

Water Quality Index of Ground Water Bodies of Kilvelur Taluk, Nagapattinam District, TamilNadu, India

S.Punitha^{1*} and Dr.G.Selvarajan²

^{1*} Research Scholar, PG & Research Department of Chemistry, Thiru. Vi. Ka. Government Arts

College, Thiruvarur, TamilNadu, India. punithaneelesh@gmail.com

²Assistant Professor, PG & Research Department of Chemistry, Thiru Vi Ka Government Arts

College, Thiruvarur, TamilNadu, India. selvarajanganesan2014@gmail.com

^{1*}Corresponding author

Abstract - The present work is evaluating the water quality index (WQI) for the ground water of Kilvelur taluk, Nagapattinam District. WQI is calculated on the basis of weighted arithmetic index by analyzing 16 physico – chemical parameters. The physico – chemical parameters namely pH, Electrical conductivity, Total dissolved solids, Total hardness, Calcium, Magnesium, Carbonate, Bicarbonate, Chloride, Nitrate, Sulphate, Sodium, Potassium, Dissolved oxygen, Biochemical oxygen demand, Chemical oxygen demand. This study is to determine the suitability of water for drinking purpose based on water quality index (WQI) estimated. The analysis indicates that the water samples of the location needs some degree of treatment before consumption and it also essential to be protected from the perils of contamination.

Keywords: Ground water, Water quality index, Kilvelur taluk, Nagapattinam District.

I. INTRODUCTION

Ground water is the most useful water sources. Water is second to oxygen as being needed for life. People can survive days, weeks or even longer without food, however totally regarding four days while not water. Contamination of such water sources is a big problem creating health hazard¹.

Water is an essential component of the surroundings and it sustains life on the earth. Humans rely upon water for their survival. Water is also a raw material for photosynthesis and therefore, is crucial for crop production². The cause of ground water gets polluted and creates health problems, due to the fact the water may be very crucial surroundings. Any imbalance in term of amount it may be harm to the entire environment. Therefore there is always needed for concern over the safety and management of ground water quality³. Good drinking water quality is important for the well being of all people⁴.

Drinking water is a vital resource that has to be protected against pollution and biological contamination. Underground water is clean however it depends upon quality and amount of materials distributed and dissolved in it. Water picks up impurities in during its flow, which are harmful to human beings and vegetation. The reason for contamination and pollution of water in the natural surroundings and in the storage are pesticides, fertilizers, industrial wastes, inorganic and organic salts from top soil and geological layer. Excess mount of physico – chemical components, cause a certain ecological and physical problems to human⁵.

Ground water is a treasured natural present and an essential renewable aid having several inherent advantages over surface water. It is a good supply of fresh water available in the world. The demand for water has increased over the years and this has led to water scarcity in several parts of the world. The scenario is irritated by using the problem of water pollutants or infection. India is heading towards fresh water crisis specifically due to incorrect management of water resource and environmental degradation. This leads to lack of access to safe potable water supply to millions of people. It becomes imperative to regularly monitor the quality of water and to device ways and means to protect it. Water quality index is one of the exceptional tools to communicate information on general water quality status of ground water to the concerned user community and policy makers. For that reason, it turns into a vital parameter for the evaluation and management of ground water⁶.

The principle of water quality index is to show the water quality information that is understandable and usable via the public⁷. Water quality index provides a single number that shows total quality of water, primarily based totally on several water quality parameters⁸. A single number cannot

tell complete story of water quality; there are many different quality parameters that are not included in the index. However, a water quality index based totally on some very essential parameters can provide a simple indicator of water quality indices incorporate from multiple water quality parameters into mathematical equation that rates the health of a water body with number. The objective of the present work is to discuss the suitability of ground water for human consumption based on computed water quality index values⁹.

