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Abstract In this paper we determine the metric dimension problems associated with pair resolving sets for the graphs of 

certain crystal structures and chemical structures like the basic chemical unit of silicates is the (SiO4) tetrahedron and 

bismuth tri-iodide, lead chloride. Also we study some applications of pair resolving set in network theories and we study 

the importance to avoid the overlapping between the robots in a network.   
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I. INTRODUCTORY CONCEPTS 

The distance between  and  in , denoted by 

, is the lenght of the shortest path  to  in . Let  

 be an ordered subset of  .  

For a vertex , a representation of  with 

respect to  is -tuple              

. Metric 

dimension was initially introduced in 1970s, by Harary and 

Melter [3], and independently by Slater [2]. The set  is 

called a pair resolving set [10] for  if   then 

 for at most one v such that 

. The minimum cardinality of a pair resolving 

set of  is called the metric dimension of , denoted by 

.  

Silicates are obtained by fusing metal oxides or metal 

carbonates with sand. Essentially all the silicates contain SiO4 

tetrahedra. In chemistry, the corner vertices of SiO4 

tetrahedran represent oxygen ions and the center vertex 

represents the silicon ion. In graph theory, we call the corner 

vertices as oxygen nodes and the center vertex as silicon node. 

The minerals are obtained by successively fusing oxygen nodes 

of two tetrahedra of different silicates. See Figure 1. 

 

 

 

 

Figure 1 

The physical structure of solid materials of engineering 

importance depends mainly on the arrangements of the 

atoms, ions, or molecules that make up the solid and the 

bonding forces between them. If the atoms or ions of a solid 

are arranged in a pattern that repeats itself in three 

dimensions, they form a solid that is said to have a crystal 

structure and is referred to as a crystalline solid or 

crystalline material. The atomic arrangement or crystalline 

structure of a material is important in determining the 

behavior and properties of a solid material. Examples of 

crystalline materials are metals, alloys, and some ceramic 

materials. The unit cell is the smallest structural unit or 

building block that can describe the crystal structure. 

Repetition of the unit cell generates the entire crystal. In this 

section, we investigate the metric dimension problems for 

the graphs bismuth tri-iodide, lead chloride. 

 

                

       

 

Figure 2 

Metric dimension in graph theory has many applications 

in the real world. It has been applied to the optimization 

problems in complex networks, analyzing electrical 

networks; show the business relations, robotics, control of 

production processes etc. In this section, we study the 

applications of pair resolving set in various network 

theories. Also we study the importance to avoid the 

overlapping between the robots in a network. 
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II. PAIR RESOLVING SETS IN                            

CHEMICAL STRUCTURES 

2.1 Silicate Networks 

We describe the construction of a silicate network from a 

honeycomb network. A honeycomb network can be built 

from a hexagon in various ways. The honeycomb network 

HC(1) is a hexagon. The honeycomb network HC(2) is 

obtained by adding six hexagons to the boundary edges of 

HC(1).  

 

 

 

 

 

 

Figure 3: The honeycomb network HC(2) 

Consider a honeycomb network HC(2) of dimension 2. 

Place silicon ions on all the vertices of HC(2). Subdivide 

each edge of HC(2) once. Place oxygen ions on the new 

vertices. Introduce 6x2=12 new pendant edges one each at 

the 2-degree silicon ions of HC(2) and place oxygen ions at 

the pendent vertices. See Figure 4(a). With every silicon ion 

associate the three adjacent oxygen ions and form a 

tetrahedron as in Figure (b). The resulting network is a 

silicate network of dimension 2, denoted SL(2). The 

diameter of SL(2) is 4n=4x2=8. The graph in Figure 4(b) is 

a silicate network of dimension two.   

 

 

 

 

 

 

 

 

Figure 4: Silicate network construction with nodes 

The 3-degree oxygen nodes of silicates are called boundary 

nodes. In Figure 4(b), c1, c2 … c12 are boundary nodes 

SL(2). 

 

Observations   

a) The number of nodes in SL(n) is 15n
2
 + 3n and the 

number of edges of SL(n) is 36n
2
 

b) In a Silicate network, minimum pair resolving set exists.  

c) In a Silicate network, connected PR-set exists. 

d) In a Silicate network, independent PR-set does not exists. 

Theorem 2.1 . 

Proof In a silicate network SL(2), the number of vertices is 

even. By the definition of pair resolving set, a graph of even 

order does not contain any singleton pair resolving set. So 

that  .  

Theorem 2.2 Metric dimension associated with pair 

resolving set of SL(2) greater than or equal to 4.  

