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Abstract: A theoretical study of the combined effects of non-Newtonian couple stresses and convective fluid inertia 

forces upon the squeeze film characteristics of two parallel circular plates in the presence of externally applied 

magnetic field is investigated. Based upon the magneto-hydrodynamic flow theory together with the Stokes continuum 

theory and the averaged inertia principle, a modified Reynolds equation is derived which is solved by using appropriate 

boundary conditions to obtain squeeze film pressure, load-carrying capacity and squeeze film time. According to the 

results evaluated, the effects of magnetic field, convective inertia forces and couple stresses provide an increase in the 

film pressure, the load carrying capacity and the response time. The results are compared with the corresponding non-

magnetic inertia less Newtonian lubricant case. 
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I. INTRODUCTION 

By the development of modern machine elements, a variety 

of lubricants have been considered to meet the specific 

requirements of the bearings which work under severe 

operating conditions. Since the viscosity varies 

unexpectedly with temperature, the practice of using liquid 

metals has achieved extensive interest. They possess high 

thermal and electrical conductivity. The property of high 

thermal conductivity reveals that the heat from the source of 

generation is readily conducted away. In addition, the 

property of high electrical conductivity implies that 

hydrodynamic flow behavior can be adjusted by the 

application of an external magnetic field. Many researchers 

investigated the effects of MHD on the characteristics of 

bearings such as slider bearing by Snyder [1], inclined 

slider bearing and finite step slider bearing by Hughes [2, 3] 

and parallel plate slider bearing and journal bearing by 

Kuzma [4, 5]. These studies concluded that the application 

of magnetic field improves on bearing performance. The 

study of magnetic field effects on squeeze film lubrication 

finds applications in hydro-magnetic lubrication of braking 

devices, hydraulic shock absorbers, astronautical vehicles, 

slider bearings etc. The MHD squeeze film lubrication has 

been analyzed by Lin [6, 7] for annular disks and 

rectangular plates and Lin et al. [8] for curved annular 

plates. Their study shows that the application of magnetic 

field enhances the squeeze film pressure, load-carrying 

capacity and lengthens the response time as compared to the 

classical non-conducting lubricant case. 

In recent years, experimental results have shown clear 

evidence that a Newtonian viscous lubricant blended with 

small amount of long-chained additives can improve 

lubrication properties. According to the experimental 

contribution to measuring film thickness under boundary 

lubrication conditions by Spikes [9], a base oil blended with 

additives can stabilize the behavior of lubricants in 

elastohydrodynamic contacts and reduce friction and 

surface damage. The experimental study on the performance 

of a wet friction clutch by Scott and Suntiwattana [10] 

revealed that additives have beneficial effects on the friction 

characteristics and wear of the friction material. Since the 

classical (Newtonian) continuum theory is incapable of 

predicting accurate flow behavior of non-Newtonian fluids, 

many microcontinuum theories describing the peculiar 

behavior of fluids which contain substructure have been 

developed [11-13]. Among these theories, the 

microcontinuum theory generated by Stokes [13] is the 

simplest theory of fluids which allows for polar effects such 

as the presence of couple stresses, body couples and non- 

symmetric tensors. On the basis of this microcontinuum 

theory of Stokes, a number of investigators have applied the 

couple stress fluid model to study the lubrication 

performance of various squeeze film bearings, such as the 

squeeze film Journal bearings by Lin [14, 15], the parallel 

stepped squeeze films plates by Kashinath [16] and the 

squeeze films between circular stepped plates by 

Naduvinamani and Siddangouda [17]. According to their 

results, the presence of non-Newtonian couple stresses 

provides an increase in the load-carrying capacity and the 

approaching time compared to the traditional case with a 

Newtonian lubricant. 

On the basis of results obtained in the studies of MHD 

effect and couple stress effect, the researchers are devoted 
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towards the study of bearing performance with the 

combined effect of MHD and couple stress. The combined 

effects of couple stress and MHD on bearing characteristics 

are studied by Biradar and Hanumagowda [18], Conical 

Bearing and Curved Circular Plates by Hanumagowda et al. 

[19, 20], different types of finite plates by Fathima et al. 

