
International Journal for Research in Engineering Application & Management (IJREAM) 

ISSN : 2454-9150    Vol-04, Issue-06, Sep 2018 

406 | IJREAMV04I0642106                        DOI : 10.18231/2454-9150.2018.0752                      © 2018, IJREAM All Rights Reserved. 

 

A Parameter-Uniform Essentially First Order 

Convergent Numerical Method for a System of Singularly 

Perturbed Differential Equations of Reaction-Diffusion 

Type with Robin Boundary Conditions 

Janet Rajaiah, Department of Mathematics, Bishop Heber College, Trichy, TamilNadu, India. 

sugirthajanet07@gmail.com 

Valarmathi Sigamani, Department of Mathematics, Bishop Heber College, Trichy, TamilNadu, 

India. valarmathi07@gmail.com 

Abstract - In this paper, a class of linear systems of singularly perturbed second order ordinary differential equations 

of reaction-diffusion type with Robin boundary conditions is considered. The components of the solution  ⃗⃗  of this 

system are smooth, whereas the components of   ⃗⃗   exhibit boundary layers. A piecewise-uniform Shishkin mesh is 

introduced and is used in conjunction with a classical finite difference discretisation, to construct a numerical method 

for solving this problem. It is proved that the numerical approximations obtained with this method are essentially first 

order convergent uniformly with respect to all of the parameters. Numerical illustration is provided to support the 

theory. 
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I. INTRODUCTION  

The following two point boundary value problem is 

considered for the system of singularly perturbed linear 

second order differential equations, 

     ⃗   ( )   ( ) ⃗ ( )    ( )        (   )     (1.1)                                        

with 

 ⃗ ( )   ⃗  ( )   ⃗  , 

                               ⃗ ( )   ⃗  ( )   ⃗  .                    (1.2)                                                           

 

Here  ⃗  is a column   -vector,        ( ) are     

matrices,       (  ),  ⃗⃗  (       ), with        

for all        . The parameters    are assumed to be 

distinct and for convenience, the ordering         is 

assumed. 

The above problem can be rewritten in the operator form, 

           ⃗     on    ,                                                    (1.3)                                                                    

              ⃗ ( )   ⃗  ,        ⃗ ( )   ⃗  ,                         (1.4)                                                      

where the operators      ,   are defined by 

                             

where   is the identity operator,   
 

  
 and     

  

   
 

are the first and second order differential operators.  

For all   ,   -, it is assumed that the components 

   ( ) of   ( ) satisfy the inequalities 

        ( )  ∑     ( ) 
 
        for       and    ( )  

  for                                                                           (1.5) 

and for  some  , 

                          ̅       (∑    ( )
 
   )             (1.6)                                                    

It is also assumed, without loss of generality, that  

                  √   
√ 

 
                                                     (1.7)                                                                

Further the functions    ,    are assumed to be in 

 (    )( ̅)    , for             where  ̅  ,   -.  
From the above assumptions, (1.1),(1.2) has   a solution  

 ⃗   ( ̅)  (  )( ),      
The reduced problem obtained by putting each    

         , in the system (1.1) is the linear algebraic 

system, 

                  ( ) ⃗  ( )    ( )                                      (1.8)                                                   

where  ⃗  ( )  .    ( )     ( )       ( )/
 

. The 

problem (1.1),(1.2) is singularly perturbed in the following 

sense. The solution  ⃗  is expected to have the following 

layer pattern.  Each component    for         is 

expected to exhibit weak twin layers at     and     of 

width   (√  ), while the components    for         

  have additional weak twin layers of width  (√    ), the 

components    for           have additional weak 

twin layers of width  (√    ) and so on.  

The norms ‖ ‖          ( )  for any scalar–valued 

function   and domain  , and ‖  ‖          ‖  ‖   
for any vector-valued function    (          )

   are 

introduced.  Throughout the paper,   denotes a generic 

positive constant, which is independent of    and of all 

singular perturbation and the discretization parameters.  

Furthermore, inequalities between vectors are understood in 

the componentwise sense. 

For a general introduction to parameter-uniform 

numerical methods for singular perturbation problems, see 

[1],[2],[3] and [4].  In [5], a mixed Neumann-Robin 

boundary value problem for the Laplace operator in a 

smooth domain in    is studied. The Robin condition 
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contains a parameter  and tends to a Dirichlet condition as 

     A complete asymptotic expansion of the solution in 

powers of   is given. Sharp estimates in various Sobolev 

norms is given and in particular that there exist terms of 

order  (     ) is shown. In [6], Nonlinear turning point 

problems is considered that admit boundary and/or interior 

layers at positions that are not determined a priori. For 

positive “viscosity” first order derivative terms are allowed 

in the boundary operator. Under certain conditions, shown 

in a sense to be sharp, the viscous limit of such problems is 

characterized and prove that they are identical to those limit 

solutions obtained from the pure Dirichlet problem. In [7], 

the conservative form of singularly perturbed ordinary 

differential equations with mixed boundary conditions is 

considered. A fitted mesh finite difference scheme is 

constructed for these problems. The scheme is shown to be 

uniformly convergent with respect to the perturbation 

parameter. A class of conservative difference schemes with 

uniform mesh are also considered. These difference 

schemes are proved to be first-order uniformly convergent. 

 

II. ANALYTICAL RESULTS 

 
The operator   satisfies the following maximum 

principle. 

Lemma 2.1   Let  ( ) satisfy (1.5),(1.6).  Let  ⃗  be any 

vector-valued function in the domain of    such that   

     ⃗  ( )   ⃗        ⃗  ( )   ⃗    Then   ⃗ ( )   ⃗  on     

implies that  ⃗ ( )   ⃗  on    ̅. 

Proof :  Let       be such that    ( 
 )  

           ̅    ( ) and assume that the lemma is 

false.      

Then,    ( 
 )      For     ,  ( 

 
 ⃗⃗ )
  
( )  

   ( )   
 
  
( )    and for      ,  ( 

 
 ⃗⃗ )
  
( )  

   ( )   
 
  
( )   , contradicting the hypothesis.  

