed CTH-CSIV: Number of cloud user data

obtained without any modification is 8, the total number of

cloud user data is 10, then

ID-based RDIC scheme: Number of cloud user data

received without any variation is 7, total number of cloud

user data is 10, then

IDPUIC scheme: Number of cloud user data acquired

without any changes is 6, total number of cloud user data is

10, then

Table 3 Tabulation for data integrity rate

No. of

Cloud user

Data

Data integrity rate (%)

CTH-CSIV ID-based RDIC

scheme

IDPUIC

scheme

10 80 70 60

20 90 80 65

30 83 67 57

40 93 83 73

50 86 78 68

60 93 83 75

70 96 89 84

80 94 90 83

90 92 88 81

100 95 89 85

Table 3 shows the performance results of data integrity rate

using three different methods namely CTH-CSIV, ID-based

RDIC scheme [1] and IDPUIC scheme [2]. After the cloud

storage, the integrity of the data is verified. The

experimental result of data integrity rate is improved using

CTH-CSIV method when compared to existing methods.

Let us consider the 10 user data for storing the cloud server,

8 user data are obtained without any modification. But the

existing ID-based RDIC scheme [1] and IDPUIC scheme

[2] obtained 7 and 6 data without any variations. As a

result, data integrity rate of CTH-CSIV method is high

when compared to the existing method. The comparison

results of three different methods are illustrated in figure 8.

Figure 8 Performance results of data integrity rate

Figure 8 describes the experimental results of data integrity

rate with respect to a number of cloud user data. The

performance result of data integrity rate is compared with

three methods CTH-CSIV, ID-based RDIC scheme [1] and

IDPUIC scheme [2]. For measuring the data integrity rate,

the numbers of cloud user data are taken as input and it

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-04, Issue-06, Sep 2018

314 | IJREAMV04I0642074 DOI : 10.18231/2454-9150.2018.0735 © 2018, IJREAM All Rights Reserved.

varied from 10 to 100. The integrity rate of CTH-CSIV

method is comparatively improved. This higher integrity of

CTH-CSIV method is achieved through the integrity

verification.

Initially, the cloud user generates the hash value for each

data. After generating the hash value, the cloud user

generates the checksum. The checksum of hashed data is

kept secret by the cloud user. Followed by, the data with the

hash value are stored in the cloud server using concurrent

trie hashing process. Whenever the cloud user checks their

data integrity, then the checksum is again generated for that

data. The cloud user performs a verification process to

identify whether the data is modified or not. The newly

generated checksum signature is accurately matched with

the checksum which is already generated. As a result, user

data are not altered and obtained high integrity. The above

discussion clearly shows that the CTH-CSIV method

improves the data integrity in a cloud environment. After

performing the ten runs, the data integrity rate of the CTH-

CSIV method is significantly improved by 11% and 25%

when compared to existing ID-based RDIC scheme [1] and

IDPUIC scheme [2] respectively.

VI. CONCLUSION

An efficient CTH-CSIV method is designed with goal of

improving the data integrity and minimizing the space

complexity of secured cloud storage. The goal of CTH-

CSIV method is achieved with help of concurrent trie

hashing tree structure and checksum signature integrity

verification. With support of concurrent trie hashing tree

structure, CTH-CSIV method stores user data with minimal

amount of space utilization by constructing a hash value as

compared to existing works. Besides with the algorithmic

processes of concurrent trie hashing, CTH-CSIV method

securely stores the multiple user data in a cloud server with

minimal processing time as compared to conventional

works. Furthermore with aid of checksum signatures, CTH-

CSIV method enhances the verification performance of data

integrity in cloud environment as compared existing works.

Thus, CTH-CSIV method attains higher security, integrity,

confidentiality level on cloud data storage. Experimental

evaluation of proposed CTH-CSIV method and existing

schemes are carried out using Amazon EC2 dataset. The

experiential results of CTH-CSIV method improves data

integrity rate by 18 % and also minimizes space complexity

of secured cloud data storage by 20 % as compared to state-

of-the-art works.