[21] and squeeze film bearing by Shalini et al. [22]. The 

results obtained in these studies showed an increase in 

pressure, load carrying capacity, squeeze film time and 

frictional force, co-efficient of friction in case of slider 

bearing as compared to the classical Newtonian 

hydrodynamic case. Syed Arishiya et al. [23] have analyzed 

the Magneto-hydrodynamic couplestress cosine form 

convex curved plates and shown that the combined effect of 

couple stresses and external magnetic field provide an 

increase in the load capacity and the response time as 

compared to the classical Newtonian hydrodynamic convex 

curved plates. A comparative study on the combined effects 

of MHD and couplestress fluid on the performance 

characteristics of wide slider bearing with an exponential 

and secant film profile has been done by Fathima et al. [24] 

and have shown that, the exponential slider has significant 

load carrying capacity and friction as compared to the 

secant slider. 

 
Fig. 1 The squeeze film configuration of parallel circular 

plates 

 

In all of the above studies, however, the effects of fluid 

inertia forces are neglected compared to the viscous forces. 

But in situations where the machine speed is increased or 

when using low-viscosity and high-density lubricants such 

as liquid metals, the effects of fluid inertia forces may 

become relatively significant. Recently there has been 

extensive investigation on the importance of fluid inertia 

effects. Lu et al. [25] analyzed the effects of both local 

inertia and the convective inertia in magneto-hydrodynamic 

annular squeeze films. It was found that the inertia 

correction factor in the magneto-hydrodynamic load 

carrying capacity is more pronounced with large Hartmann 

numbers. Nabhani and Khlifi [26] have presented numerical 

solution of fluid inertia effects on inclined slider bearings 

lubricated by couplestress fluids. They found that the 

combined effects of fluid inertia forces and couple stresses 

provide a significant improvement in slider bearing load 

capacity. Lin et al. [27] showed that the qualitative effects 

of couple stresses and convective inertia forces on the 

squeeze film characteristics of two wide parallel plates 

provide an increase in the film pressure, load capacity and 

the response time. Dash and Kamila [28] have studied the 

effect of fluid inertia on the film pressure between two 

axially oscillating parallel circular plates with a second 

order fluid as lubricant, whereas Barik et al. [29] extended 

the analysis by including magnetic field to it. They found 

that, the visco-elastic lubricant in the presence of magnetic 

field enhance the efficiency of axially oscillating parallel 

circular plate type bearings. Further Lin et al. [30] have 

discussed the effects of couple stresses and convective 

inertia forces in parallel circular squeeze film plates, but 

they have restricted their discussion to non-conducting 

lubricant without the presence of magnetic field. Hence, a 

further investigation is done in the present study for the 

squeeze film characteristics of parallel circular plates with 

couple stresses and inertia forces in the presence of external 

magnetic field. 

In this article, the combined effects of fluid Inertia forces 

and couple stresses on the squeeze film characteristics 

between two parallel circular plates with an electrically 

conducting fluid in the presence of a transverse magnetic 

field are analyzed. Fluid inertia forces are considered using 

reduced Navier-Stokes equations for couple stress 

electrically conducting fluid. The expressions for MHD 

squeeze film pressure, load-carrying capacity and squeeze 

film time are obtained and are compared with the classical 

non-magnetic case by Lin et al. [30]. 

II. MATHEMATICAL ANALYSIS 

Figure 1 describes the squeeze film configuration of parallel 

circular plates of radius R  lubricated with an 

incompressible electrically conducting non-Newtonian 

couple stress fluid. The lower plate is assumed to be fixed 

while the upper plate moves normally towards the lower 

plate with a squeezing velocity V dh dt  . A uniform 

transverse magnetic field 
0B  is applied perpendicular to the 

plates. 

The following assumptions are made in the present analysis: 

1. The couple stress fluid flow in the film region is 

laminar. 

2. The body forces and body couples are negligible 

except for the Lorentz force  

3. The induced magnetic field is small as compared to 

the externally applied magnetic field.  

4. The convective inertia forces due to temporal 

acceleration are considered. 

Under these assumptions, the basic equations of motion for 

the steady laminar couple stress fluid flow in the film region 

in the presence of applied magnetic field, retaining the 

convective inertia terms are given by are given by

 2 4
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Where u  and w  are the velocity components in the r  and 

z  directions respectively,   is the fluid density,   is the 

fluid viscosity,   is the material constant responsible for 

the couple stress fluids,   is the electrical conductivity of 

the lubricant and 0B  represents the applied magnetic field.  

