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Abstract In this paper, the Multiple Attribute Group Decision Making (MAGDM) problems with intuitionistic fuzzy 

sets are considered. The weights of the decision maker are provided in the form of a singularly perturbed differential 

equation of convection diffusion type. The weights are calculated using the exact and numerical methods by the 

construction of Shishkin mesh and a finite difference scheme and it is applied in MAGDM problems under 

intuitionistic fuzzy environment. A new correlation coefficient for intuitionistic fuzzy sets is proposed which is used for 

ranking the alternatives. A class of operators based on Intuitionistic Fuzzy Ordered Weighted Geometric (IFOWG) 

operator is utilized for aggregating the attributes in contrast with the alternatives together with the decision maker 

weights to identify the best alternative from the available ones. Numerical illustration is given to show the effectiveness 

of the proposed approach. 
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I. INTRODUCTION 

Since the theory of Fuzzy Sets (FSs) was proposed by 

Zadeh [30], many research achievements based on FSs 

have been obtained. However, because FSs are based on 

membership functions, they cannot express non-

membership degrees. Atanassov [1-3] proposed the 

Intuitionistic Fuzzy Set (IFS) which are characterized by a 

membership function and a non-membership function, 

which is a generalization of the concept of FS. Chen & 

Yang [4] investigated the MAGDM problem with 

intuitionistic fuzzy information which is very useful for 

solving complicated decision problems using score values 

under uncertain circumstance. Liu & Chen [7] provide the 

general operational rule for intuitionistic fuzzy number. 

Robinson & Amirtharaj [12-17], Jeeva & Robinson [6] 

and Robinson & Jeeva [18] discussed the various 

decision making operators and proposed correlation 

coefficients for different higher order intuitionistic fuzzy 

sets and utilized them in ranking the alternatives in 

MAGDM problems. Robinson & Indhumathi [19] 

determined the unknown weights using Singularly 

Perturbed Delay Differential Equations and proposed a 

new correlation coefficient for IFSs and utilized them in 

ranking the alternatives in MAGDM problems. Zeng & Li 

[29] and Gerstenkorn & Manko [5] discussed the 

correlation coefficient of intuitionistic fuzzy set. Szmidt & 

Kacprzyk [21, 22] proposed some solution like the 

intuitionistic fuzzy core and consensus winner in group 

decision making with intuitionistic fuzzy preference 

relations. They also developed an approach to aggregate 

the individual intuitionistic fuzzy preference relations into 

a social fuzzy preference relation based on fuzzy majority 

equated with a fuzzy linguistic quantifier. Xu [23], Xu & 

Da [26], Xu & Yager [27], Xu & Chen [24, 25] and 

Yager [28] developed the OWA, OWG and Induced 

OWA(IOWA) operators  for MAGDM problems with 

intuitionistic fuzzy information. Using OWA operator, one 

can order the weight either in ascending or in a descending 

order depending upon the data values but for IOWA one 

can use the same procedure of OWA where the only 

difference is that the weight can be ordered through the 

order inducing variables.  

In this work, Singular Perturbation Problem (SPP) are 

used for determining weights of decision makers in 

MAGDM problems. First to distinguish between the 

regular perturbation problems and the singular 

perturbation problems, consider a family of boundary 

value problems (BVPs) ,P  depending on a small 

parameter . Under certain conditions, the solution 
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( )y x  of P  can be constructed by a well-known 

„method of perturbation‟; that is, as a power series in   

with its first term 
0y  being the solution of the problem 

0P  

(obtained by putting  =0 in P ). When such a power 

series expansion converges as 0   uniformly in x then 

it is a regular perturbation problem. When ( )y x  does 

not have a uniform limit in x as 0   this regular 

perturbation method fails and is called a singular 

perturbation problem [8-11]. Typically these problems 

arise in various fields of applied mathematics such as fluid 

dynamics (boundary layer problems), elasticity (edge 

effect in shells), quantum mechanics (WKB problems), 

electrical networks, chemical reactions, control theory, gas 

porous electrodes theory and many other areas. The 

Navier-Stokes equation with a large Reynolds number is 

one of the most striking examples of SPP, which led to the 

idea of boundary layer, introduced by L. Prandtl. 