II. STUDY AREA

Kilvelur is a town Panchayat town in district of Nagapattinam, Tamil Nadu. It is located 17 km closer to west from district head quarters Nagapattinam. Kilvelur taluk is a 311 km from the capital Chennai towards north. Kilvelur taluk is located by Thiruvarur taluk in the direction of West, Keelaiyur taluk in the direction of South and Nagapattinam taluk in the direction of East. Thiruvarur city, Nagapattinam city, Thiruthuraipoondi city, Karaikal city are the neighbouring cities to Kilvelur.

Table 1: Name of the locations of Kilvelur taluk

Samples	Locations	
S 1	Kovil Paththu	
S2	Vettaikkaraniruppu	
S 3	Pudhupalli	
S4	Vizhunthamavadi	
S5	Kameswaram South	Profile – A
S 6	Kameswaram North	Prome – A
S7	Ramar Madam 🖸	
S8	Prathabaramapuram	
S9	Seruthur 😤	
S10	Cholavidyapuram	
S11	Venmani	
S12	Venmanacheri	
S13	Vappanchery	
S14	Needur	┖╽┸╲┻
S15	Palakurichi	Profile – B
S16	Vandalur	Pionie – B
S17	Thevur	20
S18	Velankanni	^{esearc} h in E
S19	Thiruppoondi	
S20	Killukudi	

III. METHODOLOGY

Ground water samples were collected from twenty locations during Pre monsoon, Monsoon, Post Monsoon period (May 2014 to Nov 2016). Each of the ground water samples became analysed for sixteen parameters such as pH, Electrical conductivity, Total dissolved solids, Total hardness, Calcium, Magnesium, Carbonate, Bicarbonate, Chloride, Nitrate, Sulphate, Sodium, Potassium, Dissolved oxygen, Biochemical oxygen demand, Chemical oxygen demand using standard procedures recommended by World Health Organization¹⁰. Water Quality Index is evaluated from the point of view of suitability of ground water for human consumption.

IV. RESULT AND DISCUSSION

WQI Calculation

The Weighted Arithmetic Index method became used for the calculation of Water Quality Index of the water body⁷. The Water Quality Index is calculated by using the following expression.

$$WQI = \sum q_n W_n / \sum W_n$$
(1)

Where, qn = Quality rating of n^{th} water quality parameter.

 $W_{n=}$ Unit weight of nth water quality parameter.

1. Quality rating (q_n)

The quality rating (q_n) is calculated using the following expression.

$$q_n = ((V_n - V_{id}) / (S_n - V_{id})) \times 100$$
(2)

Where.

Vn = Estimated value of n^{th} water quality parameter at a given sample location.

 $(V_{id} = 0, \text{ except for pH & DO. } V_{id} = 7 \text{ for pH and } V_{id} = 14.6 \text{ mg/l for DO})$

 S_n = Standard permissible value of n^{th} water quality parameter.

2. Unit Weight

The unit weight (W_n) is calculated using the following equation.

$$Wn = k / S_n$$
Where, (3)

 $S_n =$ Standard permissible value of n^{th} water quality parameter.

K = Constant of proportionality and it is calculated by using the following equation.

$$---(4)$$

3. WQI and Status of Water Quality

The ranges of Water Quality Index and corresponding water quality status and their possible use are summarized in table (2).

		Table (2)	
S.No	Water Quality Index	Water Quality Status	Possible Usages
1	0 - 25	Excellent water quality	Drinking, irrigation and industrial
2	26 - 50	Good water quality	Domestic, irrigation and industrial
3	51 - 75	Poor water quality	Irrigation and industrial
4	76 - 100	Very poor water quality	Irrigation
5	> 100	Unfit for drinking	Proper treatment required before use

4. Standard values and Unit weights of water quality parameters of the Study area

The water quality parameters are choose on primarily based on its direct involvement in deteriorating water quality for human consumption. The standards for the drinking water, recommended by the World Health Organization are considered for the computation of Quality rating and Unit weights. The values of those physico – chemical parameters are observed high which is above the permissible limits in some of the samples of the study area. The higher values of those parameters would increase WQI value. The standard values of ground water quality parameters and their corresponding ideal values and unit weights are given in table (3).

