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Abstract - Neutrosophy is the base of neutrosophic logic, neutrosophic set, neutrosophic probability etc., The concept of

rough neutrosophic set is an essential tool for dealing with uncertainties free from the shortcomings that affect the

existing methods. Innovative methods are devised in rough neutrosophic set and some of its properties are

discussedherein.Execution of medical diagnosis is presented to find out the disease impacting the patient.
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I. INTRODUCTION

In 1965, Fuzzy set theory was firstly given by Zadeh
[8]which is applied in many real applications to handle
uncertainty. Sometimes membership function itself is
uncertain and hard to be defined by a crisp value. So the
concept of interval valued fuzzy sets was proposed to
capture the uncertainty of grade of membership. In 1986,
Atanassov introduced the intuitionistic fuzzy sets which
consider both truth-membership and falsity-membership.
Later on, intuitionistic fuzzy sets were extended to the
interval valued intuitionistic fuzzy sets. Intuitionistic fuzzy
sets and interval valued intuitionistic fuzzy sets can only
handle incomplete information not the indeterminate
information and inconsistent information which exists
commonly in belief systems. So, Neutrosophic set
(generalization of fuzzy sets, intuitionistic fuzzy sets and so
on) defined by FlorentinSmarandache[1] has capability to
deal with uncertainty, imprecise, incomplete and
inconsistent information which exists in real world from
philosophical point of view. Wang et al[2] proposed the
single valued neutrosophic set.

In 1982, Pawlak[4] introduced the concept of rough set
(RS), as a formal tool for modeling and processing
incomplete information in information systems. There are
two basic elements in rough set theory, crisp set and
equivalence relation, which constitute the mathematical
basis of RSs. The basic idea of rough set is based upon the
approximation of sets by a pair of sets known as the lower
approximation and the upper approximation of a set. Here,
the lower and upper approximation operators are based on
equivalence relation. Later on, Dubois and Prade introduced
fuzzy rough sets as a fuzzy generalization of rough sets.
SalehzRizvi et al introduced rough intuitionistic fuzzy sets.
Broumi et al[5] introduced rough neutrosophic sets.
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In this paper, by using the notion of rough neutrosophic set,
it is provided an exemplary for medical diagnosis. In order
to make this, several types of methods are executed.

Rest of the article is structured as follows. Section 2, briefly
presents the basic definitions. Section 3 deals with proposed
definitions and some of its properties. Sections 4,5&6
contains methodology, algorithm and case study related to
medical diagnosis respectively. Conclusion is given in
Section 7.
Il. PRELIMINARIES

2.1 Definition[6]

Let H be a universal space of points (objects) with a
generic element of H denoted by X . A single valued
neutrosophic set S is characterized by a truth membership

functionTN(X), a falsity membership function FN(X) and
indeterminacy function IN(X) with TN(X) , FN(X) ,
|N(X)e [0,1] forall X inH .

When H is continuous, a SVNS S can be written as
follows:

S = [(Ts(x) Fs () 15(x))/ x, ¥x e H
and when H is discrete, a SVNS S can be written as
follows:

S :Z<T5(X): FS(X),|S(X)>/X,VXE H

It should be observed that for SNVS S

0<supTs(x)+supls(x)+supFs(x)<3 vxeH
2.2 Definition [7]

Let A be a fuzzy neutrosophic set in X.Let R be the
relation from X to Y. Then max-min composition of fuzzy
neutrosophic set with A is another fuzzy neutrosophic set
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of Y which is denoted by Ro A Then the membership
function, indeterminate function and non-membership
function of B is defined as

Teealy)=va [Ta()AT (%, )]
I ROA(Y):VX [l A(X)/\ | A(X' y)]

Fraly)=ns [F AV Fal, y)]
2.3 Definition [5]

Let U be a non-null set and R be an equivalence
relation on U . Let P be neutrosophic set in U with the
membership function T, , indeterminacy function |, and
non-membership function g, . The lower and the upper
approximations of P in the approximation (U,R)denoted by
N(P)& N(P)are respectively defined as follows:

N(P)= <<X,Tm(P)(X)v |m(P)(X)v FN(P)(X»/ ye[x] r'XE U>

N(P)= <(x,Tmp>(X), 1) (%) Py (X)) /y e[ ] x eU>

where

T (X) = yE[Q]R Te(y)

Iney(X)= Vv _ 1 P(y)
ve[X],

Fvey(X)= v FP(Y)
ve[X],

Tue(X)= v Te(y)

Inee)(x)= AR (v)

FN(P)(X) = yeﬁ]R F P(Y)-

So, OSTN(p)(X)+ Iﬂ(p)(X)+ FMP)(X)SS &

0<Tie)(X)+ i) (X)+ Frue)(x)<3,

where vV and A mean ‘“max” and “min” operators
respectively,

Tp(y),|p(y)& Fp(y)are the membership, indeterminacy
and non-membership of y with respect to p. It is easy to
see that N(P)&N(P) are two neutrosophic sets inU ,thus the
neutrosophic ~ set  mappings  N,N:N(U)->NU) are
respectively, referred to as the lower and upper rough NS
approximation operators, and the pair @(p)ﬂ(p)) is called
the rough neutrosophic set in(U,R).