Convective heat transport problem with large peclet 

number is another important example to be noted. Due to 

the presence of the perturbation parameter , the solutions 

of singularly perturbation equations and /or their 

derivatives behave non-smooth in some portion of the 

domain of definition of the problems. In those sub-

domains the solutions or their derivatives exhibit boundary 

or interior layers. 

The concept of boundary layer was introduced by Prandtl 

at the Third International congress of mathematicians in 

Heidelberg in 1904 and it was reported in the proceedings 

of the conference. In his paper fluid motion with very 

small friction, read before the mathematical congress, 

Prandtl proved that the flow about a body can be treated 

by dividing the domain of flow into two regions: a very 

thin layer near the body which he called as boundary layer, 

where frictional effects are prominent and the remaining as 

the outer region. On the basis of this hypothesis, Prandtl 

emphasized the importance of viscous flows without 

delving into the mathematical complexities involved. This 

boundary layer theory became the foundation stone for 

modern fluid dynamics. Numerical analysis and 

asymptotic analysis are two principal approaches for 

solving singular perturbation problems [8-11]. Since the 

goals and the problem classes are rather different, there 

has not been much interaction between these approaches. 

Numerical analysis tries to provide quantitative 

information about a particular problem. Whereas 

asymptotic analysis tries to provide an insight into the 

qualitative behaviour of a family of problems and semi 

quantitative information about any particular member of 

the family. 

The numerical treatment of SPPs has attracted a good 

number of scientists for the past six decades. It is well 

known that the solutions of SPPs are non-smooth with 

singularities related to boundary layers. When the 

perturbation parameter   is close to a critical value, even 

the most contemporary numerical methods fail to be robust 

and layer-resolving. Careful examination of the numerical 

results from the various finite difference schemes on 

uniform grids show that, for fixed (small) value of the 

parameter , the maximum point wise error usually 

increases as the mesh is refined until the mesh parameter 

and the perturbation parameter   have the same order of 

magnitude. This is due to the presence of the so called 

'boundary or interior layers exhibited by the solution. Of 

all the numerical methods suggested for SPPs the most 

popular methods based on finite differences are fitted 

operator methods and fitted mesh methods. A fitted 

method uses simply a classical finite difference operator 

on a piecewise-uniform mesh fitted on the domain of 

definition of the differential equation. Hence one has to 

look for robust computational methods which will give 

numerical approximations which inherit the stability 

properties of the exact solution by preserving the 

monotonicity of the original problem. 

Malley [8] and Nayfeh [11] gave an introduction to 

singular perturbation problems. Ross et al. [20] and 

Matthews et al. [9] presented a general introduction to 

parameter-uniform numerical methods for singular 

perturbation problems. Miller et al. [10] in their work 

have devoted the last five chapters for SPPs in two 

dimension. Fitted mesh methods and their parameter 

uniform convergence have been established for these 

problems. They have also proved that it is impossible to 

construct parameter-uniform numerical method using a 

standard finite difference operator on a uniform 

rectangular mesh for a problem having both an initial and 

parabolic boundary layer. They have suggested both a 

finite difference operator and a piecewise-uniform fitted 

mesh to achieve the parameter-uniform numerical method. 

In this paper, we have investigated the MAGDM problem 

with intuitionistic fuzzy set for ranking the alternatives 

together with IFWG and IFHG operators. A new 

correlation coefficient of IFSs is proposed for ranking the 

best alternatives. The decision maker has provided the 

weight vector information in the form of a singularly 

perturbed differential equation of convection-diffusion 

type. This differential equation is solved through 

numerical methods by constructing the Shishkin mesh and 

finite difference methods. The numerical solution to the 

differential equation is normalized and hence the weights 

of the decision maker are derived. The derived decision 

maker weights are applied in the decision problem for 

further aggregation of the IFS information which is given 

in the form of a decision matrix. A numerical illustration is 

given to show the effectiveness of the proposed approach.  
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II. BASIC CONCEPTS OF INTUITIONISTIC FUZZY 

