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Abstract  Evolutionary Computation is becoming the most proven method for Global optimization of complex 

problems. Even with the developments in the computational powers of computers, solving the complex multi-objective 

problems requires very long time. There is always a need for development of robust and computationally efficient 

algorithms for engineering  problems. Multi-Objective Optimization (MOO) is a class, which deals with multiple 

conflicting objectives simultaneously. MOO problems with conflicting objectives will have a set of solutions 

(representing trade-offs among the objectives), which are called pareto optimal solutions, of which none can be said to 

be better than the others with respect to all objectives. Usually the decision makers want a small set of solutions to 

make a choice among them. The challenge is to provide them with a set, as small as possible, that represents the whole 

set of choices, but to compute this set in an efficient way. 

The efficiency of evolutionary algorithm can be increased by using subpopulations. This approach is used in this work 

and further extended by using two different encoding, real and binary for sub populations.  Binary and real coded 

subpopulations exchange information through Aliens going from binary population to real population. This concept we 

present as Parallel Universe Alien Evolution; which we have implemented for Genetic Algorithm framework. This 

approach will improve robust ness of GA and maintain the diversity of population. The proposed algorithm is tested 

using nine benchmark multi-objective test problems and result show that the convergence and diversity of the final 

populations increase consistently.  

Keywords —  Alien GA, Evolutionary Algorithms, Genetic Algorithm, Engineering Optimization, Multi-Objective 

Optimization, Multi-Population GA.  

 

I. INTRODUCTION 

Efficiency in manufacturing and engineering activities is a 

result of optimization of design and operations. In particular 

for the efficiency of rubber processing, a scope still exists 

for optimizing the current industrial operations with the 

ever changing economic, energy and environmental 

landscape. Most engineering optimization problems are 

complex in nature and multi objective. Multi-objective 

optimization (MOO) is a class which deals with multiple 

and conflicting objectives simultaneously. When objectives 

are conflicting, achieving the optimum for one objective 

requires some compromise on one or more other objectives. 

Some examples of sets of conflicting objectives are: capital 

cost and operating cost, selectivity and conversion, quality 

and conversion, profit and environmental impact, and profit 

and safety cost. The relevance and importance of MOO in 

rubber technology is increasing due to increasing 

complexities in the design and operation of processes. The 

MOO implementation is being motivated by the availability 

of new and effective methods for solving multi-objective 

problems as well as increased computational capabilities.  
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MOO problems with conflicting objectives will have a 

set of solutions (representing trade-offs among the 

objectives), which are called Pareto optimal solutions (non-

inferior solutions or effective solution), of which none can 

be said to be better than the others with respect to all 

objectives[1]. There are possibilities of multiple solutions in 

the Pareto front and all are equally important. Hence it is 

important to find as many Pareto-optimal solutions as 

possible in a problem. There are two main goals in a MOO, 

(a) to find a set of solutions as close as possible to the true 

optimal Pareto front and (b) to find a set of solutions as 

diverse as possible. First goal is common for any 

optimization problem whereas second goal is specific to 

multi-objective optimization problem.  

Bhaskar et al. presented the background of MOO, 

different methods and their applications in chemical 

engineering until the year 2000.[2] He shows that there 

were around 30 journal publications covering different 

areas in chemical engineering on applications of MOO 

before year 2000. MOO applications in polymerization are 

included in the review of genetic algorithm applications in 

polymer science and engineering by Kasat et al. (2003) [3]. 

Applications of non-dominated sorting genetic algorithm 

(NSGA), NSGA-II and its jumping gene adaptations in 

chemical reaction engineering were reviewed by Nandasana 

et al. (2003) [4].  

The first implementation of a real multi-objective 

evolutionary algorithm (vector-evaluated GA or VEGA) 

was suggested by David Schaffer in the year 1984 

(Schaffer, 1984) [5] . Schaffer modified the simple genetic 

algorithm (with selection, crossover, and mutation) by 

performing independent selection cycles according to each 

objective. No significant study was performed for almost a 

decade after the pioneering work of Schaffer till a new non-

dominated sorting procedure suggested by David Goldberg 

(1989) [6]. Goldberg proposed to use the concept of 

domination to assign more copies to non-dominated 

individuals in a population. Since diversity is another 

concern, he also suggested the use of a niching strategy 

among solutions of a non-dominated class. Getting this 

clue, researchers developed different versions of multi-

objective evolutionary algorithms. Basically, these 

algorithms differ in the way fitness is assigned to each 

individual. Srinivas and Deb (1994) developed a non-

dominated sorting GA (NSGA) [7], which is similar to the 

MOGA. NSGA differs from MOGA in two ways: fitness 

assignment and the way niching are performed.  