Therefore,    *   + and      ( 
 )     

 

Thus, 

(  ⃗ )  ( 
 )           ( 

 ) ∑    ( 
 )

 

   

   ( 
 )     

which contradicts the assumption  and proves the result 

for    

Lemma 2.2   Let  ( ) satisfy (1.5),(1.6).  Let  ⃗  be any 

vector-valued function the domain of   , then for each        

         and    ̅, 

   ( )     {‖   ⃗  ( )‖    ‖   ⃗  ( )‖ 
 

 
‖  ⃗ ‖} 

Proof :   Define the two functions, 

   ( )     {‖   ⃗  ( )‖    ‖   ⃗  ( )‖ 
 

 
‖  ⃗ ‖}   

  ⃗ ( )       
where    (      ) .  Using the properties of  ( ), it is 

not hard to verify that      
 ( )   ⃗      

  ( )   ⃗  and  

     ( )   ⃗  on  .  It follows from Lemma 2.1 that  

   ( )   ⃗  on  ̅ as required. 

 

Standard estimates of the solution (1.1),(1.2) and its 

derivatives are contained in the following lemma. 

 

Lemma 2.3  Let  ( ) satisfy (1.5),(1.6) and let  ⃗  be the 

solution of (1.1),(1.2).  Then for each          and 

   ̅, 

       ( )   ‖  ‖      ( )   (‖ ⃗ ‖  ‖   ‖),         

                   ( )     
 
 

 (‖ ⃗ ‖  ‖  ⃗⃗⃗  ‖   , 

  |  
( )( )|     

 
(   )

   
  (‖ ⃗ ‖  ‖  ‖    

(   )

 ‖  (   )‖),                                     

                                                                     for        
Proof :  The bound on  ⃗  is an immediate consequence of 

Lemma  2.2.  

Differentiating once the equation (1.1), 

   ( ⃗  ) ( )   ( ) ⃗  ( )      ( )    ( ) ⃗ ( )        (2.1)                                                        

and from the boundary conditions, 

     ⃗  ( )   ⃗ ( )   ⃗    ⃗ 
 ( )    ⃗    ⃗ ( )             (2.2)                                                             

Replacing  ⃗           (   ) (   )  

       ( )   ( )  ( )    ⃗ ( )     ( )    ( ) ⃗ ( )                                                                   
                                                                                   (2.3) 

 with     ( )   ⃗ ( )   ⃗     ( )   ⃗    ⃗ ( )           (2.4)                                         

This problem (2.3),(2.4) is similar to the problem in [8]. 

Now using the Lemma 2.2 in [8], 

      ( )   (‖ ⃗ ‖  Therefore  

       ( )   (‖ ⃗ ‖  ‖   ‖)  
Rewriting the differential equation (2.3) gives 

                              (     ⃗ )                         (2.5) 

 

and it is not hard to see that the bounds on    follow 

from (2.5). 

To bound   
 ( ) , for each   and  , consider an interval 

  [    √  ]     such that     .  By the mean 

value theorem, for some    ,        √  , 

   ( )  
  (  √  )    ( )

√  
 

which leads to, 

         
 ( )     

 

 
 

 ‖  ‖                                      (2.6) 

                                                          

Now, for any    , 

                
 ( )      ( )  ∫     ( )   

 

 

 

By using (2.6),      
 ( )    

 

 
 

 (‖  ‖     ⃗   ). Hence, 

      
  ( )    

 

 
 
 .‖ ⃗ ‖  ||   ||/  

Differentiating the equation (1.1) once and using the 

bounds of    and     the bound of    
( )

 follow. 

Differentiating the equation (2.3) once and rearranging the 

equation, the bound of   
( )
     

( )
 follow.  

 

Consider the Shishkin decomposition of the solution of  

  ⃗⃗  ⃗of the BVP (1.1),(1.2) into smooth and singular 

components, 

          ⃗⃗⃗         ⃗⃗                                     (2.7) 

                                              

Taking into consideration, the sublayers that appear for the 

components, the smooth component    is subjected to 

further decomposition 

                       

                      
 , 
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.                                                                                                         

                                                                                     (2.8) 

. 

. 

                    
 , 

as all the components have    layers. Since components 

except    have      sublayers, the components         
   takes the form, 

                 (                    )  

                 (                    
 )  

. 

.                                                       (2.9) 

. 

                 (                
 )                                                                                                        

Further,                    have      sublayers and 

hence that leads to the decomposition, 

                (            (        
             )) 

                (            (        
             

 )) 
.      

.                                                        (2.10) 

. 

  
      
    (          (      
           

 ))                                                                                                       
      

Proceeding like this, it is not hard to see that 

                              ⃗⃗⃗  ( )     ⃗⃗⃗⃗ ( )    ( )                       (2.11)                                        

Where   ( )  (           )
 , 

 

(

  
  
 
  

)  

(

                 
           
 
 

                  
                

 
  

,(

                   
               
 
 

             
            

 
    

,

 

                                                                             (2.12) 

That is, 

                        
 
(   

 
)
 
                                                      (    ) 

   
 
 (                                       ) 

   
  (                        )  

Then using (2.7),(2.11) in (1.1),(1.2), it is found that the 

smooth component of the solution  ⃗  satisfies  

                              on    ,                                      (2.14) 

    ( )     ⃗  ( )      ( ) 
      ( )     ⃗  ( )      ( )                                (2.15) 

                                                     

From (2.9), (2.10) it is observed that the components       

                       satisfy the following 

system of equations: 

                             
  
  
    
   

                             
  
  
    
   

 . 

 .                                                                                                                                                                                           

    .                                                                                 (2.16) 

  

                                   
    
  

      
   

                                     
  
  
    
   

with 

       ( )      
 ( )             ( )      

 ( )         (2.17)                                                                          

             

                                     

  
  
    

    
   

                                     

  
  
    

    
   

. 