SET 

Let X  be the universe of discourse. An intuitionistic fuzzy 

set A in X is an object having the form 

 , ( ), ( )A AA x x x x X    where

( ), ( ) : [0,1]A Ax x x  
 

denote membership function 

and non-membership function, respectively, of A and 

satisfy  0 ( ) ( ) 1A Ax x      for 

every .x X ( )A x is the lowest bound of membership 

degree derived from proofs of supporting x;  ( )A x is the 

lowest bound of non-membership degree derived from 

proofs of rejecting x. It is clear that the membership degree 

of Intuitionistic Fuzzy set A has been restricted in 

[ ( ),1 ( )]A Ax x  which is a subinterval of [0, 1]. For 

each IFS A in X we call  ( ) 1 ( ) ( )A A Ax x x      as 

the intuitionistic index of x in A. It is hesitation degree (or 

degree of indeterminacy) of x to A. It is obvious that  

0 ( ) 1A x   for each x X .  

For example, let A be a IFS with membership function 

( )A x and non-membership function ( )A x , 

respectively. If ( ) 0.5A x 
 

and ( ) 0.3A x  , then we 

have ( ) 1 0.5 0.3 0.2.A x      It could be interpreted as 

the degree that the object x belongs to the IFS A is 0.5, the 

degree that the object x does not belong to the IFS A is 0.3 

and the degree of hesitation is 0.2. Thus, the IFS A in X 

can also be expressed as 

 , ( ), ( ), ( ) :A A AA x x x x x X     

If A is an ordinary fuzzy set, then 

( ) 1 ( ) (1 ( )) 0A A Ax x x        for each x X . It 

means that the third parameter ( )A x  cannot be casually 

omitted if A is a general IFS, not an ordinary fuzzy set. 

Therefore, the representation of IFS should consider all 

three parameters in calculating the degree of similarity 

between IFSs. For , ( )A B IFS X , the set of all IFSs, the 

notion of containment is defined as follows:       

( ) ( ) and ( ) ( ),A B A BA B x x x x x X          

Definition: (Intuitionistic Fuzzy Set). 

An IFS A in X is given by 

 ,  ( ),  ( ) ,A AA x x x x X   where

 :  0,1A X  ,  :  0,1A X  , with the condition 

0 ( ) ( ) 1,   A Ax x x X      .The numbers  A x  

and  A x  represent, the membership degree and non-

membership degree of the element x to the set A, 

respectively. 

 

Definition: For each IFS A in X, if 

     1 ,   ,A A Ax x x x X        then  A x  is 

called the degree of indeterminacy or hesitancy of x to A, 

where 0 ≤   1A x  , for all xX. 

III. DIFFERENT CLASSES OF AGGREGATION 

OPERATORS IN INTUITIONISTIC FUZZY SET 

Geometric Mean (GM) Operator: 

Definition:   A Geometric Mean (GM) operator of 

dimension m is a mapping :   mGM R R   and is 

defined as: 

     
1

1 2

1

( , ,..., )
m

m

m j

j

GM a a a a



                          

 

Ordered Weighted Geometric (OWG) Operators: 

 The Ordered Weighted Geometric (OWG) operator is 

based on the OWA operator and the Geometric Mean (GM) 

operator and provides a parameterized family of 

aggregation operators used in many applications.  The 

definition of the OWG operator is as follows: 

 

Definition:   An OWG operator of dimension m is a 

mapping :   mOWG R R  that has an associated 

weighting vector 1 2( , ,..., )T

mw w w w  of dimension 

m having the properties, [0,1],jw 
1

1
m

j

j

w



  

and 

such that              

1 2

1

( , ,..., ) j

m
w

m j

j

OWG a a a b



                          

 

Where bj is the jth largest of the ai . 

Example:   Assume (0.4,0.3,0.2,0.1)Tw   

Consider the decision data given by  

 0.7,0.1,0.2,0.6 .ja   Then
        ,   

0.4 0.3 0.2 0.1 ( ) (0.1 ) (0.7 ) (0.6 ) (0.2 ) 

= 0.69

jOWG a    
A 

fundamental aspect of this operator is the reordering of the 

arguments, based upon their values. That is, the weights 

rather than being associated with a specific argument, as in 

the case of the usual weighted average, are associated with 

a particular position in the ordering. 
 

