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Abstract: In most of the branches of the engineering, the analysis of electric networks containing elements like inductor £,
capacitor C, and resistor R is an essential course. The response of such networks is generally obtained by adopting the classical
method or Laplace transform. In this paper, we discuss a matrix method for obtaining the response of a parallel electric
network of an inductor, a capacitor, and a resistor, connected to an excitation source providing a constant current. The response
obtained will be in the form an equation for the voltage across the parallel £- C- R network connected to an excitation source
providing a constant current. The nature of this response (i.e. voltage) depends on the values of elements L., C, and R of the
network.
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l. INTRODUCTION

An electric circuit of parallel £- C- R network comprises of three basic elements namely an inductor having inductance £, a
capacitor having capacitance C, and a resistor having resistance R, connected to a to an excitation source providing a constant
current. The electric elements like an inductor, a capacitor and a resistor are passive elements since these elements don’t have
the ability to transfer non — zero average power in an infinite time interval whereas, the elements like a current source and a
voltage source are active elements since these elements have the ability to transfer non- zero average power in an infinite time
interval. The electric circuit of parallel £- C- R network is widely used as a tuning circuit (i.e. a filtering circuit) in the
analogue radios, and have many applications in oscillatory circuits[1, 2, 3].

1. EIGENVALUES AND EIGENVECTORS

Let e;; be the elements of a matrix E of order n, then we can write the characteristic equation of E such that |[E — QI|T =0,
where T is a column matrix and Q is a constant.
This characteristic equation of E on simplifying will provide n homogeneous linear equations which have a non — trivial

solution if the determinant of  the coefficients of the equations is zero i.e. If
(611 - Q) 612 613 ...... TR eln
e — e € . . . . .
21 (€2 =D) e . 2" 1=, then on expanding the determinant on left hand side of this equation,
€h1 €nh2 enz "t e (enn - .Q.)
we obtain n™ degree equation in Q, which is the characteristic equation of the matrix E and its roots are known as Eigenvalues.
Corresponding to each Eigenvalue there isa column matrix T =[t; t; ... tn]’ known as Eigenvector [4, 5].

1. FORMULATION

To find the governing differential equation:
Considering a parallel £ - C- R network and connect a steady current source to it through a switch K as shown in figure 1.
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Figure 1: Parallel + - C- R network connected to a steady current source.

Let the switch is closed at the instant t =0, then the currents flowing in the elements £, C and R of the network are given
by I (t) = m L) = i [v(t)dtand I (t) = CD[V(t)], where V (t) is the electric potential across the network elements
at any mstantt [1, 3].

The application of Kirchhoff’s current law as the switch is closed at the instant t = 0 gives

RO+ LO+ O =1

or % +2[V(Odt+ CBVO] =1..... (1) p, =<,
When we differentiate equation (1), we get a linear homogeneous differential equation of order 2 as given below:
2DV + lvco + cszrvco] =

Or Dz[V(t)] PVl + ¢ V(t) 0...2)

To obtain the solutlon (response).

To find the solution of equation (2), we first write the necessary boundary conditions as follows:

(1) Since the potential across the plates of the capacitor and the current through the inductor cannot varies
instantaneously [2, 6], therefore, at the instant t = 0, then V(0) = 0.

(i) Since att =0, V(0) = 0, therefore, equation (1) gives B[V (0)] = % !
On putting V(t) =V, (1) ... ... ....(3)
Aﬂd Dt[Vl (t)] = VZ (t) ....... (4)
We can rewrite equation (2) as
B[V.(O] + ¢ Vz (t) + cVi©=0
Or Dt[Vz(t)] = _E V(t) - EVZ(O .. (5)
We can write the differential equations (4) and (5) in a matrix form as

Vi (t)] [ ] Vi(t)
HA\AG) V> (O
. : 0 1 - . :
On equating the determinantof | 1 1 | to zero, we obtain its characteristic equation as
C CR
0—-Q 1
1 1 =0
-—— -——-0
1.C CR
On expanding the determinant, we get
2.1 1 _
Q0+ = =0..... (6)

This equation (6) is quadratic in Q and its roots are given by

2
1 1 4
~ent(er) ~1c

O = CR —
- 2
1 1 4C
Oro =— ot w7
. 1 1 1 4C
Therefore, the roots of the equation (6) are QO = — samt edmE T )
AndQ,=— —— = |22 . 8)

2CR  2C\R?%? &
Multiplying equations (7) and (8), we get

1 1 1 4C 1 1 1 4C
Qo =-—+===—=|-—=== ===
1352 2CR = 2C\R?2 & 2CR 2CRZ &
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1