Elitism was not considered in the early MOEAs. After 

the publication of the SPEA paper, most researchers in the 

field started to incorporate external populations in their 

MOEAs as their elitist mechanism. In 2001, a revised 

version of SPEA (called SPEA2) was introduced. SPEA2 

has three main differences with respect to its predecessor  

(Zitzler et al., 2001 [8]): (1) it incorporates a fine-grained 

fitness assignment strategy which takes into account for 

each individual, the number of individuals that dominate it 

and the number of individuals by which it is dominated; (2) 

it uses a nearest neighbour density estimation technique 

which guides the search more efficiently, and (3) it has an 

enhanced archive truncation method that guarantees the 

preservation of boundary solutions.  

The Non-dominated Sorting Genetic Algorithm II 

(NSGA-II) was introduced as an upgrade of NSGA 

(Srinivas and Deb, 1994) [7], although it is easier to 

identify their differences than their similarities (Deb et al., 

2002)[9].  In NSGA-II, for each solution one has to 

determine how many solutions dominate it and the set of 

solutions which it dominates. NSGA-II estimates the 

density of solutions surrounding a particular solution in the 

population by computing the average distance of two points 

on either side of this solution along each of the objectives 

of the problem. This value is the so-called crowding 

distance. During selection, NSGA-II uses a crowded-

comparison operator which takes into consideration both 

the non-domination rank of an individual in the population 

and its crowding. NSGA-II does not implement an elitist 

mechanism based on an external archive. Instead, the elitist 

mechanism of NSGA-II consists of combining the best 

parents with the best off springs obtained. NSGA-II is 

computationally much more efficient than its predecessor, 

and its performance is so good that it has gained a lot of 

popularity in the last few years, becoming a benchmark 

against which other MOEAs are often compared.  

Dipama et al 2010 uses a grid based multi-objective 

evolutionary algorithm for the optimization of power 

plants[10]. His algorithm uses new techniques to sustain 

convergence towards Pareto’s front as well as population 

diversity as compared to other conventional algorithm.  His 

method does not need ranking or crowding mechanisms to 

be invoked. Unlike classical evolutionary algorithms that 

promote non-dominated solutions at each generation, the 

present approach consists of emphasizing dominated and 

non-dominated ones to drive the searching process towards 

the boundaries of the feasible region.   

We propose to use hybridization of binary coded and real 

coded GA in this work. Binary coded GA can explore 

search space reducing the accuracy of encoding. Two 

parallel populations are created and evolved exchanging 

information. Members from binary coded population go to 

real coded populations as Aliens and take part in evolution. 

This approach combines  the strengths of binary coded and 

real coded GA along with benefits of parallel populations. 

We use non dominated sorting and crowding distance for 

selection. We discuss the proposed algorithm and show its 

working in next section. Followed to that we discuss about 

the performance measures used for MOO. Results are 

discussed in the next section followed by conclusion of the 

work.  
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II. PROPOSED ALGORITHM 

Most multi-objective optimization algorithms use the 

concept of dominance in their search. If a solution is better 

than the others with respect to all objectives, it is a 

dominating solution. For a decision vector, which is not 

dominated by any other decision vector, it is optimal if we 

cannot improve in any objective without causing 

degradation in at least one of the objective. Non-dominated 

solutions are ones within the search space whose 

corresponding objective vector components cannot be 

improved simultaneously. Such solutions are denoted as 

Pareto optimal, or sometimes called non-inferior solution. 

Many approaches exist and are suggested for finding the 

non-dominated set from a given population of solutions. 

Different approaches have different computational 

complexities. Few of them are Naive and slow, Jun Du 

Algorithm, Ding’s Algorithm, Kung’s Algorithm and Arena 

sort.  

In addition to minimum computational efforts and 

performance for all types of problems, a good multi-

objective optimization algorithm is expected to achieve the 

following conflicting goals:   

- The best-known Pareto front should be as close as 

possible to the true Pareto front. Ideally, the best-known 

Pareto set should be a subset of the Pareto optimal set. 