.                                                                                                                                                                                                    

.                                                                                     (2.18) 

. 

                                             

  
    
    

      
   

            
                                   

  
    
    

      
   

with  

                         ( )          
 ( )   ,       

        ( )          
 ( )                                    (2.19) 

  

and so on. Lastly 

                  
  
  
    
   

               
                       

  

  
    
             (2.20)                                           

with       ( )      
 ( )        ( )      

 ( )                          

                                                                                   (2.21) 

and               
                 

                             (2.22)                                                 

          ( )      
 ( )   ,        ( )      

 ( )   .  (2.23)

                            

The singular component of the solution  ⃗  satisfies 

            ⃗⃗   ⃗         on      ,                            (2.24) 

     ⃗⃗ ( )     ( ⃗    )( ),      ⃗⃗ ( )     ( ⃗    )( )                                                         
                                                                              (2.25) 

From the expression (2.16) – (2.23), using Lemma 2.3 for 

  , it is found that for                            
           

       |    |   (  ∏   
     

     ∏   
     

     )        

       |    
( )
|   (   

 

 
   

 ∏   
   

     )                    (2.26)                        

From (2.11),(2.13) and (2.26) the following bounds for  

             hold: 

|  
( )|                     

|  
( )
|   (    

    
)       

The layer functions   
    

                 associated 

with the solution of  ⃗ , are defined on  ̅ by 

  
 ( )   

  √
 

   ,   
 ( )    

 (   )   ( )    
 ( )  

   
 ( )  

The following elementary properties of these layer 

functions, for all         and        , should 

be noted: 

  ( )    (   ),   
 ( )    

 ( )   
 ( )    

 ( )   

  
 ( )      

 ( )    
 ( )   

 ( )    
 ( )   
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 ( )        ( ) is monotone decreasing for 

increasing    0  
 

 
1    ( ) is monotone increasing for 

increasing     0
 

 
  1    ( )     

 ( ) for 

    0  
 

 
1    ( )     

 ( ) for 

    0
 

 
  1    

 ( 
√  

√ 
   *        

The interesting points     
( )

 are  now defined. 

Definition 2.1: For   
    

   each               and 

each        the points     
( )

 is defined by 

   
  
 (    

( )
)

  
   

  
 (    

( )
)

  
                                                (2.27)                                                

It is remarked that     
   
 (      

( )
)

  
   

  
 (    

( )
)

  
                (2.28)                                                  

In the next lemma, the existence, uniqueness and ordering 

of the points     
( )

 are established. Sufficient conditions for 

them to lie in the domain  ̅ are also provided. 

Lemma 2.4:  For all     such that           and such 

that           the points     
( )

 exist, are uniquely defined 

and satisfy the following inequalities 

       
 ( )

  
  

  
 ( )

  
      [      

( ))        
  
 ( )

  
  

  
 ( )

  
      (    

( )  ] 

                                                                             (2.29) 

In addition, the following ordering holds, 

        
( )       

( )   if       and    
( )       

( )
, if                                

                                                                           (2.30) 

Also 

             
( )     

√  

√ 
 and     

( )   .  
 

 
/  if    .          (2.31)                                                    

Analogous results holds for   
    

  and the points       
( )

. 

Proof:  The proof is as given in [8]. 

Bounds on the singular component  ⃗⃗  of   ⃗  and its 

derivatives are contained in 

Lemma 2.5  Let  ( ) satisfy (1.5),(1.6).  Then there 

exist a constant  , such that, for each         and   
 ̅, 

                 ( )     ( )      ( )     ( )  

             
( )
 ( )    ∑

  ( )

  
(   )  

 
      for       

                 |    
( ) ( )|   ∑

  ( )

√  

 
     

Proof : To derive the bound on  ⃗⃗ , define   ( )  
(          )

          
 ( )     ( )     ( )   for 

each         and    ̅. 

For a proper choice of         
  ( )   ⃗ ,        

  ( )  

 ⃗ ,.  Also for       

(    )
 
( )      

 

  
  ( )   ∑   ( )  ( )   

 

   

 

                                                             

  .∑    ( )   (
  

  
) 

   /  ( )   ,        as  
  

  
     

By Lemma 2.1,     ( )   ⃗  on  ̅ and it follows that, 

 

                                    ( )     ( )                           
(2.32)                                                                                          

The bounds on   
( )( )           and         are 

now derived by induction on     For    , the result 

follows from [9].  It is then assumed that the required 

bounds on    ,          
( )

 and   
( )

 hold for all systems up 

to order    .  Define  ⃗⃗̃   (        ), then  ⃗⃗̃  satisfies 

the system, 

                   ̃ ⃗⃗̃     ̃ ⃗⃗̃    ,                                     (2.33)                                                                 

with  

                    ⃗⃗̃ ( )     ⃗̃ ( )      ̃⃗⃗⃗⃗ (0),  

                  ⃗⃗̃ ( )     ⃗̃ ( )      ̃⃗⃗⃗⃗ (1).                   (2.34)                          

Here,  ̃  ̃ are the matrices obtained by deleting the last 

row and last column from     respectively and the 

components of    are            , for         and  

 ̃    ̃⃗⃗⃗⃗   ̃  the corresponding components decomposition 

of   ̃  is similar to (2.11) of      Now decompose  ⃗⃗̃  into 

smooth and singular components to get,  ⃗⃗̃         where 

            ( )      ̃⃗⃗⃗⃗ ( )     ̃ (0),      ( )  

    ̃⃗⃗⃗⃗ ( )     ̃ ( )   and      ⃗       ( )     ⃗⃗̃ ( )  

    ( ),      ( )     ⃗⃗̃ ( )      (1).  

By induction, the bounds on the derivatives of   ̃⃗⃗⃗⃗  hold.  