 

Note: 

Different OWG operators are distinguished by 

their weighting functions.  The three important special 

cases of OWG aggregations are: 
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 Maximum: in this case * (1,0,0,...,0)Tw   

1 2( , ,..., ) max( )m i
i

OWG a a a a  

 Minimum: in this case 
*

(0,0,0,...,1)Tw   

1 2( , ,..., ) min( )m i
i

OWG a a a a  

 Average: in this case 
1 1 1

, ,...,

T

Aw
m m m

 
  
 

 

1

1 2( , ,..., ) ( )m
m i

i

OWG a a a a  

 The OWG operator is: Commutative, Monotonic and 

Idempotent. 

Definition: Intuitionistic Fuzzy Weighted Geometric 

Operator (IFWG) 

Let ( , )j j ja   , for all 1,2,........,j n  be a 

collection of intuitionistic fuzzy values. The Intuitionistic 

Fuzzy Weighted Geometric (IFWG) operator, 

: nIFWG Q Q  is defined as: 

1 2

1

1 1

( , ,..., )

( ,1 (1 ) ),j j

n

n j j

j

n n

j j

j j

IFWG a a a a

 



 



 



  



 
 

where 
1 2( , ,..., )T

n     be the weight vector of 
ja , 

for all  1,2,...,j n  such that  0j   and 
1

1.
n

j

j




  

 

Definition: Intuitionistic Fuzzy Ordered Weighted 

Geometric Operator (IFOWG) 

Let ( , )j j ja   , for all 1,2,...,j n  be a collection 

of intuitionistic fuzzy values. The Intuitionistic Fuzzy 

Weighted Geometric (IFOWG) operator, 

: nIFOWG Q Q  is defined as: 

1 2 ( )

1

( ) ( )

1 1

( , ,..., )

,1 (1 ) ,

j

j j

n

n j

j

n n

j j

j j

IFOWG a a a a


 

 

  



 



 
   
 



   

where  1 2, ,...,
T

nw w w w is the associated weight vector 

such that 0iw   and 
1

1
n

j

j

w


 . Furthermore, 

 (1), (2),..., ( )n    is a permutation of (1,2,…, n), such 

that 
( 1) ( )j ja a    for all j=2,…, n. 

 

Definition: Intuitionistic Fuzzy Hybrid Geometric 

Operator (IFHG) 

Let ( , )j j ja   , for all 1,2,...,j n  be a collection 

of intuitionistic fuzzy values. The Intuitionistic Fuzzy 

Hybrid Geometric (IFHG) operator, : nIFHG Q Q  is 

defined as: 

, 1 2 ( )

1

( , ,..., ) j

n
w

w n j

j

IFHG a a a a 


  

=
( ) ( )

1 1

( ) ,1 (1 ) ,
j j

j j

w wn n

a a

j j
 

 
 

 
  

  
   

where 
1 2( , ,..., )T

nw w w w  is the associated vector 

such that  0jw   and 

1

1
n

j

j

w


 , and where 

1 2( , ,..., )T

n     be the weight vector of 
ja , for all  

1,2,...,j n  such that  0j   and 

1

1.
n

j

j





 

Furthermore 
( )ja  is the 

thj  largest of the weighted 

intuitionistic fuzzy numbers 
jn

j ja a


 , 1,2,..., .j n
 

IV. CORRELATION COEFFICIENT OF 

INTUITIONISTIC FUZZY SETS (IFSS) 

By correlation analysis, the joint relationship of two 

variables can be examined with a measure of 

interdependence of the two variables. It is well known that 

the conventional correlation analysis using probabilities 

and statistics was inadequate to handle uncertainty of 

failure data and modeling. The method to measure the 

correlation between two variables involving fuzziness is a 

challenge to classical statistical theory.  Fuzzy correlation 

has captured the attention of researchers recently. 