- Solutions in the best-known Pareto set should be 

uniformly distributed and diverse over of the Pareto 

front in order to provide the decision-maker a true 

picture of trade-offs. 

- The best-known Pareto front should capture the whole 

spectrum of the Pareto front. This requires investigating 

solutions at the extreme ends of the objective function 

space. 

The most popular and powerful algorithm NSGA-II 

attempts to achieve the goals by classifying the population 

members in non-dominated fronts and calculating crowding 

distance for selection of better ones within fronts. Deb, 

2001 proposed algorithm to classify the chromosomes into 

fronts based on non-domination as follows: 

1. Create new (empty) box, P’, of size, Np. 

2. Transfer ith chromosome from P to P’, starting with i=1. 

3. Compare chromosome i with each member, say, j, 

already present in P’, one at a time. 

4. If i dominates (Deb, 2001) over j (i.e. i is superior to or 

better than j in terms of all objective functions), remove 

the jth chromosome from P’ and put it back in its 

original location in P. 

5. If i is dominated over by j, remove i from P’ and put it 

back in its position in P. 

6. If i and j are non-dominating (i.e. there is at least one 

objective function associated with i that is superior 

to/better than that of j), keep both i and j in P’ (in 

sequence). Test for all j present in P’ 

7. Repeat for next chromosome (in the sequence, without 

going back) in P till all Np are tested. P’ now contains a 

sub-box (of size ≤ Np) of non-dominated chromosomes 

(a subset of P), referred to as the first front or sub-box. 

Assign it a rank number, Irank, of 1 

8. Create subsequent fronts in (lower) sub-boxes of P’ 

using step 2 above (with the chromosomes remaining in 

P). Compare these members only with members present 

in the current sub-box, and not with those in earlier 

(better) sub-boxes.  

Deb, 2001 proposed crowding distance calculation for 

selection of chromosomes with uniform distribution over 

pareto front. Evaluate the crowding distance for the ith 

chromosome in any front j, of P’ using the following 

procedure: 

a) Rearrange all chromosomes in front j in ascending 

order of the values of any one (say, the qth) of their 

several objective functions (fitness functions). This 

provides a sequence, and, thus, defines the nearest 

neighbours of any chromosome in front j. 

b) Find the largest cuboid (rectangle for two fitness 

functions) enclosing chromosome i that just touches 

its nearest neighbours in the f-space. 

c) Crowding distance;  Ii ,dist =1/2 ×(sum of all sides of 

this cuboid) 

d) Assign large values of Ii, dist to solutions at the 

boundaries (the convergence characteristics would be 

influenced by this choice) 

NSGA-II algorithm proposed by Deb, 2001 assuming 

that we are minimizing all the objective functions is as 

given under.  

1.  Generate box, P, of Np parent chromosomes using a 

random-number code to generate the several binaries. 

These chromosomes are given a sequence (position) 

number as generated 

2.  Classify these chromosomes into fronts based on non-

domination (Deb, 2001), as follows: 

3.  Spreading out: Evaluate the crowding distance, Ii, dist, 

for the ith chromosome in any front, j, of P’ using the 

following procedure: 

4.  Make Np copies randomly (duplication permissible), of 

the better chromosomes from P’ into a new box, P’’ 

using: 

i. Select any pair, i and j , from P’ (randomly, 

irrespective of fronts) 

ii. Identify the better of these two chromosomes. 

Chromosome i is better than chromosome j if: 

iii. Ii, rank ≠  Ij, rank : Ii, rank < Ij, rank 

iv. Ii, rank =  Ij, rank : Ii, dist > Ij, dist 

v. Copy (without removing from P’) the better of 

these two chromosomes in a new box, P” 

vi. Repeat till P” has Np members. Not all of P’ need 

be in P”. By this method, the better members of P’ 

are copied into P” stochastically 

5. Copy all of P” in a new box, D, of size Np Carry out 

crossover (using the stochastic remainder roulette-wheel 

selection procedure, Deb, 1995) and mutation (Deb, 

1995) of chromosomes in D. This gives a box of Np 

daughter chromosomes. 

6. Elitism: Copy all the Np best parents (P”) and all 

the Np daughters with transposons (D) into box 

PD. Box PD has 2 Np chromosomes 
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i. Reclassify these 2 Np chromosomes into 

fronts (box PD’) using only non-domination 

(as described in Step 2 above) 

ii. Take the best Np from box PD’ and put into 

box P’” 

7. This completes one generation. Stop if 

appropriate criteria are met, e.g., the generation 

number>maximum number of generations (user 

specified). 