That is for,          , 

          
 ( )    ∑   ( )

   
              

  ( )    ∑
  ( )

√  

   
     

|  
( ) ( )|   ∑

  ( )

  

   
         |    

( )( )|   ∑
  ( )

√  

   
                            

(2.35) 

Consider the     equation of the system satisfied by   , 

        
  ( )  ∑    ( )  ̃

   
   ( )     ( )  ( )     

                                                                                      (2.36)                                           

Differentiating (2.36) once, 

         
( )( )  ∑    ( )   ̃

   
   ( )     ( )  

 ( )  

 ∑     ( )  ̃
   
   ( )        ( )                            (2.37) 

From the boundary conditions, 

   ( )    ( )  [  ( ⃗   )⃗⃗⃗⃗ ] 
( )        ( )  

[  ( ⃗   )⃗⃗⃗⃗ ] 
( )    ( )                                                    

                                                                                      (2.38) 

Replacing     ̃ by   ̃,           and    by   ̃ in (2.37) 

and (2.38), 

       (    ̃ ( )  ∑    ( )  ̃
 
   ( )  

 ∑     ( )  ̃
   
   ( )         ( )                                                       

                                                                                      (2.39) 

with   ̃( )    ( )  [  ( ⃗   )⃗⃗⃗⃗ ] 
( )  

           ̃( )  [  ( ⃗   )⃗⃗⃗⃗ ] 
( )    ( )                                                                     

                                                                                     (2.40) 

This problem (2.39), (2.40) is similar to the problem in [8]. 

Now, using Lemma 2.2 in [8], the bound on   ̃ is 

determined. Thus, 

                            
 ( )     ( ).                                                                  

  By using (2.32) in (2.39),    

       

|(  )̃
  ( )|  

  
 

  
  ( )                                                                               (    )                   

By using the mean value theorem, 

                  (  )̃  ( )  
 

√  
  ( ).                               (2.42)                                                      

Therefore,                                      ( )  
 

√  
  ( ).                          

                                                                                      (2.43)                                                                      

Now, differentiating the equation satisfied by    and 

rearranging gives, 
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( )( )  ∑   ( )   ̃

   

   

( )     ( )  
 ( )

 ∑    ( )  ̃

   

   

( )      ( )  ( )  

The bounds on   and (2.35), then gives 

|  
( )( )|   ∑  

    ( ) 

 

   

 

Differentiating (2.39) once and rearranging yields, 

   |  (  ̃)
( )( )|   ∑  

 
 
   ( ) 

 

   

    

    |     
( )( )|   ∑  

    
  ( ) 

 

   

 

Using the bounds on    ( )    
 ( )   

  ( )   
( )( ) and 

  
( )( ) it is seen that the function    in (2.33) and its 

derivatives    ( )      ( )   ( )( )   ( )( )are bounded by 

   ( )    ( )  
  ( )

√  
  ∑

  ( )

  

 
     and 

   
  ∑

  ( )

√  

 
      respectively. 

   By induction, the following bounds for    and    hold for 

           
    

 ( )       
 ( )   (  ( )        ( ))  

        
  ( )               ( )   (

  ( )

√  
   

    ( )

√    
* 

 

     |  
( )( )|           |  

 ( )|     .
  ( )

  
   

    ( )

    
/   

 

     |  
( )( )|   (    

    
)      

 ( )     (
  ( )

√  
   

                                                                                  
    ( )

√    
*   

   

  Introducing the functions,  ⃗  ( )     ( )     ( ), 

then clearly    ⃗ 
  ( )     ( )       ( )    ⃗⃗   

   ⃗ 
  ( )     ( )       ( )    ⃗⃗    and  

(  ⃗  )
 
( )    .∑    ( )   .

  

  
/ 

   /  ( )       ,      

as  
  

  
   . 

Applying Lemma 2.1, it follows that ‖  ( )‖      ( ). 

Defining barrier functions,    ( )     
 (   )    ( )   

   ( ),         and using Lemma 2.1 for the problem 

satisfied by   , the bounds required for    and      are derived. 

 The bounds for   ( )        can be derived  by 

differentiating the defining equation of    and using the 

bounds of    ( )      . 

   Combining the bounds for the derivatives of   and   , it 

follows that 

  ̃ 
 ( )    ∑   ( )

   
         ̃ 

     ∑
  ( )

√  

   
     

| ̃ 
( )|   ∑

  ( )

  

   
          |   ̃ 

( )|   ∑
  ( )

√  

   
     

Using the above bounds along with the bounds of    , the 

proof of the lemma for the system of   equations is 

completed. 

III. THE SHISHKIN MESH 
A piecewise uniform Shishkin mesh on  ̅ with   mesh- 

intervals is now constructed.  Let     *  +   
    and 

  ̅  *  +   
  .  The mesh  ̅  is a piecewise–uniform  

mesh  on  ̅  ,   - obtained by dividing ,   - into    
 mesh-intervals given by, 

,    -   (       - (       - (  
       -     (      -. 

The   parameters   , which determine the points 

separating the uniform meshes, are defined by , 

                          {
 

 
  

√  

√ 
   }                           (3.1)                                                        

and , for            
     

     {
     
   

  
√  

√ 
   }                                                (   )                                      

Also,              . 

Clearly,           
 

 
,  

 

 
          

    .  

Then, on the subinterval (       -, a uniform mesh 

with 
 

 
 mesh-intervals is placed and on each of the mesh-

intervals (       - and (           - ,            

   a uniform mesh of 
 

  
 mesh-intervals is placed.  In 

practice, it is convenient to take  

                                                                   (3.3)                                 

where   is the number of distinct singular perturbation 

parameters involved in (1.1).  This construction leads to a 

class of   piecewise uniform meshes    ̅   
In particular, when all the parameters            are 

with the left choice, the Shishkin mesh   ̅  becomes the 

classical uniform mesh with the transition parameters 

   
 

  
         with step size     . 

The Shishkin mesh suggested here has the following 

features: (i) when all the transition parameters have the left 

choice, it is the classical uniform mesh and (ii) it is coarse 

in the outer region and becomes finer and finer towards the 

left and right boundaries. 