2.4 Definition [5]

Let N(p)&N(p,)be two rough neutrosophic sets of the
neutrosophic sets P; & P, respectively in U , then
N(p.)= N(p,) if and only if N(p)< N(p,) and N(P,)< N(p)
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I1l. PROPOSED DEFINITIONS

The proposed definitions are as follows
3.1 Definition

LetA:(a,b,c) be a single valued neutrosophic number, a

grade function E of a single valued neutrosophic value,
based on the truth-membership degree, indeterminacy-
membership degree and falsity-membership degree is
defined by

E(A):w (1)

3.1.1  Proposition

E(A)>0
Proof

The proof is straightforward
3.1.2  Theorem

Let A=(a,b,c,) and B=(a,,b,.c,)be two single valued
neutrosophic numbers. If A< B then E(A)>E(B)

Proof
By Eg. (2),
E(A)= ((1_a1)t]_b1 -c)’ & E(B)= ((1*az)zbz -c,)

SinceAc B,a, <a, b >b, & ¢ >c,.

S (a,—a)=0, (b—b)>0&
(c, —¢,)=0.Hence E(A)-E(B)>0.
3.2 Definition

LetA=( a, b,C) be a single valued neutrosophic number, a

similarity grade function N of a single valued neutrosophic
value, based on the truth-membership degree,
indeterminacy-membership degree and falsity-membership
degree is defined by

N(A):l—(l_a)% (2

3.2.1Proposition
N(A)>0
Proof
The proof is straightforward
3.22  Theorem
LetA=(a,,b,c, JandB=(a,,b,,c,)be two single valued
neutrosophic numbers. If A< B then N(A)<N(B)
Proof
By Eq. (2),

N(A):l—% & N(B):l_%
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T Since Ac B.a,<a, b >b& ¢ >c,
~(a,-a,)=0, (0, —b,)=20& (¢, —c,)=0.

Hence N(A)-N(B)<0.

3.3 Definition

Let A={(T (%) 1o 06)F o (OMT 2060 T 06) F ()

and B =((T 5 ()15 (%) F o ()} (T (%) Ta(6) Fa (%))

be two rough neutrosophic sets, then the logarithmic
distance

L Dns (A B)=

3.3.1  Proposition

(i) LDRNS(A' B)e [011]

(ii) LDgrns (A, B): LDgrns (B, A)

(i) fAcBcC  then LDans(A C)> LDrs(AB)
and LDRNS(A,C)2 LDRNS(BlC)

Proof

(i) The proof is straightforward

(ii) The proof is straightforward
(iii)By definition2.4,

IA(Xi)SIB(Xi)SIC(Xi)
-FA(Xi)S-FB(Xi )S'I_'c (Xi)
lA(Xi )le(xi)zlc (x)
TA(Xi )ZTB(Xi)ZTC (x)
EA(Xi)ZEB(Xi)ZEC(Xi)
EA(Xi)ZEB(Xi)ZEC(Xi)
[ AcBcC

Hence
L

Ic
|EA Xi)_EB Xi1§|EA(Xi)_EC Xil

|EA(Xi )_EB(XJ S|EA(Xi )_Ec (XJ
Here, the logarithmic distance is an increasing function
LMy (A, C)Z LM rns (A, B)& LM rns (A, C)2 LM rns (B, C)
3.4 Definition

Let  A=((T,(6)1,06) F 06T a0 Ta06 ) Falx)) and
B:<(IB(Xi)1lB(Xi)vEB(Xi))'('I_'B(Xi)'l_B(Xi)'EB(Xi)» be two rough

neutrosophic sets then the exponential measure.
EM RNS (A, B) =
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‘IA(Xi)*IB(Xi)“f‘LA(M )*l@(xi)“f
[EAGi)-Ep O)[+TA(xi)-TB (xi)]+
I TAGi)-TB Ci)[+FACi)-FB ()|
n