The relevant boundary conditions for velocity 

components u  and w  are the no-slip conditions and the 

non-couple stress conditions given by: 

0u  ,
2

2
0

u

z


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
, 0w  at 0z                    (4) 
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
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dh
w
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Since the lubricant film is thin, the inertial forces are 

assumed to remain constant over the film thickness and the 

convective inertia terms in equation (1) are approximated 

by the averaged inertia principle as proposed by Mahanti 

and Ramanaiah [31]: 
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Using the continuity equation and the velocity boundary 

conditions, the above momentum integral equation can be 

written as 
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(7) 

By introducing the modified pressure gradient,
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The momentum equation (7) can be rewritten as 
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where
0 0M B h    is the Hartmann number.  

Solving equation (9) together with continuity equation (3) 

and boundary conditions (4) and (5), the radial velocity 

component is obtained. Three different cases are considered 

according to the parameter 2 2 2

04 /l M h
 

 
2

0

1 22
1

ph f
u g g

M
                                (10) 

Where 
2 2 2

1 11 2 12 04 1g g ,g g for l M / h            (11a) 
2 2 2

1 21 2 22 04 1g g ,g g for l M / h            (11b) 
2 2 2

1 31 2 32 04 1g g ,g g for l M / h          (11c) 

The associated relations in equations (11a), (11b) and (11c) 

are given in Appendix. 

On the other hand the equation of squeezing motion is 
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Substituting u  from (10) into equation (12), the modified 

pressure gradient function pf  is obtained. 
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Once the modified pressure gradient function has been 

derived, the squeeze film pressure, the load-carrying 

capacity and the time-height relationship can be evaluated. 

III. SQUEEZE FILM CHARACTERISTICS 

Substituting the modified pressure gradient function pf  

from equation (13) and the velocity component u  from 

equation (10) into equation (8), one can derive the pressure 

gradient equation for the squeeze film: 
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The associated relations in equations (15a), (15b) and (15c) 

are given in Appendix. 

The boundary conditions for the squeeze film pressure are: 

0
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Integrating the pressure gradient equation (14) with respect 

to r  with the above conditions gives the film pressure in 

non-dimensional form as, 
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The associated relations in equations (20a), (20b) and (20c) 

are given in Appendix. 

The load-carrying capacity is now obtained by integrating 

the film pressure acting upon the upper plate. 
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After performing the integration, the non-dimensional load 

carrying capacity is obtained, 
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To obtain the approaching time, a non-dimensional 

definition *t  is introduced: 
2
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The time-height relationship is then obtained from equation 

(22) as 
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Applying the initial condition for the non-dimensional film 

height (i.e., 1 0* *h at t  ), the non-dimensional 

approaching time can be derived by integrating the 

differential equation (24): 
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As 0M  , equations of 
*p , 

*W  and 
*t  reduces to 

corresponding non-magnetic case [30]. 

IV. RESULTS AND DISCUSSIONS 

In order to study the squeeze film characteristics on the 

MHD parallel circular plates with convective inertia forces 

and non-Newtonian fluid blended with lubricant additives, 

the numerical computations are performed for various non-

dimensional parameters viz., couple stress parameter *l , 

Hartmann number M  and Reynolds number Re . *l  

signifies the couple stress effect resulting from the lubricant 

blended with various additives, M  signifies the effect of 

magnetic field and is applied transversely and Re  signifies 

the effect of convective inertia resulting from temporal 

acceleration of the fluid. 

 

Fig. 2 Variation of dimensionless pressure p  with r  for 

different values of 
*l and Re  at 0 6*h .  and 2M  . 

A. Squeeze film pressure 

Figure 2 shows the variation of non-dimensional film 

pressure *p  with dimensionless radius *r  for different 

values of couple stress parameter *l  under both non-inertia 

( 0Re  ) and inertia ( 2Re  ) cases. It is observed that the 

effects of couple stresses ( 0 1 0 2*l . , . ) results in a higher 

film pressure as compared to the Newtonian lubricant case 

( 0*l  ). Also the convective inertia forces provide a 

further increase in pressure as compared to the non-inertia 

case.  

 

Fig. 3 Variation of dimensionless pressure p
 with r  for 

different values of M and Re  at 0 6*h .  and 0 2*l . . 
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The variation of non-dimensional film pressure *p  with *r  

for various values of Hartmann number M  and Reynolds 

number Re  is depicted in Figure 3. It is clear that the film 

pressure increases when the magnetic field is applied 

( 2 4M , ) under both non-inertia as well as inertia case. 

On the whole the combined effect of magnetic field and 

convective inertia is to increase the film pressure 

considerably. 