Correlation coefficient of fuzzy sets, interval-valued fuzzy 

sets, intuitionistic fuzzy sets and interval-valued 

intuitionistic fuzzy sets are already in literature. Various 

attempts were made by researchers in the recent days to 

define the correlation coefficient of intuitionistic fuzzy 

sets and Interval-valued Intuitionistic Fuzzy sets. As vague 

sets deal with truth membership value, false membership 

value and the vague degree, and have more ability to deal 

with uncertain information than traditional fuzzy sets [12, 

15], many researchers pay attention on vague set theory. 

Zeng & Li [29] focused on probability spaces to define a 

new kind of correlation for intuitionistic fuzzy sets.  

Gerstenkon & Manko [5] defined the correlation of 

intuitionistic fuzzy sets as an ensemble of ordinary fuzzy 

set, and defined correlation coefficient of intuitionistic 

fuzzy sets by using the correlation coefficient of two 

ordinary fuzzy sets and a mean aggregation function. In 

their definition, the correlation coefficient lies between 0 
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and 1, differing from the conventional range of [1, 1]. In 

this paper, a new method to calculate the correlation 

coefficient of intuitionistic fuzzy sets is proposed based on 

the method proposed by Robinson & Amirtharaj [12] for 

calculating correlation coefficient of vague sets, taking the 

membership, non-membership and the hesitancy grades 

into account.  

 

Let X = {x1, x2, ...,xn} be the finite universal set and A, B ∈ 

IFS(X) be given by  

     , ,  / ,A AA x x x x X    
 

     , ,  / .B BB x x x x X      

And the length of the intuitionistic fuzzy value values are 

given by: 

             

( ) 1 ( ) ( ),A A Ax x x    

( ) 1 ( ) ( ).B B Bx x x      

Now for each A ∈ IFS(X), the informational intuitionistic 

energy of A is defined as follows: 

        
22 2

1

1
    1   ,

n

IFS A i A i A

i

E A x x x
n

  


    
  an

d for each B ∈ IFS(X), the informational intuitionistic 

energy of B is defined as follows: 

         
22 2

1

1
    1   ,

n

IFS B i B i B

i

E B x x x
n

  


    
                                                                  

The correlation between the IFSs A and B is given by the 

formula: 

 
      

      1

  11
  , ,

1  

n A i B i A i

IFS

i
B i A B

x x x
C A B

n x x x

  

  

  
 
   

                  

Furthermore, the correlation coefficient between the IFSs 

A and B is defined by the formula: 

                              

( ,  )
( ,  )    ,

( ) . ( )

IFS
IFS

IFS IFS

C A B
K A B

E A E B
                                                         

where  0 ≤ KIFS(A,B) ≤ 1. 

 

Proposition 1:     

             For A, B ∈ IFS(X), we have: 

i) 0 ( , ) 1,IFSC A B   

ii) ( , ) ( , ),IFS IFSC A B C B A  

iii) ( , ) ( , ).IFS IFSK A B K B A  

 

Theorem 1:   For A, B ∈ IFS(X), then 

0 ( ,  ) 1.IFSK A B 
 

Theorem 2:   ( , ) 1 .IFSK A B A B    

Theorem 3:   ( , ) 0IFSC A B   A and B are non-fuzzy 

sets and satisfy the condition ( ) ( ) 1A i B ix x    or 

( ) ( ) 1A i B ix x    or ( ) ( ) 1,   X.A i B i ix x x      

Theorem 4:   ( , ) 1IFSC A A A   is a non-fuzzy set. 

V. SINGULAR PERTURBATION PROBLEMS 

In a differential equation, a small positive parameter ɛ 

multiplying the highest order derivative and/or the lower 

order derivatives is known as the singular perturbation 

problems. A Singular perturbation problem is said to be 

convection-diffusion type if the order of the differential 

equation is reduced by one when the perturbation 

parameter ɛ is set to equal to zero. 

 We consider a class of linear singular perturbation 

problems of the form  

( ) ( ) ( ) ( )u x b x u x f x      , 0 1x   with 

boundary condition 0 1(0) , (1)u u u u   . 