N
3""
Ms

T
—+e
4

@

3.4.1 Proposition
(i) EMes(AB)=0
(i) EMgns (A, B)= EM rns (B, A)
(i) 1f A< B = C then EM qys(A C)< EM rys(A B)and
EM rns (A,C)S EM rns (B,C)
Proof
(i)The proof is straightforward

(ii)The proof is straightforward
(iii) By definition 2.4,

Ta0)<To(x)<Tc(x)
Tal)<To(6)<Tc(x)
106)= 15 (%)= 1c(x)
14060)21506)>Tc (%)
F ()= Fg(%)>Fc(x)
FA(6)=Fs(6)2Fc(x)
ﬂ cBcC

Hence,
|IA(Xi )_IB(XiX < |IA(Xi )_Ic (Xix
|-FA(Xi )_-FB(XiX = h_—A(Xi )_'Fc (XiX
[a0)=Ls O ) <[ 1a(x) -1

-
>
—_
P
N
I
—
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IA
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>
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|FA(Xi)_ FB(Xi] S|FA(Xi)_ Fc(xq
Here, the exponential measure is a decreasing function.
- EM rys (Axc)S EM runs (A, B)& EM runs (Axc)S EM runs (B, C)
3.5 Definition

Let A:<(IA(Xi)’lA(Xi)’EA(Xi))’(-FA(Xi)’TA(Xi)’EA(Xi)» and
B=((Ta(x ) 1o (%) Fo (%)) a(x)1a(x) Falx))) be two rough
neutrosophic sets then the similarity measure

SMRNg (A B)=
JTA(Xi)_TB(XiI +‘1A(Xi)_13(xij +‘EA(Xi)_EB(Xi1 +
o NFa0)-Tabo] fial) -7 :

)Tl +

n
o
n

i=1

3.5.1  Proposition

(1) sMgws(AB)e[0]]

(i) sm RNS(Ai B)= SM gns (81 A)

(iii) IFAcB<C  then SM (A C)< SMms(AB)and
SM ns(A C)< SMrns(B.C)

Proof

(i)The proof is straightforward
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(ii)The proof is straightforward
(iii) By definition 2.4 ,
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EA(Xi)_EB(XiX S|EA(Xi)_Ec (Xi]
Here, the similarity measure is a decreasing function

.. SM rns (A,C) < SMrns (A1 B)&SM RNS (A,C) < SMrns (B| C)

3.6 Definition

Let  A=((T,(6) 1,06} EL()hFate)h1a06) FA(x)) and
B=((To(x ) Lo () Eo (6 )) o (6 ) 1o 06D Fa(x)) be two

rough neutrosophic sets then the logarithmic function based
on similarity measure

_1 2+SM RNS(A’ B)
|RNS(AIB)_ 2|:I092—SM RNS(A,B):| (6)

3.6.1  Proposition
0) |RNS(A, B)E[O,l]

(ii) Irns (A B) = s (B, A)
If Ac B < Cthen

(i) Irns (A’C) < RNs(A, B) and

Proof

lens (A C)<lans(B,C)

(i)The proof is straightforward
(ii)The proof is straightforward
(iii)By definition2.4,

Ta(6)<T(6)<T(x)
Ta06)<T6()<Tc (%)
lA(Xi )le(xi)zlc (x)
1406)2 75 (6) 21 (x)
F ()= Fg(x)=Fc(x)
Fal6)=Fex)=Fc(x)
[ AcBc C]
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[EA06)- F
[Falx)=Fe( ) <[Falx)-Felx)

Here, the logarithmic function is a decreasing function
s (A C) < s (A B) & s (A C) < 1ys (B, C)

3.7 Definition

Let A=((T, ()L, 00) EL ()M o0 TA00)LE L)) and

B={(Ta06) 15 06) Fox MTa( ) 1a(x ) Falx)) be  two

rough neutrosophic sets then the exponential function based
on similarity measure

{ 2+SMRNs (A.B) }
Eans (A, B):; oL 2n(2-SMgns (A,B)) @)

3.7.1  Proposition

(|) ERrNS (A, B) >0

(if) Caus (A, B): Erns (B' A)

(iii) If Ac B cCthenens(A C)<eas(AB) and
€rRNs (A,C)S ERNS (B,C)

Proof

(i) The proof is straightforward
(i) The proof is straightforward
(iii) By definition 2.4,

T, 06)<To)<Tc(x)
Ta06)=Ts06)<Tc (%)
lA(Xi)ZlB(Xi)2 lc(xi)
TA(Xi)ZTB(Xi )=1c (x)
F, ()= Fg(x)=Fc(x)
EAl6)2Felx)=Fc(x)
[ AcBcC