 Table (3) Standard values of Water quality parameters

 and their corresponding ideal values and unit weights.

S.N o	Paramete rs	Sn	Recommendi ng agency for Sn	Idea l valu e (Vid)	K valu e	Unit weight
1			WHO		0.09	0.010823
	pH	8.5		7	2	5
2	EC	140	WHO		0.09	0.000065
		0		0	2	7
3	TDS		WHO		0.09	
		500		0	_ 2	0.000184
4	TH		WHO		0.09	
		500		0	2	0.000184
5	Ca		WHO	have the second	0.09	0.001226
		75		0	2	7

	-					
6	Mg		WHO		0.09	0.003066
		30		0	2	7
7	CO32-		WHO		0.09	0.001226
		75		0	2	7
8	HCO3-		WHO		0.09	0.003066
		30		0	2	7
9	Cl		WHO		0.09	
		250		0	2	0.000368
10	NO3		WHO		0.09	
		50		0	2	0.00184
11	SO4		WHO		0.09	
		500		0	2	0.000184
12	Na		WHO		0.09	
		200		0	2	0.00046
13	K		WHO		0.09	0.007666
		12		0	2	7
14	DO		WHO		0.09	
		5		14.6	2	0.0184
15	BOD		WHO		0.09	
		5		0	2	0.0184
16	COD		WHO		0.09	
		10		0	2	0.0092

5. Water quality index values for different season of ground water samples

The WQI values of the different season samples are summarized in table 4 to 9 samples of the study area are very poor to not worthy for drinking and the ground water from these locations require proper water treatment before use.

Table 4

S.No	Parameters	Observed Value (V _n)	Standard Values (S _n)	Ideal Value (V _{id})	Unit Weight (W _n)	Quality Rating (q _n)	W _n Q _n
1	pH	7.2	8.5		0.010824	13.33	0.144
2	EC	577 🕹	1400	0	0.000066	41.21	0.003
3	TDS	794	or 500	0	0.000184	158.8	0.029
4	TH	518	500	0	0.000184	103.6	0.019
5	Ca	309	75 ⁻⁷ CN	In gng	ne 0.001227	412	0.505
6	Mg	122	30	0	0.003067	406.67	1.247
7	CO ₃ ²⁻	269	75	0	0.001227	358.67	0.439
8	HCO ₃ ⁻	329	30	0	0.003067	1096.67	3.363
9	Cl	115	250	0	0.000368	46	0.017
10	NO ₃	19	50	0	0.001840	38	0.070
11	SO_4	72	500	0	0.000184	14.4	0.003
12	Na	155	200	0	0.000460	77.5	0.036
13	K	64	12	0	0.007667	533.33	4.089
14	DO	14.4	5	14.6	0.018400	2.08	0.038
15	BOD	8.3	5	0	0.018400	166	3.054
16	COD	16.6	10	0	0.009200	166	1.527
					$\sum W_n = 0.07636$	$\sum q_n = 3634.26$	$\sum W_n q_n = 14.585$

