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Abstract Constraint handling is always a critical part in performance of optimization method. There exists 

conventional approaches like, substitution, penalty function, slack variable, Lagrangian multiplier, ignorance 

infeasible for constraint handling. Some of them are convenient to use with evolutionary algorithms. These exists some 

hybrid methods, algorithm and/or problem specific approaches for constraint handling in optimization. There has been 

a lack of efficient and generic constraint handling techniques. We are proposing a new generalized boundary 

inspection approach based constraint handling mechanism for population based evolutionary algorithms (EAs). The 

concept is general and can be used with any population based EAs, we demonstrate its implemented for Multi-

Objective Optimization (MOO) in this work. A comparative study of the proposed algorithm with the augmented 

penalty function method and ignorance infeasible are presented in this work. We use   Parallel universe Alien Genetic 

Algorithm (PUALGA) with non-dominated sorting as basic MOO algorithms and evaluate our proposed constraint 

handling mechanism. We have considered three benchmark test problems for evaluating the proposed mechanism. 

Though the proposed constraint handling method is demonstrated for PUALGA, it is very generalized and can be used 

with any evolutionary algorithm easily. The method proposed converts all infeasible solutions in to feasible solutions 

maintaining diversity in search space.  

Keywords —Evolutionary Optimization, Constrained Optimization, Multi-Objective Optimization, Genetic Algorithm, 

Alien GA, Parallel Universe, PUALGA 

I. INTRODUCTION 

During the last two decades Evolutionary Algorithms (EAs) 

have proved to become an important tool for solving 

complex engineering optimization problems. Most real-

world problems are however constrained and a possible 

criticism of the EAs has been the lack of efficient and 

generic constraint handling techniques. It should be noted 

that the evolutionary optimization algorithms are 

unconstrained by nature and hence need additional 

mechanisms to handle the constraints. Three excellent 

review articles on existing constraint handling methods for 

EAs are presented by Coello, 2002 [1], Kramer, 2010 [2] 

and Mezura-Montes and Coello, 2011 [3]. Some of the 

popular constraint handling approaches for the EAs are 

penalty method, preservation of feasible solutions method, 

augmented lagrangian method and feasibility based rule. In 

the penalty method, penalty parameter is multiplied with 

the extent of constraint violation and is augmented with the 

objective function. While it is the simplest method of 

handling constraints, finding the appropriate penalty values 

is a challenging task. Preservation of feasible solutions 

method does not distinguish the extent of constraint 

violation and requires large number of generation to 

converge. This may not necessarily increase the extra 

objective function evaluations, but it certainly requires 

computing constraint functions for the infeasible members. 

When, the constraint function is computationally 

expensive, this method becomes very slow in convergence. 

All these methods address the issue of guiding the solution 

candidates from infeasible to feasible region. Moreover, the 

constraint handling mechanisms were not explicitly 

intended for enhancing the convergence property. 
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Constraint handling becomes even more crucial and 

complex in multi-objective EAs. Singh et al., 2010 [4] 

extended simulated annealing for multi-objective 

constrained optimization problems. Yang et al., 2014 [5]  

used constrained method and adaptive operator selection in 

Multi-objective evolutionary algorithm based on 

decomposition (MOEAD). Yang and Deb, 2013 [6] 

proposed a new cuckoo search for multi-objective 

optimization under complex nonlinear constraints. A study 

on the constrained multi-objective optimization has been 

presented by Qu and Suganthan, 2011 [7]. They have 

investigated three constraint handling methods along with 

their ensemble of constraint handling methods [8]. They 

ensemble self-adaptive penalty, superiority of feasible 

solution, and e-constraint methods. While the fitness values 

are calculated for both, the feasible and infeasible members 

in the self-adaptive penalty method, only feasible members 

are evaluated for their fitness values in the method of the 

superiority of feasible solution method. e-constraint method 

employs fitness assignment process similar to the 

superiority of feasible solutions method, but with an 

adaptive relaxation in constraint violation for initial few 

generations. We use augmented penalty function and ignore 

infeasible methods for comparison with the new proposed 

algorithm in this work. 