8. Copy P’” into starting box, P. Go to Step 2 above.  

B. Sankararao and S.K. Gupta, 2007 observed that for 

ZDT4 test function binary coded NSGA-II do not converge. 

They noted that “ It may be mentioned here that though the 

binary coded NSGA-II fails to converge to the global 

optimal solution, for this test problem, the real coded 

NSGA-II does indeed, converge to the correct pareto 

solutions in 100,000 function evaluations.” (Deb 2001). 

This observation initiated the thought of having two parallel 

populations evolving simultaneously, one binary coded and 

another, real coded; which may make the GA more robust. 

Aimin Zhou et. al, 2011 highlights that competitive/co-

operative co-evolution is one of approach to improve 

convergence and robustness for MOO. This supported our 

hypothesis of using two parallel populations. N Patel and N 

Padhiyar (2008) explored a new concept of Alien in their 

work, which we propose to use here to exchange 

information between the parallel populations.   

We propose in this algorithm to use two subpopulations, 

one real coded and another, binary coded. (Parallel 

Universe) User specified best members from binary coded 

population known as Alien members will go to real coded 

population and take part in evolution. It will transfer the 

information from one sub-population to another. This 

approach increases robustness without any additional 

computational burden by combining the capacity of both, 

binary and real coded GAs.  In fact, dividing the population 

in sub-population will reduce the calculations needed for 

sorting and selection and hence will increase the overall 

efficiency of the algorithm.  The implementation of propose 

algorithm is as follows: 

Step(0):Initialization  of GA Parameters: Total Population 

Size (nPopul), Binary Population Fraction (bFr),  

Number of Generations (nGen), Number of Decision 

Variables (nVar), Maximum and Minimum Bounds 

on Decision Variables (xMin, xMax), Accuracy for 

Binary Encoding (Acc), Number of Aliens 

transferred every generation from binary population 

to real population (nAl) 

Step(1):Generation of binary and real coded Population and 

fitness calculation.  

Step(2):Selection for nPopul members for binary and 

(nPopul – nAl) members for real population. Add 

nAl  members from binary to real population.  

Step(3):Carry out Crossover and Mutation for each 

Population. 

Step(4): Do Fitness calculation for each population. 

Step(5):Do Elitism selection for each binary and real 

population.  

Step(6):Alien member addition from binary to real coded 

population replacing the worst member in real coded 

population. 

Step(7):Continuation of loop if maximum number of 

generations are not reached otherwise continue the 

loop; go to step 2. 

As a part of our research study we propose to develop 

GA program with modifications in the existing algorithm to 

make it more robust and efficient. We propose to use two 

parallel populations using binary and real encoding, 

evolving separating and exchanging information through 

Aliens transporting across two universe. We name this 

concept as  Parallel Universe Alien GA (PUALGA). We 

test the concept with bench mark test problems and 

compare its performance with existing well known 

algorithms. 

III. PERFORMANCE MEASURE FOR MOO 

The aim of all multi-objective optimization algorithms is 

to find as many different solutions as possible in the Pareto 

optimal set. A multi-objective optimization algorithm has to 

perform two tasks, (i) to guide the search towards the global 

Pareto optimal region and (ii) to maintain the population 

diversity (in the objective space, in the parameters space or 

in both of them) in the current non-dominated front. The 

general performance criteria for the multi-objective 

optimization algorithms are: 

 Accuracy - how close the generated non-dominated 

solutions are to the best known prediction.  

 Coverage - how many different non-dominated 

solutions are generated and how well they are 

distributed.  

 Variance for every objective - which is the 

maximum range of non-dominated front, covered by 

the generated solutions (fraction of the maximum 

range of the objective in the non-dominated region, 

covered by a non-dominated set).  

The performance of the search algorithm is difficult to 

evaluate when, true Pareto optimal set is not known. Those 

results are generally presented using various performance 

measures for the search algorithms. Some tools for visual 

representations of non-dominated solutions are scatter-plot 

matrix, value path, bar chart, star coordinate and visual 

methods. Visual descriptions are now inadequate as the area 

of multi-objective optimization has become much popular 

and number of different algorithms and modifications are 

coming up. Performance metrics are important performance 

assessment measure, which also allow us to compare 

algorithms and to adjust their parameters for better results. 