Proof By observation, the number of nodes in SL(n) is even 

for any value of n. Also by the definition of pair resolving 

set, a graph with even number of nodes does not contains a 

odd number of metric basis elements. Therefore the metric 

dimension associated with pair resolving set of SL(2) 

greater  than 4.  Now we have to verify metric dimension 

associated with pair resolving set of SL(2) greater than or 

equal to 4. Since every α line contain only even number of 

oxygen nodes in SL(n) and  line in SL(2) contains 

four number of oxygen nodes. 

 

 

 

 

 

 

 

 

 

Figure 5 

Now we claim that the set of all nodes in  line is a 

metric basis. That is . Therefore the 

metric basis of SL(2) is  (see Figure 5). To 

prove W is pair resolving set of SL(2). By the definition 

pair resolving set, for each vertex  in SL(2), there exist a 

vertex  with . In SL(2), for each 

vertex in the positive lines space (above  line), 

there exists a vertex in the negative lines space (below 

 line) with . So that W is a pair 
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resolving set of SL(2). Therefore every vertex in  line 

is metric basis and is of even order. Hence metric dimension 

associated with pair resolving set of SL(2) greater than or 

equal to 4. This completes the proof.  

Remark 2.3 From above theorem, we conclude that the 

metric dimension of SL(n) is the number of nodes in  

line. Also  line contains only oxygen nodes. 

 If n=1, then the  line contains 2 oxygen nodes 

and . 

 If n=2, then the  line contains 4 oxygen nodes 

and .  

 Therefore Metric dimension associated with pair 

resolving set of SL(n) greater than or equal to 2n. 

Now we prove this conclusion as follows. 

Theorem 2.4 The metric dimension of SL(n) is at least 2n. 

Proof For i = j, each pair of vertices (ai , bj) are at equal 

distance from all the vertices in  line of SL(n). And 

there are at least 2n number of such vertices exist in  

line of SL(n), Therefore that all 2n number of such vertices 

must present in the basis. Hence the cardinality of  basis 

must be greater than or equal to 2n. Hence the metric 

dimension of SL(n) is greater than or equal to 2n. 

2.2 Crystal Structures  

The Graph of Bismuth Tri-Iodide 

Bismuth tri-iodide (BiI3) is an inorganic compound. It is 

the product of the reaction of bismuth and iodine, which 

once was of interest in qualitative inorganic analysis. 

Layered BiI3 crystal is considered to be a three-layered 

stacking structure, where bismuth atom planes are 

sandwiched between iodide atom planes, which form the 

sequence I-Bi-I planes. The periodic stacking of three layers 

forms rhombohedral BiI3 crystal with R-3 symmetry. The 

successive stacking of one I-Bi-I layer forms hexagonal 

structure with symmetry. Figure 6 shows one unit of 

bismuth tri-iodide. The graph of a single unit of bismuth tri-

iodide contains six 4-cycles of which three are on the left, 

other three are in the right. The unit cells of bismuth tri-

iodide can be arranged either linearly or in a sheet form. A 

linear arrangement with m unit cells is called an m-bismuth 

chain; mn unit cells arranged into m rows and n columns is 

called an m × n bismuth sheet.  

 

Figure 6 

Observations 

a) The number of vertices in one unit bismuth               

tri-iodide is 30.  

b) The bismuth atoms in  line of bismuth               

tri-iodide is the minimum pair resolving set for 

bismuth tri-iodide.  

c) Independent PR-set exists for bismuth tri-iodide.   

d) Connected PR-set does not exists for bismuth           

tri-iodide.   

Theorem 2.5 Let G be an 1-bismuth chain. Then the 

dimension of G associated with pair resolving set is 2. 

Proof We claim that the set all bismuth atoms in  line 

are the metric basis (see Figure 6.10). That is                 

. Now we prove W is a pair resolving set. For 

that we have to prove G contains only pairwise equidistance 

vertices. Since each vertex in left part of  line, there 

exists a equidistance vertex   in right part of  line. 

Therefore we obtained 13 pair of vertices with equal 

distance from W. Then W is a pair resolving set, which 

contains minimum number vertices.  Hence a and b are 

metric basis for 1-bismuth chain. Thus dimension of G 

associated with pair resolving set is 2. 

Remark 2.6 From the above theorem, We conclude that the 

dimension of m-bismuth chain associated with pair 

resolving set is 2(m+1). 

 

Figure 7: Three unit of bismuth tri-iodide 
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The Graph of Lead Chloride 

Lead chloride is a halide crystal which occurs naturally in 

the form of mineral cotunnite. It is used in the production of 

infra red transmitting glass and basic chloride of lead 

known as patteson‟s white lead, perry, ornamental glass 

called aurene glass, stained glass. It is also used as an 

intermediate in refining bismuth (Bi) ore, it is used in the 

synthesis of organometallic, lead titanate and barium 

titanate. The structure of lead chloride is orthorhombic 

dipyramidal. The graph of a single unit of lead chloride is 

obtained from that of bismuth tri-iodide by joining just one 

2-degree vertex of each of the 4-cycles to a new vertex. As 

in the case of bismuth tri-iodide, chains and sheets of lead 

chloride are defined.  