Hence,
|IA(Xi )_IB(XiX = |IA(Xi )-Te (Xix
|-FA(Xi )_'FB(XJ S |-FA(Xi )_'Fc (Xij
|1A(Xi )_ lB(Xi < |1A(Xi )_ lc (Xi

-
>
—~
X
~
|
!
@
—~~
x
S
IA
-1
>
—_
X
~
|
-
o
—~
x
S

Here, the exponential function is a decreasing
function

= erns (A C)< erns (A B)&erns (A C) < erys (B,C)

IV. METHODOLOGY

In this section, application of rough neutrosophic set in
medical diagnosis is presented. In a given pathology,
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uppose S is a set of symptoms, D is a set of diseases and
P is a set of patients and let Q be a rough neutrosophic

relation from the set of patients to the symptoms
ie, Q(P—>S) and R be a rough neutrosophic relation

from the set of symptoms to the diseases i.e., R(S — D)and
then the methodology involves three main jobs:

1. Determination of symptoms.

2. Formulation of medical knowledge based on rough
neutrosophic sets.

3. Determination of diagnosis on the basis of various
computation techniques of rough neutrosophic sets.

V. ALGORITHM

Step 1:The symptoms of the patients are given to obtain the
patient - symptom relation Q and are noted in Table

1.

Step 2 : The medical knowledge relating the symptoms with
the set of diseases under consideration are given to
obtain the symptom - disease relation R and are
noted inTable 2.

Step 3 :Table 3 is obtained by calculating average values
for Table 1.

Step 4 :Table 4 is obtained by calculating average values
for Table 2.

Step 5:Table 5 is obtained by applying definition 2.2
between Table 3 & Table 4.

Step 6 : The Computation T of the relation of patients and
diseases is found using definitions 3.1 & 3.2 in
Table 5 and are noted in Table 6 & Table 7
respectively.

Step 7 : The Computation T of the relation of patients and
diseases is found using definitions 3.3, 3.4, 3.5, 3.6
& 3.7 and are noted in Table 8 to 12 respectively.

Step 8 :Finally, the minimum value from Table 6 & 8 and
maximum value from Table 7,9, 10, 11 & 12 of
each row are selected to find the possibility of the
patient affected with the respective disease and then
it is concluded that the patient P (k=1,2&3) is
suffering from the disease D,(r=1,2,3&4)

VI. CASESTUDY [6]

Let there be three patients P = {Pl, P,, P3} and the set
of symptoms S ={ S, =Temperature, S, =Headache, S;=
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Stomach pain, S,=Cough, S;= Chest pain}.The Rough
Neutrosophic Relation Q(P — S)is given as in Table 1.Let
the set of diseases D = { D,= Viral fever, D,= Malaria,
D, = Stomach problem, D, = Chest problem}.The Rough

Neutrosophic Relation R(S - D) is given as in Table 2.

VII. CONCLUSION

The propounded techniques are most reliable to handle
medical diagnosis problems quiet comfortably.The
recommended methods can invade in other areas such as
clustering,image processing etc., In future, these methods
can beenhanced to other types of neutrosophic sets also.
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Table 1:Patient — Symptom (Using Step 1)

Q Temperature Headache Stomach pain Cough Chest pain
o (0.6,0.4,0.3), (0.4,0.4,0.4), (05,0.3,0.2), (0.6,0.2,0.4), (0.4,0.4,0.4),
' (0.80.2,0.2) (06,0.2,0.2) (0.7,0.10.2) (0.8,0.0,0.2) (06,02,0.2)
o (05,0.304) (05,0.5,0.3), (050.30.4) (0.5,0.30.3), (0.5,0.30.3),
2 (07,0302) (07,0303 (0.7,0.104) (0.9,0.103) (0.7,0.,0.3)
o (0.6,0.4,0.4), (05,0.2,0.3), (0.4,030.4) (0.6,0.1,0.4), (0.5,0.30.3),
’ (0.80.2,0.2) (0.7,0.0,0.1) (0.8,0.1,0.2) (08,0.1,0.2) (0.7,0.1,0.1)
Table 2:Symptom — Disease (Using Step 2)
R Viral fever Malaria Stomach problem Chest problem
. . (0.6,0.5,0.4), (0.1,0.4,0.4), 030404 020406
emperature (0.8,03,0.2) (05,02,0.2) (05,02,0.2) (0.4,0.4,0.4)
Headach (0.5,0.3,0.4), (0.2,0.3,0.4), (0.2,0.3,0.3), (0.1,05,0.5)
eadache (0.7,03,0.2) (0.6,03,0.2) 040101 (05,03,0.3)
Stomach oai (0.2,0.3,0.4), (0.1,0.4,0.4), 040304, (0.1,0.4,06)
omach pain (0.4,0.3,0.2) (0.3,02,0.2) (0.6,0.0,0.2) (0.3,02,0.4)
coudh 040303) (0.3,0.3,03) (0.1,06,0.6), 05,0.3,0.4),
o9 (0.6,0.10.1) (05,0.1,03) (0.3.0.4,0.4) (0.7.0.1,0.2)
_ (0.2,04,0.4), (0.1,0.3,0.3), (0.1,0.4,0.4), (0.4,0.4,0.4),
Chest pain
040202 (0.3,0.1,0.1) (0.3,02,0.2) 060202
Table 3:Average (using step 3 [3])
Q Temperature Headache Stomach pain Cough Chest pain
P [0.7,03,02] [05,03,03] [0.6,02,02] [0.7,01,0.3] [05,03,03]
P, [0.6 ,0.3,0.3] [0.6 ,0.4,03] [0.6 ,02,04] [0.7,02,03] [0.6,0.2,03]
P3 [0.7,0.3,0.3] [0.6 ,0.1,02] [0.6 ,0.2,0.3] [0.7,0.1,0.3] [0.6,02,0.2]
Table 4:Average (Using step 4[3])