We in this work present a generalized constraint handling 

approach for population based EAs using Boundary 

Inspection (BI) approach.  The BI approach converts every 

infeasible member to a feasible one during the evolution 

process. The algorithm attempts to move infeasible point in 

a direction joining an infeasible point and a feasible point 

such that we reach within feasible area. At every  

generation using this approach all infeasible members are 

converted to feasible members by moving towards 

randomly selected feasible point. The parameter deciding 

the location of the new point is used from a predefined pool 

of values based on its success history.  

The BI approach for constraint handling is discussed in the 

next section. The BI approach for constraint handling is 

tested with a multi-objective evolutionary algorithm : 

Parallel Universe Alien Genetic Algorithm (PUALGA)  

proposed by the authors [9]. The PUALGA algorithm with 

the BI  approach for constraint handling is discussed in 

section III. Performance measures for MOO is discussed in 

section-IV followed by test problem summary in section V. 

The results are presented in section VI and concluding 

remarks are drawn in section VI. 

II. BOUNDARY INSPECTION APPROACH FOR 

CONSTRAINT HANDLING 

A randomly created population is classified in two groups, 

namely feasible and infeasible ones. For every member 

from the infeasible group, one member from feasible group 

is selected randomly. The BI approach can be applied using 

half moves as demonstrated in the figure (1). Point R is the 

worst point selected from infeasible group and point S is 

the corresponding point selected from feasible group. Point 

N1 is located moving R towards S in the direction joining R 

and S, half the distance between point R and S. The point 

N1 is not feasible, hence further half distance move from N1 

is carried out, reaching to N2. That point is also not feasible 

hence we move to point N3 moving half distance towards S, 

which is a feasible point. We apply this procedure to all 

infeasible point and convert them to feasible point at every 

generation of evolution.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Boundary Inspection Approach by half moves 

We propose to use an predefined ensemble of parameter λ 

to locate the new point on the line joining an infeasible 

point and the corresponding feasible point selected as 

shown in figure (2). Each value in the ensemble is given 

equal opportunity during initial learning period. The 

success count by each value in the learning period is 

converted to success probability, which is used in the next 

learning period. During the learning period the success 

probability is kept constant. Value of parameter λ to locate 

the new point is selected based on its success probability. 

Thus the value of  parameter λ generating feasible point 

will automatically prefeed over the value failing. This will 

avoid the parameter tuning during evolution and problem 

specific tuning to the algorithm. 

For each infeasible member R, one member, S from feasible 

population  is selected randomly. A new point, N  dividing 

the line joining point S and infeasible point,  R in the λ:1 

ratio is obtained such that it is feasible. The division ratio is 

selected from a predefined pool of λ values based of past 

performance history. An ensemble of possible values of 

ratio λ used  are  [-0.6, -0.3, 0.3, 0.6, 1, 1.5, 2]. 

 

R 

N3 
S 

f1 

f2 

N1 

N2 

Infeasible Points 

Feasible Points 



International Journal for Research in Engineering Application & Management (IJREAM) 

ISSN : 2454-9150    Vol-04, Issue-07, Oct 2018 

226 | IJREAMV04I0743050                        DOI : 10.18231/2454-9150.2018.0946                      © 2018, IJREAM All Rights Reserved. 

 

 

 
Figure 2: Boundary Inspection approach with predefined ensemble of 

parameter λ 

III. PARALLEL UNIVERSE ALIEN GENETIC 

ALGORITHM (PUALGA) WITH BI APPROACH  

We proposed  the Hypothesis to use two subpopulations, 

one real coded and another, binary coded. (Parallel 

Universe) in Genetic Algorithm . We allow one or more 

best members from binary coded population known as 

Alien members to go to real coded population and take part 

in evolution. It will transfer the information from one sub-

population to another. This approach provide robustness 

without any additional computational Burdon.  In fact, 

dividing the population in sub-population will reduce the 

calculations needed for sorting and selection and hence will 

increase the overall efficiency of the algorithm. 