M@y = — )
To find Eigenvectors:
The Eigenvector corresponding to the root Q@ = Q, = — ﬁ + % % - %C is given by
0—Q 1

[ | B

£C cR 1] =2
This results
-t + t,=0........ (10)
And
1 1
b (ﬁJ’ Ql>t2 =0 (11)

Solving equations (10) and (11), we can write
1
[tl] _ Q; + a +1
LLC
And the Eigenvector corresponding to theroot Q = Q, = — L L L% given by

2CR 2C+ R2 L
00— Q, 1 t
[P 1)
£C cR 2] =2
This results
- ta1 + tz = 0 ........ (12)
And
! t ( ! + Q )t =0 13
LC 1 CR 2 2— ...........( )
Solving equations (12) and (13), we can write
1
tl] _ Qz + a + 1
2 LC
U+——+1 O+
The matrix of Eigenvectors is '

1
Ft
CR
1
1 4c 2 ic

1 1
1 1

1 i 2 iC

1 1

LetA= , then the determinant of A i.e. |A| can be written as

|Al= 1 1
Ql _E QZ _E

On expanding the determinant and using equation (9), we obtain
_ 1 1
A= (Q — Qu)(z +z+ 1D

The inverse of A can be written as

1 1
L 1 Q, ~ i —(Q, txmt 1)

(Qz—ﬂl)(% +CLR+1) _(Ql - {%) Ql + é + 1

Tofind Aexp( Qt) A~ 1:
Aexp(Qt) A1 =

1 1 1 1
1 1 _ 1.1 1 1
Ql — E Qz — E 0 exp(ﬂz t) @ ‘Ql)(LC tTr +1) _(Ql - E) Ql + a +1
1 1 1 1
- 1 1
2= 00 +er D | (@ - ) exp(; ©) Q2 —Dexp(@ ) [|-(@ -3 Qo+l
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T, 1
Q2= Q) (5 +ext D

1 1
«Q, + =T DA, - E) exp(Q t) —

(@~ 230 + 2+ Dexp(@, 9 (O + o+ 1) (@ + = + D[exp(Q, 1) — exp(@y 1]

1 1
—(Q+ 7+ D@ —Dexp(Q ) +
1 1
(U + -+ D2 —exp(Q, t

(92 = 1) (1 = ) [exp(€; ) — exp(Q; )]

The application of initial conditions: V,(0) = V(0) =0 and V,(0) = b[V(0)] = % gives

Vi(®) _ 1 %
V201 @, - o) (& +2-+1)

1 1
Q + + 1D)(Q; — ) exp(Q, 1) —
“ K (O + 4 1) (@ + 2+ Dexp(@2 ) — exp(@; V)]

1 1
Q — E)(Qz + R + Dexp(Q, t) [0]

1 1
1 1 —(Q + =t D@, - E) exp(Q; t) +
«Q, - E) Q- R) [exp(Q, t) — exp(Q, t)]

1 1
- Q + ® T D, - R)exp(ﬂ2 t
Or
I 1 1

[V1(t)] _ 1 ?(91 + o +1) (Q, + = + 1D)[exp(Q, t) — exp(Q t)]

T @ a(E L 1 1 | :

V, () Q2 91)(Lc +c7z+1) %[_(Qz + %A +1)(Q, — E) exp(Q, t) + (Q; + 7 +1)(Q, - E)eXP(Qz 9]
This results
I 1 1
V,(0) = ?(91 + ry +1) Q2+ a-ﬁ; 1) [E)ip(ﬂz t) — exp(Q; ©)]
Q, — Ql)(ﬁ +a+ 1)

Or

1 1 1
V(o) = <@+ + D) (Q + 7+ Dlexp(Q; t) —exp(Qy O]

1 1
Q; - Ql)(ﬁ +a+ 1)

Or

1 1 1

= (Q1+5+1) (Qa+gz+1) [exp(Q1 )—exp(Q; )]
v =-—= e e Mo 14

© (91—92)(é+c%+1) (14
And
I1_ L _i L _i
V,(t) = <= Q2 + -+ D =) exp(Qy ) + (U + 7+ D(Q2 — exp(Q; O]
1 1
Q; - Ql)(ﬁ tm Tt 1)
Or
D [V(D)] = Tzt @1y exp(@1 ) + Qb+ (i) exp(2 )
(Q2- Ql)(ﬁ +ﬁ+1)

Or
P [V(t)] _ %[(Qz+é+l) (91—%) exp(Qq t)- (Q1+%+1) [ —%) exp(Q; 1] (15)
t - o _onNX 1N e