Table 5

		Calcula	ation of WQI of water	samples in Monso	oon season of Profile	e - A				
S.No	Parameters	Observed Value (Standard Values	Ideal Value	Unit Weight	Quality Rating	W _n Q _n			
9.110	r ai ameter s	V _n)	(S _n)	(V _{id})	(W _n)	(q _n)	w _n Q _n			
1	pН	7.1	8.5	7	0.010824	6.67	0.072			
2	EC	547	1400	0	0.000066	39.07	0.003			
3	TDS	763	500	0	0.000184	152.60	0.028			
4	TH	602	500	0	0.000184	120.40	0.022			
5	Ca	364	75	0	0.001227	485.33	0.595			
6	Mg	139	30	0	0.003067	463.33	1.421			
7	CO ₃ ²⁻	345	75	0	0.001227	460.00	0.564			
8	HCO ₃ ⁻	388	30	0	0.003067	1293.33	3.966			
9	Cl	147	250	0	0.000368	58.80	0.022			
10	NO ₃	20	50	0	0.001840	40.00	0.074			
11	SO_4	73	500	0	0.000184	14.60	0.003			
12	Na	136	200	0	0.000460	68.00	0.031			
13	K	58	12	0	0.007667	483.33	3.706			
14	DO	13.5	5	14.6	0.018400	11.46	0.211			
15	BOD	8.4	5	0	0.018400	168.00	3.091			
16	COD	16.9	10	0	0.009200	169.00	1.555			
					$\sum W_n = 0.076363$	$\sum q_n = 4033.93$	$\sum_{n=1}^{\infty} W_n q_n$			
	WQI = 201.19									

Table 6

		Calculat	tion of WQI of water s	sa <mark>mp</mark> les in Post n	onsoon season of l	Profile - A	
S.No	Parameters	Observed Value (V _n)	Standard Values (S _n)	Ideal Value (V _{id})	Unit Weight (W _n)	Quality Rating (q _n)	W _n Q _n
1	pН	7.4	8.5	7	0.010824	26.67	0.289
2	EC	540	1400	0	0.000066	38.57	0.003
3	TDS	826	500	0	0.000184	<u> </u>	0.030
4	TH	700	500	0	0.000184	140.00	0.026
5	Ca	403	75	0	0.001227	537.33	0.659
6	Mg	158	30		0.003067	526.67	1.615
7	CO ₃ ²⁻	364	-75	0	0.001227	485.33	0.595
8	HCO ₃ ⁻	356	30	0	0.003067	1186.67	3.639
9	Cl	159	250	0	0.000368	63.60	0.023
10	NO ₃	20	509rch in		0.001840	40.00	0.074
11	SO_4	73	500	Ellylor	0.000184	14.60	0.003
12	Na	119	200	0	0.000460	59.50	0.027
13	K	50	12	0	0.007667	416.67	3.194
14	DO	12.5	5	14.6	0.018400	21.88	0.403
15	BOD	8.4	5	0	0.018400	168.00	3.091
16	COD	18.1	10	0	0.009200	181.00	1.665
					$\sum W_n = 0.07636$	$\sum q_n = 4071.68$	$\sum_{n=1}^{\infty} W_n q_n$
				WQI = 200.84			I

Table 7

	Calculation of WQI of water samples in Pre monsoon season of Profile - B								
S.No	Parameters	Observed Value (V _n)	Standard Values (S _n)	Ideal Value (V _{id})	Unit Weight (W _n)	Quality Rating (q _n)	W_nQ_n		

International Journal for Research in Engineering Application & Management (IJREAM) *ISSN : 2454-9150* Vol-04, Issue-06, Sep 2018

Case (199							
1	pН	7.3	8.5	7	0.010824	20	0.216
2	EC	1458	1400	0	0.000066	104.14	0.007
3	TDS	980	500	0	0.000184	196.00	0.036
4	TH	724	500	0	0.000184	144.80	0.027
5	Ca	430	75	0	0.001227	573.33	0.703
6	Mg	198	30	0	0.003067	660.00	2.024
7	CO ₃ ²⁻	333	75	0	0.001227	444.00	0.545
8	HCO ₃	384	30	0	0.003067	1280.00	3.925
9	Cl	353	250	0	0.000368	141.20	0.052
10	NO ₃	20	50	0	0.001840	40.00	0.074
11	SO_4	68	500	0	0.000184	13.60	0.003
12	Na	147	200	0	0.000460	73.50	0.034
13	K	70	12	0	0.007667	583.33	4.472
14	DO	12.5	5	14.6	0.018400	21.88	0.403
15	BOD	7.8	5	0	0.018400	156.00	2.870
16	COD	17	10	0	0.009200	170.00	1.564
					$\sum W_n = 0.07636$	$\sum q_n = 4621.78$	$\sum W_n q_n = 16.954$
	1			WQI =	222.02	1	