From the above construction it is clear that the transition 

points  *       +   
  are the only points at which the mesh 

size can change and that it does not necessarily change at 

each of these points.  The following notations are 

introduced:             ,           , and if        , 

then   
              

                *     

     
    

 +.  In general, for each point     in the mesh 

interval (       -,  
                         

  (       )                       (3.4)                                              

Also, for    .   
 

 
1             

  (     ) and 

for    (    -             
       Thus, for     

   , the change in the step size at the point       is, 

            
    

  

     .
(   )

 
       /                                                         (3.5) 

where, 

               
     

   
                                                             (3.6) 

with the convention        .  Notice that,        , 

      is the classical uniform mesh when       for all 

        and from (44) and (45), that 

                           √     .                                      (3.7)                                                                                   

It follows from (47) and (50) that, for        , 

                   
    

   √      
     .                       (3.8)                                   

Also,    
 

 
  , when                  

 .  
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The results in the following lemma are used later. 

Lemma 3.1 Assume that      for some       
      Then the following inequalities hold, 

     
 (    )     

 (  )          
                                      (3.9) 

         
( )

      
 

for                                      (3.10) 

  
 (     

 )      
 (  )   for                  (3.11)                               

  
 (  )

√  
  

 

√     
   for                                      (3.12)                                                                                   

Analogous results hold for
 
  
  

Proof:  The proof  is as given in [8]. 

 

IV. THE DISCRETE PROBLEM 
In this section, a classical finite difference operator with an 

appropriate Shishkin mesh is used to construct a numerical 

method for the problem (1.1),(1.2) which is shown later to 

be essentially first order parameter-uniform convergent. 

The discrete two-point boundary value problem is now 

defined by the finite difference scheme on the Shishkin 

mesh defined in the previous section. 

           ⃗⃗ (  )   ( ) ⃗⃗ (  )    (  )          

                                                                                 (4.1)                                                                                                               

with                                                                                    

 ⃗⃗ ( )     ⃗⃗ ( )   ⃗  ,         ⃗⃗ ( )   
   ⃗⃗ ( )   ⃗    .                                   

                                                                                 (4.2)                                                                         

The problem (4.1), (4.2) can also be written in the operator 

form 

   ⃗⃗          on     ,  

              
  ⃗⃗ ( )   ⃗  ,               

  ⃗⃗ ( )   ⃗  , 
where    

         ,                  
       ,  

              
  ⃗⃗ ( )       , 

and    
 ,   and   

  are the difference operators 

 

   ⃗⃗ (  )  
 ⃗⃗ (    )  ⃗⃗ (  )

       
 ,       ⃗⃗ (  )  

 ⃗⃗ (  )  ⃗⃗ (    )

       
          

and 

 

   ⃗⃗ (  )  
   ⃗⃗ (  )  

  ⃗⃗ (  )

(         )  
,              

For any function    (          )
 defined on the 

Shishkin mesh    ̅
 ,  the following norm 

‖ ‖  
 
                |  (  )|  is introduced. 

 

The following discrete results are analogous to those for the 

continuous case. 

Lemma 4.1  Let  ( )satisfy (5),(6). Let  ⃗⃗  be any vector-

valued mesh function, such that      
  ⃗⃗ ( )   ⃗  

    
  ⃗⃗ ( )   ⃗    Then    ⃗⃗   ⃗      on       

    implies that 
 ⃗⃗   ⃗   on  ̅

 . 

Proof:    Let         be such that 

   (  )                    (  )    and assume that the 

lemma is false. Then,    (   )   .  If,         , then  

(  
  ⃗⃗ )   ( )     ( )   

    ( )        a contradiction. 

Therefore,           and for the same reason         . 

   (   )     (     )       (     )     (   )  

       Also,      (   )       It follows that, 

(   ⃗⃗ )
  
(   )       

     (   )      (   )   (   )

 ∑     (   )

 

        

  (   )     

which is a contradiction. Hence the result. 

 

An immediate consequence of this is the following discrete 

stability result.  

Lemma 4.2  Let  ( ) satisfy (1.5),(1.6). Let  ⃗⃗  be any 

vector-valued mesh function on  ̅ , then for each , 

       , 

|  (  )|     {‖  
  ⃗⃗  ( )‖    ‖   

  ⃗⃗  ( )‖ 

 

 
‖   ⃗⃗ ‖}        

Proof :   Define the two mesh functions, 

 ⃗⃗  (  )     {‖  
  ⃗⃗  ( )‖    ‖   

  ⃗⃗  ( )‖ 

 

 
‖   ⃗⃗ ‖}     ⃗⃗ (  )  

 Using the properties of  ( ), it is not hard to verify that 

  
  ⃗⃗  ( )   ⃗    

  ⃗⃗  ( )   ⃗  and    ⃗⃗    ⃗  on    .  It 

follows from Lemma 7 that   ⃗⃗    ⃗  on  ̅ . 

 

 

The following comparison principle will be used in the 

proof of the error estimate. 

 

Lemma 4.3  Assume that, for each        , the vector-

valued  mesh functions  ⃗⃗⃗  and      satisfy  

  |(  
   )

 
( )|  (  

  ⃗⃗⃗ )
 
( ) |(  

   )
 
( )|  

(  
  ⃗⃗⃗ )

 
( )   and |(    )

 
|  (   ⃗⃗⃗ )

 
  on   

 . Then, for 

each                    
      

on     ̅ . 

Proof:  Define the two mesh functions,  ⃗⃗   by  ⃗⃗     ⃗⃗⃗   

    Then, for each            
 

  
satisfies 

(  
  ⃗⃗  )

 
( )    (  

  ⃗⃗  )
 
( )   

 
and  (   ⃗⃗  )

 
 

on     . The required result follows from Lemma 7. 