Q- QZ)(é +%+1)

Using equations (7) and (8), we can find
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Q+1+19+1+1— 1+1 14C+1+1 L . 14C+1+1
(@, CR ) (2 CR )= 2CR ' 2CR? L ' CR 2CR  2CR? t CR
Or

O, + L + 1) (Q, + L +1)=(1+ - + L ! 4c 1+ L ! L ac

(« CR ) (@ CR )= CR ' 2C|R? & CR 2C.R? &

Or

Q+1+1Q+1+1—<1+1)2 1)1 _14c
(1cye )(ZCR )= CR 2CR? &

On simplification of the right-hand side of this equation, we obtain

1 1 1 1
@+ 4D @Q+—+D= (& +==+1) ... (16)
And
1 1 1 4C 1 1 1 4C
@ =)= =5t % ﬁ‘?‘(‘ﬁ—z E‘?)

On simplification of the right-hand side of this equation, we obtain

1 1 4C

Q- Q) = TRz T e a7

Using equations (16) and (17) in equation (14), we get
< [exp(@, 1) — exp(Q, B)]

V() =
11 _ac
C| R? L
Or V(r) =@ en@o) . (18)
RZ b

Substituting equations (7) and (8) in equation (18), we get

1 1 1 4C 1 1 1 4C
‘{eXP [(— 2 T E«/ﬁ‘?)t] T exp [(— 2R EJE‘?H}

v = 1 4C
RZ %
Or
V() = e ﬁt){exp[(%g): - <_ %m)t] } .............. (19)
®ZTE

This equation (19) provides an expression for the voltage across a parallel . — C — R network connected to an excitation
source providing a constant current and confirms that the presence of an inductor and a capacitor in the parallel . — C — R
network leads to variation in the voltage across the network even if the excitation source connected to the network provides a

constant current, and that voltage across the parallel . — C — R network depends on the quantity % - 4L—C , Whether it is real,

zero or imaginary. The value of quantity /% — ‘%C , in turn, depends on the values of % and %C . We have the following three
possibilities:

1
Possibility I: If the values of network elements %, C and R are so chosen that% > (%C)Z then the quantity % — ‘%C isreal. In

such a case, equation (19) can be rewritten as

. C
VD = ¢ e sm(ls ) 20)

1 4C

RZ &
It is confirmed from the equation (21) that the voltage across the parallel . — C — R network is non — oscillatory since sinh is
non-periodic function, and it decays gradually to zero.
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1
Possibility 11: If the values of network elements £, C and R are so chosen that % = (i—c)z, then the quantity % — %C is zero. In
such a case, equation (19) reveals that the current in the series . — C — R network is indeterminate, which is impossible. If the

quantity %—% is so small that it approaches to zero, then on expanding the exponential terms containing the quantity

/% — 1—C and taking only the first two terms, we can rewrite equation (19) as

(- ) fur (2 E-5)e-0- (2 /%_‘g)q}

V() =
1 _ 4
R2 L
Or
V() =1t exp(— ﬁt) .......................... Q1)

It is confirmed from the equation (21) that the voltage across the parallel . — C — R network is non — oscillatory and it decays
to zero in the minimum time.

1
Possibility I11: If the values of network elements t,C and R are so chosen that% < (%C)Z, then the quantity %—‘l—c is
imaginary. We can write the quantity f% - :—C as
1 4C . [4C 1
2z 1° 1 R s (22)

Using equation (22), we can rewrite equation (19) as

1 1., [4C 1 1. |4C 1
Iexp(— ﬁ'ﬁ){GXP[(EI ?—ﬁ>t]—exp[<— El ?—E>t]}

V() =

Or V() =

It is confirmed from the equation (23) that the voltage across the parallel +. — C — R network is oscillatory and its amplitude

zlexp(— ﬁt)
4C 1

L R2

is decreasing exponentially with time, and its oscillating frequency is ﬁ %C - %.

V. CONCLUSIONS

In this paper, we have obtained the response of a parallel . — C — R network connected to an excitation source providing a
constant current by matrix method. The discussion concludes that the nature of response (i.e. voltage) can be oscillatory or
non-oscillatory depending on the values of elements £, C and R of the network. The nature of voltage can be made oscillatory

1
if values of network elements +,Cand R are so chosen that % < (‘:—C)Z and in this situation, the amplitude decreases
exponentially with time and the frequency of oscillation is independent of excitation source providing a constant current. The

1
nature of voltage is non-oscillatory if values of network elements t,C and R are so chosen that % > (%C)z or % is slightly
1
greater than (%C)Z and in these situation, the amplitude decays gradually to zero.
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