The Hypothesis to use two subpopulations, one real coded 

and another, binary coded, Parallel Universe  proposed as 

PUALGA improved convergence [8]. We now test the 

algorithm for constraint handling feature. We test 

commonly used constraint handling mechanisms;   

Feasibility rules (Ignore Infeasible) and Penalty functions 

[10] under PUALGA framework. We apply those concepts 

to both real coded populations. The overall PUALGA with 

BI approach for constraint handling is as follows: 

Step(0):  Initialization  of GA Parameters 

Step(1): Generation of binary and real coded population, 

fitness calculation and movement of infeasible 

points towards feasible members using BI 

approach.  

Step(2): Selection for nPopul members for binary and 

(nPopul – nAl) members for real population. Add 

nAl  members from binary to real population.  

Step (3): Carry out Crossover and Mutation for each 

Population. 

Step(4): Check constraint and move infeasible points 

towards feasible members using BI approach.  

Step(5): Do Elitism selection for each binary and real 

population.  

Step(6):  Alien member addition from binary to real coded 

population replacing the worst member in real 

coded population. 

Step(7): Continuation of loop if maximum number of 

generations are not reached otherwise continue the 

loop; go to step 2. 

IV. PERFORMANCE MEASURE FOR MOO 

The aim of all multi-objective optimization algorithms is to 

find as many different solutions as possible in the Pareto 

optimal set. A multi-objective optimization algorithm has to 

perform two tasks, (i) to guide the search towards the 

global Pareto optimal region and (ii) to maintain the 

population diversity (in the objective space, in the 

parameters space or in both of them) in the current non-

dominated front. The general performance criteria for the 

multi-objective optimization algorithms are: 

 Accuracy - how close the generated non-dominated 

solutions are to the best known prediction.  

 Coverage - how many different non-dominated 

solutions are generated and how well they are 

distributed.  

 Variance for every objective - which is the 

maximum range of non-dominated front, covered by 

the generated solutions (fraction of the maximum 

range of the objective in the non-dominated region, 

covered by a non-dominated set).  

The performance of the search algorithm is difficult to 

evaluate when, true Pareto optimal set is not known. Those 

results are generally presented using various performance 

measures for the search algorithms. Some tools for visual 

representations of non-dominated solutions are scatter-plot 

matrix, value path, bar chart, star coordinate and visual 

methods. Visual descriptions are now inadequate as the 

area of multi-objective optimization has become much 

popular and number of different algorithms and 

modifications are coming up. Performance metrics are 

important performance assessment measure, which also 

allow us to compare algorithms and to adjust their 

parameters for better results. Deb classifies them in three 

categories, metrics evaluating closeness to the Pareto 

optimal front, metrics evaluating diversity amongst non-

dominated solutions and metrics evaluating closeness and 

diversity.[10]  

A. Convergence to true pareto front  

The commonly used metrics for evaluating closeness to the 

pareto optimal front are error ratio, generational distance, 

maximum pareto optimal front error proposed by 

Veldhuizen 1999 and set convergence metric proposed by 

Zitzler 1999.[11] [12] Because of simplicity Zitzler 1999 

have suggested generational distance matrix to evaluate 

closeness of solution found to the true solution and Deb 

2000 and letter investigators have used this method. 

Generational distance is an average distance of the 

solutions fond by the algorithm to the true pareto front. For 
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a set Q of N solutions from a known set of the pareto 

optimal set P*.  Veldhuizen 1999 has defined average 

distance of Q from P*, the generational distance γ as: 
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and f*
m

(k) is the m-th objective function value of the k-th 

member of P*. 

When there are large fluctuations in the distance values, 

GD doesn’t represent the true distance. Variance of the 

matrix GD is also necessary in such cases. When objective 

function values are of different magnitude, they should be 

normalised before calculating distance measure. A large 

number of solutions uniformly distributed in the true pareto 

should be used to calculate γ matrix. The γ matrix measures 

the extent of convergence to a known set of pareto optimal 

solutions. Since, multi-objective algorithms would be tested 

on problems having a known set of Pareto-optimal set, the 

calculation of this metric is possible. But, realize that such a 

metric cannot be used for any arbitrary problem. Even 

when all solutions converge to the Pareto-optimal front, the 

above convergence metric does not have a value zero. The 

metric will be zero only when each obtained solution lies 

exactly on each of the chosen solutions. Although this 

metric alone can provide some information about the spread 

in obtained solutions, we need to define another metric to 

measure the spread in solutions obtained by an algorithm. 