Deb classifies them in three categories, metrics evaluating 

closeness to the Pareto optimal front, metrics evaluating 

diversity amongst non-dominated solutions and metrics 

evaluating closeness and diversity.[11]  
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A. Convergence to true pareto front  

The commonly used metrics for evaluating closeness to 

the pareto optimal front are error ratio, generational 

distance, maximum pareto optimal front error proposed by 

Veldhuizen 1999 and set convergence metric proposed by 

Zitzler 1999.[12] [13] Because of simplicity Zitzler 1999 

have suggested generational distance matrix to evaluate 

closeness of solution found to the true solution and Deb 

2000 and letter investigators have used this method. 

Generational distance is an average distance of the solutions 

fond by the algorithm to the true pareto front. For a set Q of 

N solutions from a known set of the pareto optimal set P*.  

Veldhuizen 1999 has defined average distance of Q from 

P*, the generational distance γ as: 

 
Q

d
pQ

i
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i
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1   
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and f*
m

(k) is the m-th objective function value of the k-th 

member of P*. 

When there are large fluctuations in the distance values, 

GD doesn’t represent the true distance. Variance of the 

matrix GD is also necessary in such cases. When objective 

function values are of different magnitude, they should be 

normalised before calculating distance measure. A large 

number of solutions uniformly distributed in the true pareto 

should be used to calculate γ matrix. The γ matrix measures 

the extent of convergence to a known set of pareto optimal 

solutions. Since, multi-objective algorithms would be tested 

on problems having a known set of Pareto-optimal set, the 

calculation of this metric is possible. But, realize that such a 

metric cannot be used for any arbitrary problem. Even when 

all solutions converge to the Pareto-optimal front, the above 

convergence metric does not have a value zero. The metric 

will be zero only when each obtained solution lies exactly 

on each of the chosen solutions. Although this metric alone 

can provide some information about the spread in obtained 

solutions, we need to define another metric to measure the 

spread in solutions obtained by an algorithm. 

B. Matrix to measure distribution of solutions  

There exist many metrics to find diversity amongst the 

obtained non dominated solutions. Here the purpose is to 

represent span of true pareto front covered by the obtained 

solutions and its uniformity in the span covered. Few 

popular amongst them are spacing matrix, Chi-square like 

deviation measure matrix  by Deb 1989, maximum spread 

matrix by Zitzler 1999 and spread matrix by Deb et al 2000 

[13] [14] [15].  

From the obtained set of non-dominated solutions, we 

first identify the extreme solutions in the objective space. 

We calculate dme , the distances between the extreme 

solutions and the boundary solutions of the obtained non-

dominated solution set Q from the known end solutions of 

P*. The distance measure may be Euclidian distance, the 

sum of the absolute distance in the objective values or the 

crowing distance. The parameter di is the distance measure 

between the neighbouring solutions and d(bar) is the mean 

value of this distance measure.  For a scenario with a large 

variance of the distances may have a numerator value 

greater than the denominator. The spread, (delta) is 

calculated as   


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The maximum value of the metric can be greater than 

one. But, a good distribution would make all distances di 

equal to d(bar) and would make dme = 0 (with existence of 

extreme solutions in the non-dominated set). Thus, for the 

most widely and uniformly spread-out set of non-dominated 

solutions, the numerator of  A(delta) would be zero, making 

the metric to take a value zero. For any other distribution, 

the value of the metric would be greater than zero. Note that 

the above diversity metric can be used on any non-

dominated set of solutions, including one which is not the 

Pareto-optimal set.  

C. Matrix evaluating closeness and diversity 

There are some metrics which combinedly evaluates 

closeness and diversity. They are Hypervolume attainable 

surface based statistical metric weighted metric and non-

dominated evaluation metric.  

IV. MOO TEST FUNCTIONS 

One of the fundamental issues when designing an 

algorithm is to have a standard methodology to validate it. 