 

V. THE LOCAL TRUNCATION ERROR 
From Lemma 4.2, it is seen that in order to bound the error, 

 ⃗⃗   ⃗  it suffices to bound    ( ⃗⃗   ⃗ )    Notice that, for 

     
   

  ( ⃗⃗   ⃗ )     ⃗⃗     ⃗        ⃗    ⃗     ⃗  

                           (    ) ⃗    (     ) ⃗  
which is the local truncation of the second derivative. 

Let  ⃗   ⃗⃗⃗  be the discrete analogous of      ⃗⃗ , respectively. 

Then, 

   ⃗    
    

on          ,    

      
  ⃗ ( )      ( )   

  ⃗ ( )      ( ),                (5.1)                                                              

and  

   ⃗⃗⃗    
    

on          ,     

     
  ⃗⃗⃗ ( )     ⃗⃗ ( )    

  ⃗⃗⃗ ( )     ⃗⃗ ( )              (5.2)                                                                                                               

where    and  ⃗⃗  are the solutions of (2.14),(2.15) and 

(2.24),(2.25) respectively. 

Further, 

  
 ( ⃗    )( )  (    )  ( ) 

  
 ( ⃗    )( )  (    )  ( ) 
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 ( ⃗⃗⃗   ⃗⃗ )( )  (    ) ⃗⃗ ( ) 

  
 ( ⃗⃗⃗   ⃗⃗ )( )  (    ) ⃗⃗ ( ) 

  ( ⃗    )(  )    ( 
    )  (  ) 

  ( ⃗⃗⃗   ⃗⃗ )(  )    ( 
    ) ⃗⃗ (  ) 

and so, for each        , 

|.  
 ( ⃗    )/

 
( )|   (    )   ( ) 

|.  
 ( ⃗    )/

 
( )|

  (    )   ( )  

|.  
 ( ⃗⃗⃗   ⃗⃗ )/

 
( )|   (    )   ( ) 

|.  
 ( ⃗⃗⃗   ⃗⃗ )/

 
( )|

  (    )   ( )  

     |.  ( ⃗    )/
 
(  )|  

       |  ( 
    )  (  )|                                                        (5.3) 

                  |.  ( ⃗⃗⃗   ⃗⃗ )/
 
(  )|  

|  ( 
    )  (  )|                                                             (5.4) 

Therefore, the local truncation error of the smooth and 

singular components can be treated separately. In view of 

this, it is to be noted that, for any smooth function   and for 

each jx     the following expressions may be used to 

estimate the local truncation error. 

|(    ) (  )|   (       )     ,       -| 
( )( )|                                                                                    

                                                                                    (5.5)                                                           

|(    ) (  )|   (       )     ,       -| 
( )( )|                                                                                    

                                                                                   (5.6)                                                

 |(     ) (  )|          | 
( )( )|                                                                                                                          

                                                                                    (5.7)                                                                                                                     

|(     ) (  )|   (         )       | 
( )( )|                                                                                           

                                                                                    (5.8) 

Here,    ,         -. 

 

VI.  ERROR ESTIMATE 
 

The proof of the theorem on the error estimate is split 

into two parts.  First, a theorem concerning the error in the 

smooth component is established.  Then the error in the 

singular component is estimated.   

Define the barrier function  ⃗⃗⃗  by,  

 ⃗⃗⃗ (  )  

      [(   )(      )  

(      )∑
  

√  
*      +   (  )] (  )                                                         

                                                                             (6.1) 

where   is any sufficiently large constant and    is a 

piecewise linear polynomial on  ̅  defined  by, 

 

  ( )  

{
 
 

 
 

 

  
                               

                                    
   

  
                                     

 

Also note that, 

(      ) (  )        

                                   {
   (  )        

  
   

  (  
    

 )
             

                                                                                                                    

                                                                                 (6.2) 

 Then, on       ⃗⃗⃗  satisfy, 

              (  )    
              .            (6.3) 

      Also,    

   (  
  ⃗⃗⃗ )

 
( )             (  

  ⃗⃗⃗ )
 
( )                                            

                                                                                    (6.4) 

For        

                         (   ⃗⃗⃗ )
 
(  )    

                         (6.5)                                                          

 and,         using (3.7),(3.8) and (6.2), 

                       (   ⃗⃗⃗ )
 
(  )    

                          (6.6)                                                        

The following theorem gives the estimate of error in the 

singular component. 

 

Theorem 6.1  Let  ( ) satisfy (1.5),(1.6). Let    denote the 

smooth component of the solution of the problem 

(1.1),(1.2) and  ⃗  be the smooth component of the solution 

of the problem (4.1),(4,2).  Then 

             ⃗                                                                    
                                                                                       (6.7) 

Proof :  From the expression (5.6) and (5.5), 

                   |(  
 ( ⃗    ))

 
( )|  

 (     )     ,     -   
  ( )                              (6.8)                                                                             

                              

|.  
 ( ⃗    )/

 
( )|  

 √  (       )     ,       -   
  ( )              (6.9) 

Thus from (6.4),(6.8) and (6.9), 

              |(  
 ( ⃗    ))

 
( )|  (  

  ⃗⃗⃗ )
 
( ),   

   |(  
 ( ⃗    ))

 
( )|  (  

  ⃗⃗⃗ )
 
( )                        (6.10) 

For each mesh point   , there are two possibilities: either 

     or     . 

For     , using the bounds of the derivatives of    and 

the expression (65), 

   |(  ( ⃗    ))
 
(  )|     

                                                                              

                                                                                     (6.11) 

    On the other hand , if     , then    *       +, for 

some          
Consider the case       and for        , the proof  

is analogous. 

If         , using the bounds of the derivatives of    

and the expression (65), 

                                       |(  ( ⃗    ))
 
(  )|     

                                                        

                                                                                (6.12) 

From (6.10),(6.11),(6.12) and  Lemma 4.3, the required 

result is obtained. 

 

In order to estimate the error in the singular component 

of the solution  ⃗ ,  the following lemmas are required. 