B. Matrix to measure distribution of solutions  

There exist many metrics to find diversity amongst the 

obtained non dominated solutions. Here the purpose is to 

represent span of true pareto front covered by the obtained 

solutions and its uniformity in the span covered. Few 

popular amongst them are spacing matrix, Chi-square like 

deviation measure matrix  by Deb 1989 [12], maximum 

spread matrix by Zitzler 1999 [13] and spread matrix by 

Deb et al. 2000 [14].  

From the obtained set of non-dominated solutions, we first 

identify the extreme solutions in the objective space. We 

calculate dm
e , the distances between the extreme solutions 

and the boundary solutions of the obtained non-dominated 

solution set Q from the known end solutions of P*. The 

distance measure may be Euclidian distance, the sum of the 

absolute distance in the objective values or the crowing 

distance. The parameter di is the distance measure between 

the neighbouring solutions and d is the mean value of this 

distance measure.  For a scenario with a large variance of 

the distances may have a numerator value greater than the 

denominator. The spread,  is calculated as   


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The maximum value of the metric can be greater than one. 

But, a good distribution would make all distances di equal 

to d  and would make dm
e = 0 (with existence of extreme 

solutions in the non-dominated set). Thus, for the most 

widely and uniformly spread-out set of non-dominated 

solutions, the numerator of   would be zero, making the 

metric to take a value zero. For any other distribution, the 

value of the metric would be greater than zero. Note that 

the above diversity metric can be used on any non-

dominated set of solutions, including one which is not the 

Pareto-optimal set.  

C. Matrix evaluating closeness and diversity 

There are some metrics which combinedly evaluates 

closeness and diversity. They are Hypervolume, attainable 

surface based statistical metric, weighted metric, non-

dominated evaluation metric, and Inverted Generational 

Distance (IGD). IGD is a well known and widely accepted 

performance measure, which accounts convergence and 

distribution both [15]. Let P* be a set of uniformly 

distributed true pareto optimal solutions and A is the 

obtained solution set, then IGD value is the average 

distance from P* to A. Note that the smaller the IGD value, 

better is the performance of the MOO algorithm. We use 

IGD metric in this work for performance comparison of 

results obtained using different MOO algorithms. 

V. TEST PROBLEMS 

For testing the efficiency and effectiveness of the 

proposed BI approach for constraint handling with EAs, we 

use three two-objective constrained optimization test 

problems with known pareto optimal solutions. The three 

test problems are namely, Constr-Ex , BNH (Binh and Korn 

1997) , OSY (Osyczka and Kundu 1995). All the problems 

have two objective functions, which are to be minimized. 

Each test function presents certain difficulties for 

constrained multi-objective optimisation. We use test 

problems with known sets of constrained Pareto-optimal 

solutions. The detailed discussion of the problem and its 

solution are available in Deb, 2001 [8]. For the 

convenience of the reader we briefly define the test 

problems here.  

A. Test problem-1: Constr-Ex 

A widely popular two variables and two objectives 

constrained optimization problem, namely Constr-Ex has 

the pareto optimal solution set in two regions, region A 

corresponding to  0.39 ≤ x1 ≤ 0.67  with  x2 = 6 – 9 x1 and  

the region B corresponding to 0.67 ≤ x1 ≤ 1 with  x2 = 0. 
. 
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B. Test problem-2: BNH 

We use another popular constrained optimization 

problem, namely BNH to validate the proposed concept. 

The pareto optimal set satisfying the constraints is available 

for this test problem in two regions, region A 

corresponding to x1 = x2 in [0-3] , while region B consisting 

of x1 in [3-5] x2 = 3. 
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C. Test problem -3: OSY 

The OSY test problem has six variables and six 

constraints. This problem has only 3.25 % feasibility ratio 

as compared to 52.52 % for Constr-Ex and 93.61 % for 

BNH. The OSY problem definition is as follows, 
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The pareto optimal solution set for this problem is available 

in five regions. Each of these five regions lies on one of the 

constraints’ boundaries. The pareto optimal values for the 

variables x1, x2, x3, and x5 are summarized in table (1), 

while the optimum values of the remaining two variables 

are x4 = x6 = 0. 