Where 0 1,u u  are given constants, ε is a small parameter 0 

<ε≤ 1; b(x) and f(x) are continuous on [0, 1]. It is assumed 

furthermore that the coefficient function satisfies the 

condition a(x) > α > 0 for all x .  

The differential operator L for the above problem is 

defined, for all 
2( )c   , by L a      . 

 

To support the numerical experiments we are making use 

of the results in [10]. 

 

3.1 Analytical Results  

The operator  L  satisfies the following maximum 

principle: 

 

Lemma 1:  

Assume that (0) 0 (1) 0and   . Then, 

( ) 0L x   for all x  implies that ( ) 0x   for 

all x . 

 

As a consequence of the maximum principle, there is 

established the stability result for the above problem in the 

following: 

 

Lemma 2: 

 If u  is any function in C, then for all 

[0,1]x ,  ( ) (1 )u x C x   . 

Lemma 3: 

 Let u  be the solution of the above problem. 

Then, for 0 3k  , 
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( ) (1 )/( ) (1 )k k xu x C e  

       

for all x . 

The Shishkin decomposition of the solution u  has to be 

decomposed into smooth and singular components as 

follows: 

0 1 0.u v y w     

Where the smooth component  0v  is the solution of 

1

1 0 1 0 1, (0) (0), (1) 0L y v y w y      , and the 

singular component 0w  is the solution of 

/

0 0 0 0 1 00, (0) (1) , (1) (1).L w w w e w u v 



     

Theorem 5:  

The solution u  of the above problem has the 

decomposition u v w     where, for all k, 0 3k  , 

and all x , the smooth component v satisfies 

                       
( ) ( 2) (1 )/( ) (1 ),k k xv x C e  

         

and the singular component w  satisfies 

                       
( ) (1 )/( ) ,k k xw x C e  

       

for some constant C independent of  . 

 

5.2 Shishkin Mesh 

 

On the domain of definition, a piecewise uniform mesh is 

to be constructed. As the solutions exhibit boundary layer 

at x=1, the mesh is to be fine in the neighborhood f x=1 

and coarse elsewhere. If the total number of mesh points is 

N, then N/2 points are distributed among the inner domain 

and the remaining N/2 in the outer region. The mesh is 

precisely as presented below: 

0 1 1 .
2

j

N
x x jh for j     

2

2

(1 ) 1 .
2

N
j

N
x jh for j


      

Where the parameter   is defined as: 

 

1
min , ln

2
N






 
  

 
  and 

1

2(1 )
h

N


  , 

2

2
.h

N


   

 

5.3 Finite difference Methods 

               

The classical finite difference operator with an appropriate 

piecewise uniform mesh is used to discrete the above 

boundary value problem is presented as follows: 

 

2 ( ) ( ) ( ) ( ),

(0,1).

N

i i i iL U x b x D U x f x

x

     

   

Where      

2 1( )
( ) ( ), ,

2

i i
i i

h hD D
U x U x h

h


 


 

 

1

1

1

( ) ( )
( ) ;  

( ) ( )
( ) .

i i
i

i

i i
i

i

U x U x
D U x

h

U x U x
D U x

h

 



 







 

This is used to compute numerical approximation to the 

solution of the above problem. The following discrete 

results are analogous to those for the continuous case. 

 

Lemma 4: Assume that the mesh function i  satisfies 

0 0 0.Nand     

Then 0 1 1N

iL for i N       implies 

that 0i   for all 0 .i N   

Lemma 5:  

If iZ  is any mesh function such that 0 0,NZ Z  then                                  

1 1

1
max 0 .N

i j
j N

Z L Z for i N
   

    

Theorem 6:  

The solution u  of the continuous problem and the 

solution U  of the discrete problem satisfy the following 

 -uniform error estimate                                                         

1 2

0 1

sup ( ) .U u CN lN 




 

    

 

VI. WEIGHT VECTOR DETERMINATION USING 

SINGULAR PERTURBATION PROBLEM 

Problem proposed by the decision maker: 

The following problem is proposed by the decision maker 

instead of giving direct weights to the decision variables. 

The problem is solved through coding in FORTRAN in 

the LINUX environment: 

( ) ( ) 0u x u x   
 

with  (0) 0, (1) 1u u  ; 

0 1x  . 