REFERENCES

[1] Yong Yu, Man Ho Au, Giuseppe Ateniese, Xinyi

Huang, Willy Susilo, Yuanshun Dai, and Geyong Min,

“Identity-Based Remote Data Integrity Checking With

Perfect Data Privacy Preserving for Cloud Storage”, IEEE

Transactions on Information Forensics and Security,

Volume 12, Issue 4, April 2017, Pages 767-778

[2] Huaqun Wang, Debiao He and Shaohua Tang,

“Identity-Based Proxy-Oriented Data Uploading and

Remote Data Integrity Checking in Public Cloud”, IEEE

Transactions on Information Forensics and Security,

Volume 11, Issue 6, June 2016, Pages 1165 – 1176

[3] NesrineKaaniche and MarylineLaurent, “Data security

and privacy preservation in cloud storage environments

based on cryptographic mechanisms”, Computer

Communications, Elsevier, Volume 111, 2017, Pages 120-

141

[4] HuiCuia, Robert H.Deng, Yingjiu Li, “Attribute-based

cloud storage with secure provenance over encrypted data”,

Future Generation Computer Systems, Elsevier, Volume

79, Part 2, 2018, Pages 461-472

[5] Shreeraghav Kulkarni and Sujata Terdal, “Ttpse-

Trusted Third Party With Symmetric Encryption Towards

Secured Cloud Storage”, International Journal of Computer

Sciences and Engineering, Volume 5, Issue 5, 2017, Pages

47-51

[6] Dharavath Ramesh, Rahul Mishra, Damodar Reddy

Edla, “Secure Data Storage in Cloud: An e-Stream Cipher-

Based Secure and Dynamic Updation Policy”, Arabian

Journal for Science and Engineering, Springer, Volume 42,

Issue 2, 2017, Pages 873–883

[7] Peng Xu, Hongwu Chen, Deqing Zou, Hai Jin, “Fine-

grained and heterogeneous proxy re-encryption for secure

cloud storage”, Chinese Science Bulletin, Springer,

Volume 59, Issue 32, 2014, Pages 4201–4209

[8] Chuan Yao, Li Xu, Xinyi Huang, Joseph K. Liu, “A

secure remote data integrity checking cloud storage system

from threshold encryption”, Journal of Ambient

Intelligence and Humanized Computing, Springer, Volume

5, Issue 6, 2014, Pages 857–865

[9] Lingwei Song, Dawei Zhao, Xuebing Chen, Chenlei

Cao, and Xinxin Niu, “A Secure and Effective Anonymous

Integrity Checking Protocol for Data Storage in

Multicloud”, Mathematical Problems in Engineering,

Hindawi Publishing Corporation, Volume 2015, Article

December 2014, Pages 1-8

[10] Yunxue Yan, Lei Wu ,Ge Gao, Hao Wang, Wenyu

Xu, “A dynamic integrity verification scheme of cloud

storage data based on lattice and Bloom filter”, Journal of

Information Security and Applications, Elsevier, Volume

39, 2018, Pages 10-18

[11] Laicheng Cao, Wenwen He, Yufei Liu, Xian Guo, Tao

Feng, “An integrity verification scheme of completeness

and zero‐knowledge for multi‐Cloud storage”, International

journal of communication system, wiley online library,

Volume 30, Issue 16 , 2017 , Pages 1-10

[12] Luca Ferretti, Mirco Marchetti, Mauro Andreolini,

Michele Colajanni , “A symmetric cryptographic scheme

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-04, Issue-06, Sep 2018

315 | IJREAMV04I0642074 DOI : 10.18231/2454-9150.2018.0735 © 2018, IJREAM All Rights Reserved.

for data integrity verification in cloud databases”,

Information Sciences, Elsevier Volume 422, 2018, Pages

497–515

 [13] Yong Yu, Man Ho Au, Yi Mu, Shaohua Tang, Jian

Ren, Willy Susilo, Liju Dong, “Enhanced privacy of a

remote data integrity-checking protocol for secure cloud

storage”, International Journal of Information Security,

Springer, Volume 14, Issue 4, 2015, Pages 307–318

[14] Muhammad Imran , Helmut Hlavacs , Inam Ul Haq,

Bilal Jan, Fakhri Alam Khan, Awais Ahmad, “Provenance

based data integrity checking and verification in cloud

environments”, PLoS ONE, Volume 12, Issue 5, 2017,

Pages 1-19

[15] Liu Hong qing and Huang Yan, “Fault-tolerant

Mechanism for Cloud Storage System with Integrity

Verification Mechanism”, International Journal of Security

and Its Applications, Volume 10, Issue 4, 2016, Pages 155-

166

[16] Kan Yang and Xiaohua Jia, “An Efficient and Secure

Dynamic Auditing Protocol for Data Storage in Cloud

Computing”, IEEE Transactions on Parallel and Distributed

Systems ,Volume 24, Issue 9, 2013, Pages 1717 – 1726

[17] Mohammad Iftekhar Husain, Steven Y.Ko, Steve

Uurtamo, Atri Rudra, Ramalingam Sridhar, “Bidirectional

data verification for cloud storage”, Journal of Network and

Computer Applications, Elsevier, Volume 45, 2014, Pages

96-107

[18] Swapnil V.Khedkar , A.D.Gawande, “Data

Partitioning Technique to Improve Cloud Data Storage

Security”, International Journal of Computer Science and

Information Technologies, Volume 5, Issue 3, 2014, Pages

3347-3350,

[19] Yuan Zhang , Chunxiang Xu ,Hongwei Li , Xiaohui

Liang, “Cryptographic Public Verification of Data Integrity

for Cloud Storage Systems”, IEEE Cloud Computing

,Volume 3, Issue 5, 2016, Pages 44 – 52

[20] Hongwei Liu, Peng Zhang, Jun Liu, “Public Data

Integrity Verification for Secure Cloud Storage”, Journal of

Networks, Volume 8, Issue 2, 2013, Pages 373-380

[21] Amazon EC2 dataset: http://www.ec2instances.info/

http://www.ec2instances.info/