 

Fig. 4 Variation of dimensionless load W  with h
 for 

different values of 
*l and Re  at 2M  . 

B. Load-carrying capacity 

Figure 4 displays the non-dimensional load carrying 

capacity *W  with dimensionless film height *h  for 

different values of couple stress parameter *l with Reynolds 

number 0Re   and 2Re  . Since the couple stress effects 

yields a higher film pressure, the integrated load carrying 

capacity is similarly affected. Comparing with the 

Newtonian lubricant case ( 0*l  ), the effect of couple 

stresses increase the load carrying capacity; and larger 

increments are obtained by the use of convective inertia 

force. Figure 5 presents the variation of *W as a function of 
*h for various values of Hartmann number M  with 

0 2Re , . Since the effect of magnetic field yields a higher 

pressure, the integration of the various pressure distribution 

curves results in the functional dependence of the load 

carrying capacity upon the Hartmann number. Compared 

with the non-conducting lubricant case ( 0M  ), an 

increase in the load carrying capacity is obtained when the 

magnetic field is applied. As the convective inertia is 

included, a higher load carrying capacity is obtained for the 

squeeze film motion.  

 

Fig. 5 Variation of dimensionless load W  with h
 for 

different values of M and Re  at 0 2*l . . 

C. Squeeze film time 

Figure 6 describes the variation of non-dimensional time of 

approach *t  as a function of 1

*h  for different values of *l  

with 0Re   and 2Re  . It is observed that for both non-

inertia and inertia case, the effect of couple stress parameter 

is to delay the time of approach. As the couple stress fluid 

offers more resistance to the moving fluid, a larger amount 

of fluid would remain in the film region and offers more 

delayed dimensionless time compared to Newtonian cases. 

The effect of convective fluid inertia provides a further 

increase in the response time. Figure 7 represents the 

variation of *t  with 1

*h  for various values of M  under the 

non-inertia and inertia cases. The effect of magnetic field is 

to increase the dimensionless time as a consequence of the 

resistive Lorentz force. Moreover, the increase in the 

Reynolds number results in further increase of the 

dimensionless time, as the inertia forces offers more 

resistance to the fluid flow, a larger amount of fluid would 

remain in the film region and offers more delayed 

dimensionless time compared to non-inertia case. 

V. CONCLUSION 

The effects of MHD and convective inertia forces on the 

squeeze film characteristics of parallel circular plates 

lubricated with couple stress fluid are presented. The 

modified Reynolds equation is derived using Stokes micro-

continuum theory together with the magneto-hydrodynamic 

flow theory and the principle of averaged inertia. From the 

results obtained, the following conclusions are drawn. 

 

 The effect of magnetic field increases the build-up 

pressure between the parallel circular plates. 

 The couple stress fluids contain microstructure additives 

and are sensitive to the applied magnetic field.  As a 

result there is an enhancement in the load carrying 

capacity and the response time. 

 An increase in the film pressure, load carrying capacity 

and squeeze film time is predicted as the convective 

inertia is considered. 

 Comparing with the non-conducting Newtonian non-

inertia case, the combined effects of magnetic field, 

couple stresses and convective inertia forces increases the 
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film pressure and load carrying capacity considerably and 

also lengthens the squeeze film time.  

 The quantitative effects of magnetic field, couple stresses 

and convective inertia forces on the squeeze film 

characteristics are more pronounced with a smaller 

squeeze film height and a larger couple stress parameter, 

Hartmann number and Reynolds number. 

 As 0M  , the present analysis reduces to the non-

magnetic case by Lin et al. [30]. 

 

 

Fig. 6 Variation of dimensionless squeeze film time t   with 

1

*h  for different values of 
*l and Re  at 2M  . 

 
Fig. 7 Variation of dimensionless squeeze film time t   with 

1

*h  for different values of M and Re  at 0 2*l . . 
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NOMENCLATURE 

h       film thickness 

h

     non-dimensional film thickness  0h h  

0h
      

initial film thickness  

1h
      

film thickness after time t  

1h

     
non-dimensional film thickness after time t  

l        couplestress parameter   
1 2

   

l        non-dimensional couplestress parameter  0l h
 

Re     Reynolds number  0h V 
 

p
      

pressure in the film region 

p

     
non-dimensional fluid film pressure  3 2

0ph R V    

W       load capacity of the squeeze film 

W

     non-dimensional load capacity  3 4

0Wh R V  

t          time of approach of the upper plate 

t         non-dimensional time  2 4

0Wh t R  
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