Solution: 

 

The exact solution of the above problem is: 

 

1

1
( ) .

1

x

e
y x

e





 
 
 

 
 
 

 
 

  
    
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And the numerical solution is calculated by using the 

above finite difference scheme and fix  =0.01. 

          Table: 1 Exact solution for ( ) ( ) 0u x u x      

N 
Average of 

exact solution 

Normalization  

of exact solution 

256 0.99338 0.33305 

512 0.99453 0.33343 

1024 0.99476 0.33351 

Figure: 1 Exact solution for           

( ) ( ) 0u x u x              

 

  Table: 2 Numerical solution for ( ) ( ) 0u x u x      

N 

Average of 

numerical        

solution 

Normalization 

of numerical 

Solution 

256 0.05127 0.20452 

512 0.07408 0.29550 

1024 0.06588 0.26279 

2048 0.05949 0.23731 

    Figure: 2 Numerical solution for 

( ) ( ) 0u x u x      

 

 

VII. Algorithm for Group Decision Making with 

Intuitionistic Fuzzy Information   

 

Let 1 2{ , ,..., }nA A A A  be a discrete set of 

alternatives, and 1 2{ , ,..., }nG G G G be the set of 

attributes, 1 2{ , ,..., }n     is the weighting vector of 

the attribute 
jG  for all j=1,2,...,n, where [0,1]j  , 

1

1
n

j

j




 .Let 1 2{ , ,..., }nD D D D  be the set of 

decision makers, 1 2( , ,..., )nw w w w  be the weighting 

vector of decision makers, with [0,1]kw  ,
1

1
n

k

k

w


 , 

and 1 2( , ,..., )nv v v v  be the weighting vector of order 

inducing variable, with  [0,1]iv  , 
1

1
n

i

i

v


 . Suppose 

that 
       ,
k k k

k ij ij ij
m n m n

R r  
 

   is the 

intuitionistic fuzzy decision matrix, where  
  k

ij  

indicates the degree that the alternative iA  satisfies the 

attribute 
jG  given by the decision maker kD ,  

  k

ij indicates the degree that the alternative iA   does 

not satisfy the attribute 
jG  given by the decision maker 

kD , 
( ) ( )[0,1], [0,1]k k

ij ij    and 

( ) ( ) 1k k

ij ij   , for i=1,2,..., m, j=1,2,..., n, k=1,2,…,t.  

 

Then the algorithm for MAGDM using IFOWG and 

IFHG operator is as follows: 

 

Step 1.   Utilize the IFOWG operator to aggregate all 

individual intuitionistic fuzzy decision matrices 

     ( 1,2,3,4)
k k

ij
m n

R r k


   into a collective 

intuitionistic fuzzy decision matrix R=(rij)mxn. 
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Step 2.   Utilize the IFHG operator,   

        1 2

,, , ,..., ,

1,2,...

t

i i i v w i i ir IFHG r r r

i m

   


 

to derive the collective overall preference intuitionistic 

fuzzy values  1,2, ..i i mr    of the alternative Ai 

along with the weighting vectors of the decision maker 

derived from solving the singularly perturbed differential 

equation of convection diffusion type. 

Step 3.   Calculate the correlation coefficient between the 

collective overall preference values ir and the positive ideal 

value r 
, where (1,0)ir  . 

The correlation coefficient between the IFSs, 

, ( )A B IFS x  is given by the formula: 

( ,  )
( ,  )    

( ) . ( )

IFS
IFS

IFS IFS

C A B
K A B

E A E B
  

 

Step 4.   Rank all the alternatives 

  1,2,  ,iA i m  and select the most desirable one(s). 

VII. NUMERICAL ILLUSTRATION 

An investment enterprise wants to invest some money into 

a company, where there are five possible companies A1, A2, 

A3, A4, and A5 as alternatives. In order to make a reasonable 

decision, the investment enterprise invited three experts D1, 

D2, and D3 to evaluate the alternatives with respect to four 

attributes G1, G2,G3, and G4, where G1 denotes the risk 

analysis, G2 denotes the growth analysis, G3 denotes the 

social-political impact analysis, and G4 denotes the 

environmental impact analysis. The five possible 

alternatives iA  for i = 1, 2, 3, …., 5 are to be evaluated 

using the intuitionistic fuzzy numbers, whose weighting 

vector by the decision makers under the above four 

attributes is derived by using singular perturbation problem. 