As part of this methodology, certain benchmark test 

functions are required. We used selected seven test 

functions to test the proposed algorithm. For evaluation of 

the proposed algorithm, we have used nine benchmark test 

functions in this work. The test problems are chosen from 

past studies in this area. The function SCH1 (from 

Schaffer’s study), FON (from Fonseca-Fleming’s study), 

POL (from Poloni’s study), and KUR (from Kursawe’s 

study) are used in this study. The number of variable and 

pareto front nature details of the selected MOO test 

functions are given in table 1. Table 2 describes the 

objective functions for selected MOO test problems. All the 

problems have two objective functions, which are to be 

minimized. Each test function presents certain difficulties 

for multi-objective optimization. 
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Table 1 MOO Test Function Parameters 
 

Problem Number of 

variables, n, 

and the bounds 

Pareto front 

nature and 

location 

SCH1     

55 11 exe   

convex 

for x  [-2,2] 

FON     

44  ix  

non-convex 

POL     

  ix  

non-convex, 

discontinuous 

KUR     

55  x  

non-convex 

 

Table 2 MOO Test Function Objectives 
 

Problem Objective functions to be minimized 

SCH1 2

1 xf 
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2 )2(  xf
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
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



2
3

11
3
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exp1
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


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
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


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POL 2
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2
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2

2
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12 )1()3(  xxf  

2cos5.12sin1cos21sin5.01 A

2cos5.02sin21cos1sin5.12 A  

22111 cos5.1sincos2sin5.0 xxxxB 

22112 cos5.0sin2cossin5.1 xxxxB   

KUR   


 
1

1

2

1

2

1 2.0exp10
n

i ii xxf
 

  


n
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V. RESULTS AND DISCUSSION  

Though, the proposed algorithm can be used with any 

population based evolutionary optimization, we choose to 

use GA for its wide acceptance. Programs developed in 

MATLAB 2011 is used for all the cases in this work. It uses 

tournament selection, simulated binary crossover (SBX) 

and non-uniform mutation with elitism survival selection 

operators. The decision variables and their upper and lower 

limits for all the problems are given at table 1 along with 

the problem definitions. Population size is kept 100 for all 

runs. The number of generations used are 50 for SCH1, 70 

for FON, 100 for POL, and 250 for KUR. Since GA is a 

stochastic optimization technique, it does not converge to 

the same solution every time even with the same initial 

population. Hence, we carried out ten simulation runs for 

every test problem with different initial population and 

average results are  presented for the comparison of the 

algorithms.  

A. Convergence to true Pareto front 

The metric value is a measure of average distance of the 

obtained solution from true front, hence smaller the value 

better is the convergence. Figure 1 to 4 represents pareto 

optimal solutions obtained with different algorithms along 

with true pareto front. 

 
(a) at 40 Generations 

 
(b) at 50 Generations 

 

Figure 1 True pareto front and obtained optimal pareto solutions for 

SCH1 test function 
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(b) at 25 Generations 

Figure 2 True pareto front and obtained optimal pareto solutions for 

FON test function 

 
(a) at 10 Generations 

 

(b) at 25 Generations 

Figure 3 True pareto front and obtained optimal pareto solutions for 

POL test function 

 
(a) at 25 Generations 

 
(b) at 50 Generations 

Figure 4 True pareto front and obtained optimal pareto solutions for 

KUR test function 

 

The generation wise convergence plot for all test functions 

are shown in figure 5. The diversity metric, ∆ represents 

spread of solutions. It is a measure of distribution of 

solution along Pareto front. Zero value of the diversity 

metric indicates solutions are uniformly distributed 

covering full range of true front; smaller the value, better 

the spread.  The generation wise progress of diversity 

metric, ∆ is presented in figure 6. 

 

(a) SCH1 Function 

 

(b) FON Function 
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(c) POL Function 

 

(d) KUR Function 

Figure 5 Generation wise convergence for all test functions 

 

(a) SCH1 Function 

 

(a) FON Function 

 

(c) POL Function 

 
(d) KUR Function 

Figure 6 Generation wise diversity for all test functions 

VI. CONCLUSION 

Proposed algorithm enhances the convergence rate and gets 

wide uniform spread of the Pareto solutions for multi 

objective optimization problems. This algorithm uses the 

concept of parallel population and combined binary and real 

GA. Non-dominated sorting is used in all algorithms for 

survival selection. The advantage of using two sub 

populations reduces the complexity of sorting and achieves 

better results with same computational efforts (Number of 

function Evaluations). Though, this concept can be applied 

for any population based MOGA, we show the results under 

GA framework in this study. The proposed PUALGA has 

been compared with widely accepted NSGA-II (binary and 

real coded) and Jumping Gene Adaptation of NSGA-II. 

Generation wise convergence rate by the proposed 

PUALGA has been observed to be very fast compared to 

the other approaches. 
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