Table 8

		Calculat	ion of WQI of w	ater sample	es in Monsoon seasor	n of Profile - B	
S.No	Parameters	Observed Value (V _n)	Standard Values (S _n)	Ideal Value (V _{id})	Unit Weight (W _n)	Quality Rating (q _n)	W _n Q _n
1	pH	7.1	8.5	7	0.010824	6.67	0.072
2	EC	1420	1400	0	0.000066	101.43	0.007
3	TDS	969	500	0	0.000184	193.80	0.036
4	TH	758	500	0	0.000184	151.60	0.028
5	Ca	440	75	0	0.001227	586.67	0.720
6	Mg	219	30	0	0.003067	730.00	2.239
7	CO ₃ ²⁻	399	75	0	0.001227	532.00	0.653
8	HCO ₃	377	30	0	0.003067	1256.67	3.854
9	Cl	0 395	250	0	0.000368	158.00	0.058
10	NO ₃	20	- 50	-0	0.001840	40.00	0.074
11	SO_4	65	500	0	0.000184	13.00	0.002
12	Na	135	200	0	0.000460	67.50	0.031
13	K	60	1 2	0	0.007667	500.00	3.833
14	DO	12	5	14.6	0.018400	27.08	0.498
15	BOD	8.3	Re 5	0	0.018400	166.00	3.054
16	COD	17.9	10arch	0	0.009200	179.00	1.647
				n Engi	$\sum W_n = 0.07636$	$\sum q_n = 4709.41$	$\sum W_n q_n = 16.805$
	•	•		WQI =	220.07	•	•

Table 9

		Calculatio	on of WQI of wat	er samples i	in Post monsoon sea	son of Profile - B	
S.No	Parameters	Observed Value (V _n)	Standard Values (S _n)	Ideal Value (V _{id})	Unit Weight (W _n)	Quality Rating (q _n)	W _n Q _n
1	pH	7.4	8.5	7	0.010824	26.67	0.289
2	EC	1384	1400	0	0.000066	98.86	0.006
3	TDS	993	500	0	0.000184	198.60	0.037
4	TH	855	500	0	0.000184	171.00	0.031
5	Ca	477	75	0	0.001227	636.00	0.780
6	Mg	229	30	0	0.003067	763.33	2.341
7	CO ₃ ²⁻	431	75	0	0.001227	574.67	0.705

547 | IJREAMV04I0642147

HCO ₃ ⁻	385	30	0	0.003067	1283.33	3.936
Cl	430	250	0	0.000368	172.00	0.063
NO ₃	20	50	0	0.001840	40.00	0.074
SO_4	68	500	0	0.000184	13.60	0.003
Na	129	200	0	0.000460	64.50	0.030
K	60	12	0	0.007667	500.00	3.833
DO	10.4	5	14.6	0.018400	43.75	0.805
BOD	8.9	5	0	0.018400	178.00	3.275
COD	19.7	10	0	0.009200	197.00	1.812
				$\sum W_n = 0.07636$	$\sum q_n = 4961.31$	$\sum W_n q_n = 18.020$
11			WQI =	235.98	1	
	Cl NO ₃ SO ₄ Na K DO BOD	Cl 430 NO ₃ 20 SO ₄ 68 Na 129 K 60 DO 10.4 BOD 8.9	Cl 430 250 NO ₃ 20 50 SO ₄ 68 500 Na 129 200 K 60 12 DO 10.4 5 BOD 8.9 5	Cl 430 250 0 NO ₃ 20 50 0 SO ₄ 68 500 0 Na 129 200 0 K 60 12 0 DO 10.4 5 14.6 BOD 8.9 5 0 COD 19.7 10 0	Cl 430 250 0 0.000368 NO3 20 50 0 0.000368 SO4 68 500 0 0.0001840 Na 129 200 0 0.000460 K 60 12 0 0.007667 DO 10.4 5 14.6 0.018400 BOD 8.9 5 0 0.018400 COD 19.7 10 0 0.009200	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

In this study, the WQI values ranges from 190.99, 201.19 and 200.84 for Pre monsoon, Monsoon, Post monsoon respectively for Profile – A. The WQI values of ground water samples ranged from 222.02, 220.07 and 235.98 for Pre monsoon, Monsoon, Post monsoon respectively for Profile – B.