The three decision makers have reached a consensus on the 

weight vector, and have provided the weight information in 

the form of a singularly perturbed differential equation of 

convection diffusion type, which was solved in section 6. 

The decision makers want the singular perturbation 

problem to be solved numerically and the weights derived. 

Following the instructions of the decision makers, the 

weight information is derived as 

(0.33305,0.33343,0.33351)T  and 

(0.20452,0.29550,0.26279,0.23731)w . The 

decision maker evaluates the alternatives in terms of the 

IFS with respect to the attributes to form their decision 

matrices 
( ) ( ) ( ) ( )

5 4 5 4( ) ( , )k k k k

ij x ij ij xR r     (k=1,2,3) as 

follows: 

 

   

   

   

   

   

   

   

   

   

   

1

0.2,  0.6 0.4,  0.4

0.6,  0.2 0.6,  0.2

0.6,  0.2 0.5,  0.3

0.4,  0.2 0.5,  0.2

0.4,  0.5 0.4,  0.6

0.5,  0.4  0.5,  0.3  

0.7,  0.3  0.7,  0.3  

0.5,  0.4  0.6,  0.4   

0.8,  0.2  0.7,  0.2  

0.4,  0.3  0.4,  0.2  

D

 
 
 
 

  
 
 
 
   

   

   

   

   

   

   

   

   

   

   

2

0.5,  0.4 0.5,  0.3

0.6,  0.3 0.7,  0.3

0.4,  0.4 0.2,  0.6

0.4,  0.4 0.6,  0.2

0.4,  0.2 0.7,  0.2

0.4,  0.5  0.6,  0.2  

0.5,  0.4  0.6,  0.2  

0.4,  0.5  0.3,  0.5   

0.5,  0.4  0.7,  0.2  

0.6,  0.3  0.7,  0.2  

D

 
 
 
 

  
 
 
 
   

   

   

   

   

   

   

   

   

   

   

3

0.5,  0.3 0.5,  0.2

0.6,  0.2 0.7,  0.2

0.4,  0.3 0.3,  0.3

0.3,  0.5 0.5,  0.2

0.4,  0.4 0.6,  0.3

0.4,  0.2  0.5,  0.2  

0.5,  0.3  0.5,  0.3  

0.4,  0.4  0.3,  0.4   

0.5,  0.3  0.5,  0.3  

0.6,  0.2  0.6,  0.4  

D

 
 
 
 

  
 
 
 
 

By 

using the proposed algorithm we obtain: 

 1
( , 0.73941) ;IFS iK r r 

 2
( , 0.51325) ;IFS iK r r    

 3
( , 0.81283) ;IFS iK r r 

 4
( , 0.53512) ;IFS iK r r    

 5
( , 0.60321) .IFS iK r r    

.Rank all the alternatives  , 1,2,3,4,5 :iA i   

3 1 5 4 2.A A A A A     

Hence, the best alternative is 3A . 

VIII. CONCLUSION 

In this work, our aim is to determine the weights of 

decision makers in which the decision maker weights are 

completely unknown. So we can present a new approach 

for finding weights of decision makers in group decision 

environment based on singular perturbation problem given 

by the decision maker was proposed. To derive the decision 

maker weights, the exact and numerical solution of 

singularly perturbed differential equation of convection- 

diffusion type problem is considered and its applied in 

MAGDM problems under intuitionistic fuzzy environment. 

A newly proposed correlation coefficient of IFS is used as a 

ranking tool for choosing desirable alternative. Finally, the 

numerical solutions were decomposed, and decision 

maker‟s weights for alternatives were derived and 

corresponding decision making algorithm was proposed. 

The proposed method in this paper can relieve a difficult 

situation in the decision making process especially when 

the decision maker provides the weight information in the 

form which is unknown to the stakeholder. 
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