Lemma 6.1  Assume that     .  Let  ( ) satisfy 

(1.5),(1.6).  Then on   , for each       , 

           |(  ( ⃗⃗⃗   ⃗⃗ ))
 
(  )|                                                        

                                                                                  (6.13) 

The following decomposition of the singular components 

   are used in the next lemma. 



International Journal for Research in Engineering Application & Management (IJREAM) 

ISSN : 2454-9150    Vol-04, Issue-06, Sep 2018 

413 | IJREAMV04I0642106                        DOI : 10.18231/2454-9150.2018.0752                      © 2018, IJREAM All Rights Reserved. 

 

            ∑     
   
     ,                                           (6.14)    

where the components      are defined by 

 

        

{
 

   
( )
      ,        

( )
)  

        ,      
( )          

( )
-

  
( )
      (        

( )   -

 

 

where 

  
( )( )  

{
 
 

 
 
∑  

( )      
( ) (        

( ) )
 

  

 

   

    

∑  
( )
      
( ) (        

( )
) 

  

 

   

            

 

 

         
( )( )

 

{
 
 

 
 
∑  

( )(        
( ) )

(  (        
( ) ))

 

  

 

   

    

∑  
( )
(        

( )
)
(  (        

( ) )) 

  

 

   

            

    

 

and for each         , 

          

          

{
 
 

 
   

( )
      ,        

( )
)  

   ∑     

   

     

      ,      
( )          

( )
-

  
( )     (        

( )   ]

 

where 

  
( )( )  

{
 
 

 
 
∑  

( )      
( ) (        

( ) )
 

  

 

   

    

∑  
( )
      
( ) (        

( )
) 

  

 

   

            

    

 

 

  
( )( )

 

{
 
 

 
 

∑  
( )(        

( ) )
(  (        

( ) ))
 

  

 

   

    

∑  
( )
(        

( )
)
(  (        

( ) )) 

  

 

   

            

 

and 

              ∑             
   

   
    ,   -   

 

Notice that the decomposition (6.14) depends on the 

choice of the polynomials    
( )   

( )
 and the definition of 

    
( )

 given in (2.27). 

The following lemma provides estimates of the 

derivatives of the components (6.14)  
 

Lemma 6.2  Assume that 0rd for some          

 .  Let  ( ) satisfy (1.5),(1.6).  Then, for each  and 

                     and all     
 , the components 

in the decomposition (6.14) satisfy the following estimates 

|    
  (  )|       {

 

√  
 
√  

  
}   (  )            

|    
( )
(  )|       {

 

  
 
 

  
}   (  ), 

 

|      
( )

(  )|       {∑
  (  )

  

 
      ∑

  (  )

  

 
     },  

|    
( )
(  )|   

  (  )

  √  
 ,  |      

( )
(  )|   ∑

  (  )

  √  

 
     . 

 

Lemma 6.3  Assume that 0rd for some          

 .  Let  ( ) satisfy (5),(6).  Then if     . 

      |(  ( ⃗⃗⃗   ⃗⃗ ))
 
(  )|   [  (    )            ]                                              

                                                                              (6.15) 

and if       , 

                          |(  ( ⃗⃗⃗   ⃗⃗ ))
 
(  )|    

      .                                                             

                                                                             (6.16) 

Lemma 6.4 Let  ( ) satisfy (5),(6). Then, on   , for 

each         , 

                        |(  ( ⃗⃗⃗   ⃗⃗ ))
 
(  )|     (    )                                                   

                                                                            (6.17) 

The following  theorem gives the estimate of error in the 

singular component. 

 

Theorem 6.2   Let  ( ) satisfy (5),(6). Let  ⃗⃗  denote the 

singular component of the solution of the problem 

(1.1),(1.2) and  ⃗⃗⃗  denote the singular component of the 

solution of the problem (4.1),(4.2).  Then 

                          ⃗⃗⃗   ⃗⃗                                                                                        
                                                                                (6.18)  

Proof :  From the expression (5.6) and (5.5), 

                         |(  
 ( ⃗⃗⃗   ⃗⃗ ))

 
( )|  

   (     )     ,     -   
  ( )                 (6.19)                                                               

       

                     |.  
 ( ⃗⃗⃗   ⃗⃗ )/

 
( )|  

  (       )     ,       -   
  ( )                                           

                                                                             (6.20) 

Thus from (6.4),(6.19) and (6.20), 

       |.  
 ( ⃗⃗⃗   ⃗⃗ )/

 
( )|  (  

  ⃗⃗⃗ )
 
( )  

  |(  
 ( ⃗⃗⃗   ))

 
( )|  (  

  ⃗⃗⃗ )
 
( )                 (6.21) 

In the remaining portion, it is shown that, for all      and 

some constant    

                 |(  ( ⃗⃗⃗   ⃗⃗ ))
 
(  )|  ( 

  ⃗⃗⃗ )
 
(  )                                                   

                                                                              (6.22) 

 

This is proved for each mesh point        by 

considering separately the 8 kinds of  subintervals  

(a) (    )  
(b) [     ), 
(c) [       ), for some  ,          
(d) [      ), 

(e) [1/2, 1-  ], 

(f) (1-         ], for some  ,          
(g) (         )] and 

(h) (1-  , 1). 
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(a) Clearly,      and            

 √   
     .  Then Lemma 6.1 and the 

expression (6.5) give (6.22).  Similar arguments 

hold for the case (e). 

(b) There are 2 possibilities: 

(b1)        and 

(b2)         

(b1)  Since    
  

 
 and the mesh is uniform in 

(    ), it follows that      and                 

 √   
     .  Then Lemma 6.1 and  expression  

(6.5)  lead  to (6.22). 

            (b2) Either      or     . 

If      , then             √   
      and by 

Lemma  3.1,    (    )    
 (    )    

 (     
 )  

     .  Then (6.15) of Lemma 6.3 with     and (6.6) 

give (6.22). 

On the other hand , if        then from (6.16) of Lemma 

6.3 with    , and (6.6) give (6.22) .  Similar arguments 

hold for the case (f). 