R Viral fever Malaria Stomach problem Chest problem
Temperature [0.7,0.4,03] [0.3,0.3,0.3] [0.4,0.3,0.3] [0.3,0.4,05]
Headache [0.6 ,0.3,03] [0.4,03,0.3] [0.3,02,0.2] [0.3,04,04]
Stomach pain [0.3,03,03] [0.2,0.3,0.3] [0.5,02,03] [0.2,03,05]
Cough [05,02,02] [0.4,02,03] [0.2,05 0.5] [0.6,0.2,03]
Chest pain [0.3,0.3,03] [0.2,02,0.2] [0.2,0.3,0.3] [0.5,0.3,0.3]

Table 5:Max-Min Composition (Using step 5)
T Viral fever Malaria Stomach problem Chest problem
Py [0.7,03,03] [0.4,03,03] [05,03,0.3] [0.6,03,03]
P, [0.6,0.3,0.3] [0.4,03,03] [05,03,03] [0.6,0.4,0.3]
P3 [0.7,03,03] [0.4,03,02] [05,03,02] [0.6,0.3,03]
i ) Ps 0.8295 0.8085 0.8055 0.7972

Table 6: Grade Function (Using step 6& step 8)

T Viral fever Malaria Stomach CHeG Table 10:Similarity M Using step 7 & step 8
problem problem able 10:Similarity Measure (Using step step 8)

P1 0.0225 0.0900 0.0625 0.0400 T Viral fever Malaria Stomachproblem Chestproblem
b, 0.0400 0,0900 0.0625 0.0625 P, 0.7471 0.6847 0.6880 0.7333
by 0.0225 0.1225 0.0900 0.0400 P, 0.7306 0.6893 0.6658 0.7004

— . _ Ps 0.7325 0.6806 0.6869 0.6640

Table 7: Similarity Grade Function (Using step 6 & step 8)
) . tomach hest

T Viral fever Malaria ?Jr?)g}z(r:n plS)b?(Sam Table 11:Logarithmic Function (Using step 7 & step 8)

. . Stomach Chest
= 0.9000 0.8000 0.8333 0.8666 T Viral fever  Malaria oroblem problem
P2 0.8666 0.8000 0.8333 0.8333 p,  0.1704 0.1549  0.1557 0.1670
P3 0.9000 0.7666 0.8000 0.8666 P2 0.1663 0.1560  0.1503 0.1588

p;  0.1668 0.1539  0.1554 0.1498

Table 8:Logarithmic Distance (Using step 7 & step 8)

T Viral fever Malaria Stomach Chest Table 12: Exponential Function (Using step 7 & step 8)
problem problem
T Viral fever Malaria Stomach Chest
Py 0.2605 0.2751 0.2740 0.2623 problem problem
P, 0.2644 0.2742 0.2791 0.2714 P1 0.6225 0.6132 0.6136 0.6204
Ps 0.2639 0.2762 0.2740 0.2796 P, 0.6199 0.6138 0.6105 0.6154
Ps 0.6202 0.6126 0.6135 0.6103

Table 9:Exponential Measure (Using step 7 & step 8)

T Viral fever  Malaria  Stomach problem  Chest problem From Table 6 to 12, it is obvious that, if the doctor agrees, then
Py 0.8365 0.8090 0.8083 0.8169 P1, P2 & P suffers from Viral fever.
P, 0.8295 0.8121 0.7978 0.8160
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