V. CONCLUSION

The current investigation, the WQI values are ranged from 190.99 to 235.98 and therefore, can be categorized into five types "excellent water" to "water unsuitable for drinking". All the samples exceeded 100, the upper limit for drinking water. Table -2 shows the percentage of water samples that falls under different quality. The high value of WQI at these locations has been found to be mainly from Total dissolved solids, Total hardness, Calcium, Magnesium, Carbonate, Bicarbonate, Potassium, Dissolved oxygen, Biochemical oxygen demand and Chemical oxygen demand in the ground water. All the water samples are poor in quality. In this part, the ground water quality may improve because of inflow of fresh water of good quality during rainy season. Magnesium and Chloride are extensively interrelated and shows that the hardness of the water is permanent in nature. The analysis indicates that the ground water of the location needs few degree of treatment before utilization, and it additionally needs to be protected from the perils of contamination.

REFERENCES

- Dr.Nagarnaik P.B, Pankaj N, Patil, May-Jun 2012, Analysis of Ground Water of Rural Areas of Wardha-City Using Physico –Chemical and Biological parameters, (IJERA), Vol. 2, Issue 3, pp.803-807.
- [2] Tripathi I.P, Sangam Lal Dwivedi, Aparna Dwivedi and Asheesh Kumar, 2016, Physico-Chemical Characteristics of Ground Water Quality in District Hamirpur (UP), Int. Journal of Engineering Research and Application, 2, Vol. 6, Issue 11.
- [3] Dharmaraja J, Vadivel S, Ganesh Karthick E, 2012, Physico-Chemical Analysis of Ground Water Samples

of Selected Districts of Tamilnadu And Kerala. International journal of scientific and technology research, , Vol. 1, Issue (5).

- [4] O. Akoto, J. Adiyiah(2007), Chemical analysis of drinking water from some communities in the Brong Ahafo region.Int. J. Environ. Sci. Tech., 4 (2): 211-214.
- [5] Tambekar D. H. and B. B. Neware, Oct. 2012, Water Quality Index and Multivariate Analysis for Ground Water Quality Assessment of Villages of Rural India, Science Research Reporter 2(3): 229-235.
- [6] Maruthi Devi Ch, Kiran Yarrkula, Usha Madhuri T, 2013, Assessment and mapping of water quality index in Prakasam district, A.P. using geographical information systems, International Journal of Geomatics and Geosciences, Volume 3, No 3.
- [7] Qureshimatva UM, Maurya RR, Gamit SB, Patel RD and Solanki HA, 2015, Determination of Physico-Chemical Parameters and Water Quality Index (Wqi) of Chandlodia Lake, Ahmedabad, Gujarat, India, Journal of Environmental Analytical Toxicology, 5:4.
- [8] Jonathan YISA, Tijani Oladejo JIMOH, July-December 2012, Underground Water Assessment using Water Quality Index, Leonardo Journal of Sciences, ISSN 1583-0233, p. 33-42.
 - [9] Ramakrishnaiah C.R and Sadashivaiah C, 2009, Assessment of Water Quality Index for the Groundwater in Tumkur Taluk, Karnataka State, India, E-Journal of Chemistry, 6(2), 523-530.
 - [10] World Health Organization (W.H.O.), 1998, Guideline for drinking water quality. Health criteria and other supporting information, 2nd ed, Geneva, 2: 231 -270.