 

Figure 8: One unit of lead chloride 

Observations 

a) The number of vertices in one unit of lead chloride 

is 31.  

b) The bismuth atoms in  line of lead chloride is 

the minimum pair resolving set for lead chloride.  

c) Independent PR-set exists for lead chloride.   

d) Connected PR-set does not exists for lead chloride.   

Theorem 2.7 Let G be an one unit of lead chloride. Then 

the dimension of G associated with pair resolving set is 3. 

Proof We claim that the set all lead atoms in  line are 

the metric basis (see Figure 8). That is . Now 

we prove W is a pair resolving set. For that we have to 

prove G contains only pairwise equidistance vertices. Since 

each vertex in left part of  line, there exists a 

equidistance vertex   in right part of  line. Therefore 

we obtained 14 pair of vertices with equal distance from W. 

Then W is a pair resolving set, which contains minimum 

number vertices.  Hence  and  are metric basis for one 

unit of lead chloride. Thus dimension of G associated with 

pair resolving set is 3.   

Remark 2.8 From the above theorem, We conclude that the 

dimension of m-lead chloride associated with pair resolving 

set is 2m+1. 

III. PAIR RESOLVING SETS IN                        

ROBOTIC NETWORK                             

Definition 3.9 Let  be the minimum pair resolving set for 

a graph . The cardinality number of a basis element 

 is the number of vertices of  identified by  and it 

is denoted by . 

Example 3.10 Consider the following graph G, 

 

                        Figure 9 

Then the minimum pair resolving set is  and 

the , . 

Definition 3.11 Two vertices  and  are called 

Overlapping with each other if  

for any vertex . 

Example 3.12 In Figure 9, the basis elements  and  are 

Overlapping with respect to . 

Definition 3.13 Let  be the set of all basis elements of  

and  be the set of all vertices of Consider every basis 

element as a robotic elements. The Robotic Assignment is 

defined as, for a vertex we can assign the Robotic 

(basis) element  if   Minimum of the 

coordinate values. 

Example 3.14 In Figure 9, the coordinate of vertex  is 

 with respect to the basis elements . Therefore 

 and the robotic element  is assigned to . 

Remark 3.15 Suppose a graph contains overlapping robotic 

elements, then some vertex of G having possibility to assign 

by two robotic elements. In Figure 9, we can assign  or 

 to the vertex  and similarly we can assign  or  to 

the vertex . Suppose  and 

, then we can assign  to . 

Definition 3.16 The Robotic Assignment spanning 

Subgraph (RASS) of the robotic network G is the subgraph 

obtained from the robotic assignment of G. 

Example 3.17 Consider the graph G in Figure 9 as a 

Robotic network,  then we can establish the Robotic 

Assignment spanning Subgraphs (RASS) as follows, 
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Figure 10: RASS 

Remark 3.18 For large scale computations, network models 

consist of several nodes and can place uniquely a minimum 

number of Robots to identify them. But in the case of 

optimization we cannot assign two machines (Robots) to the 

same node. So we should avoid the overlapping between the 

machines. 

Result 3.19 If the Robotic assignment subgraph is not 

connected then adjoin the edge or path between any two 

vertices which are not in  to make it a connected spanning 

subgraph. This is possible since the graph is connected. 

Hence we obtain a spanning tree for G.  

The following figure represents the Robotic spanning tree S 

of the graph in Figure 9.  

 
Figure 11 

Robotic spanning tree is one of the main concepts that have 

wide applications in various fields. These concepts are 

highly utilized by computer science applications. Especially 

in research areas of computer science such data mining, 

image segmentation, clustering, image capturing, 

networking etc., For example a data structure can be 

designed in the form of tree which in turn utilized vertices 

and edges. Similarly modeling of network topologies can be 

done using these concepts. In the same it is utilized in 

resource allocation, scheduling, traveling salesman problem, 

database design concepts, resource networking.  

IV. CONCLUSION 

The metric dimension problems associated with pair 

resolving set of crystal structure referred to as a crystalline 

solid or crystalline material are important in determining the 

behavior and properties of a solid material. Using the 

concept of pair resolving set, we have also obtained Robotic 

Assignment spanning subgraph in a complex network and 

the problem of avoiding overlapping are helps in solving 

some complicated networks. Our future work is to 

concentrate metric dimension associated with pair resolving 

set on other interconnection networks which are worth 

considering for Cayley and Non-Cayley graphs.  
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