(c) There are 3 possibilities: 

(c1)                 

(c2)      and             for some 

          and  

(c3)         

 

(c1) Since          and the mesh is uniform in 

(      ), it follows that      and                 

 √   
     . Then Lemma 6.1 and  expression  

(6.5)  lead  to (6.22). 

            (c2)  Either      or     . 

If      , then             

            √     
      and by Lemma 6.1,  

  (    )    
 (    )    

 (     
 )    

 (     
 )  

     .  Thus, (6.15) of Lemma 6.3  and (6.5) lead to  

(6.22).    

On the other hand , if        then       , so by (6.16)  of 

Lemma 6.3 with    , and (6.6) lead to (6.22) . 

             (c3) Either      or     . 

If      , then              √     
      and by 

Lemma 3.1,    (    )    
 (    )    

 (     
 )  

    , so  (6.15) of Lemma 6.3 with      and (6.5) lead 

to  (6.22).    

On the other hand , if        then         Expression  

(6.16) of Lemma 6.3 with    , and (6.6) lead to (6.22) . 

Similar arguments hold for the case (g). 

(d)  There are 3 possibilities: 

(d1)                 
(d2)      and             for some 

          and  

(d3)         
(d1)  Since  the mesh is uniform  in [   -, it follows 

that     , 
 

√  
       and                   

  .  

Then Lemma 6.1 and  expression  (6.5)  lead  to 

(6.22). 

           (d2) Either      or     . 

If      , then  
 

√    
                  

   and by 

Lemma  3.1,    (    )    
 (    )    

 (     
 )  

  
 (     

 )       .  Then (6.15) of Lemma 6.3 and 

(6.5) give (6.22). 

On the other hand , if        then    *            

  +    Then  expression (6.16) of Lemma 6.3  and (6.3) lead 

to (6.22) . 

(d3) By Lemma 6, with    ,    (    )    
 (    )  

  (     
 )      . Then Lemma 6.4 and (6.5) give 

(6.22). Similar arguments hold for the case (h). 

By using Lemma 4.3, the result is established from (6.21) 

and (6.22). 

 

The following  theorem gives the required essentially first 

order parameter-uniform error estimate.  

  

Theorem 6.3    Let  ( ) satisfy (1.5),(1.6).  Let  ⃗  denote 

the solution of the problem (1.1),(1.2) and  ⃗⃗   be the 

solution of the problem (4.1),(4.2).  Then, 

                               ‖ ⃗⃗   ⃗ ‖                               (6.23)                                                      

                                                                                     

Proof:  An application of  the triangular inequality and the 

results of Theorems 6.1 and 6.2 lead to the required result. 

 

VII. NUMERICAL ILLUSTRATION 
The numerical method proposed above is illustrated 

through an example presented in this section. The method 

proposed above is applied to solve the problem and 

parameter-uniform order of convergence and the parameter-

uniform error constants are computed. The numerical 

results for  ⃗  are presented in Table 1. 

Example 7.1:   Consider the boundary value problem 

─   ⃗   ( ) + A( ) ⃗  ( )=   ( ), for    (   )  
with 

 ⃗ (0) –  ⃗   (0) = ⃗  ,     ⃗ ( )    ⃗ 
 ( )    ⃗   

where    = diag (          ),   

 ( )  (
       
        
       

+ ,    = (        ) ,    

 ⃗  = (     ) ,  ⃗   (     )
 . 

As in , -  the notations   ,   and   
 denote the 

   uniform maximum pointwise two-mesh differences, the 

   uniform order of convergence and the    uniform error 

constant respectively and  are given by   =    ⃗   ⃗ 
  

where   ⃗ 
  =   ⃗⃗  ⃗ 

     ⃗⃗  ⃗ 
      ,     =     

  

   
 and   

 = 

    
 

      
.   Then the parameter-uniform order of convergence 

and the error constant are given by    =      
  and    

  = 

      
  respectively. It is evident from the Figure 1 & 2 

that the solution  ⃗  exhibits no layers whereas the derivative 

 ⃗   exhibits boundary layers at 0 & 1. Further, The order of 

convergence of   ⃗  presented in Table 1 agree with the 

theoretical results. 

 

 

 

 

 

 

 

Figure 1 

The numerical approximation of  ⃗  for         ,   = 
   , 

  =     and N = 384 
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Figure 2 

The numerical approximation of  ⃗   for         ,   = 
   , 

  =     and N = 384 

 

 
 

Table 1 

Values of   
          and    

 for     
 

   
    

 

  
    

 

  
       

  Number of mesh points N 

48 96 192 384 768 

    0.373E-02 0.173E-02 0.833E-02 0.408E-02 0.202E-03 

    0.269E-02 0.147E-02 0.896E-03 0.441E-02 0.214E-03 

    0.971E-03 0.528E-03 0.286E-03 0.157E-03 0.859E-04 

     0.346E-03 0.188E-03 0.102E-03 0.556E-04 0.305E-04 

     0.123E-03 0.665E-04 0.361E-04 0.197E-04 0.108E-04 

   0.373E-02 0.173E-02 0.896E-03 0.441E-03 0.214E-03 

   0.111E+01 0.952E+00 0.102E+01 0.104E+01  

  
  0.308E+00 0.277E+00 0.277E+00 0.264E+00 0.248E+00 

Computed order of   - uniform convergence,   = 0.9523636E + 00 

Computed order of   - uniform error constant,    
 = 0.3084886E + 00 

 

VIII. CONCLUSION 

A singularly perturbed linear system of second order 

ordinary differential equations of reaction-diffusion type 

with Robin boundary conditions is considered.  From the 

figure 1, it is evident that the components of the solution  ⃗  

exhibit no layers and from figure 2, the components of the 

solution  ⃗   exhibit twin layers at 0 and 1. The numerical 

approximations obtained with finite difference scheme on 

Shishkin mesh are proved essentially first order convergent. 

The order of convergence of   ⃗  presented in Table 1 agree 

with the theoretical results. 
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