 
Table 1: Pareto optimal solutions for the OSY problem 

Region x1 x2 x3 x5 

1 5 1 [1 - 5] 5 

2 5 1 [1 - 5] 1 

3 [4.056 - 5] (x1 - 2)/3 1 1 

4 0 2 [1 - 3.732] 1 

5 [0 - 1] 2 - x1 1 1 

VI. RESULTS AND DISCUSSION  

PUALGA algorithm implemented in MATLAB using 

non-dominated sorting and elite survival selection operator 

for MOO is used to evaluate three constraint handling 

approaches. The population size is kept as 100 for all the 

test problems. We carried out twenty simulation runs for 

every test problem with distinct initial populations and a 

statistical analysis is presented for the comparison study of 

various algorithms.  

 

Number of function evaluations (NFEs) and number of 

constraint evaluations (NCEs) are the two important 

measures for evaluating the computational expense of any 

constrained optimization algorithm. Performance metric 

IGD values are presented as the functions of NFEs and 

NCEs for the augmented penalty, ignore infeasible and 

boundary inspection to compare the computational 

performance. 

 

The average of twenty runs in terms of IGD convergence 

profiles for the test problem Constr-Ex are presented in Fig. 

(3). The figure clearly indicates that the convergence of the 

proposed BCA constraint is better than the other two 

algorithms. The BI approach IGD values continues to 

decrease at a higher rate than both the other two algorithm, 

which indicates its better convergence capability. The BI 

approach converts infeasible members to feasible ones by 

projecting them through the feasible solutions. This 

mechanism creates possibilities of exploring guided search, 

which in turn improves the convergence. 
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Figure 3: Average IGD values against Run time for ConstrEx test 

function 
 

Since the BI implementation needs to evaluate 

constraints for all trial points, its convergence is also 

evaluated in terms of NCEs. The two IGD profiles, with 

respect to the NFEs and NCEs have similar trends among 

the three algorithms. The average IGD value convergence 

for Constr-Ex function is presented in terms of NFEs in 

Fig. (4) and NCEs in Fig. (5). The convergence profile 

became stagnant after 5,000 NFEs  for BI approach and 
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10,000 NFEs for ignorance infeasible . 
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Figure 4: Average IGD values against NCE for ConstrEx test function 
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Figure 5: Average IGD values against NFE for ConstrEx test function 

 

We represent pareto front obtained at the end of 25 

generation and 100 generations for Constr-Ex test problem 

in Fig. (6). The pareto plot at 25 generations clearly 

indicate that the BI approach has uniform and better 

converged pareto. 
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(a) at 25 Generations  
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(b) at 100 Generations 

Figure 6 : Pareto Front for ConstrEx test function 
 

The convergence plots for the BNH test problem are 

shown in Fig. (7-9). The obtained results with this test 

problem are similar to the Constr-Ex problem. Since this 

test problem has high 93.61% feasibility ratio, the nature of 

convergence plots with respect to NFEs and NCEs are quite 

similar.  
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Figure 7: Average IGD values against Run time for BNH test function 
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Figure 8: Average IGD values against NCE for BNH test function 



International Journal for Research in Engineering Application & Management (IJREAM) 

ISSN : 2454-9150    Vol-04, Issue-07, Oct 2018 

230 | IJREAMV04I0743050                        DOI : 10.18231/2454-9150.2018.0946                      © 2018, IJREAM All Rights Reserved. 

 

500 1000 1500 2000 2500
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

NCEs

m
e

a
n

 I
G

D

 

 

Augmented Penalty

Ignorance Infeasible

Bounday Inspection

 
Figure 9: Average IGD values against NFE for BNH test function 

 

We represent pareto front obtained at the end of 50 

generation for BNH test problem in Fig. (10). Though all 

algorithm converge very close to true pareto front better 

uniformity of distribution of pareto optimal solutions is 

observed in BI approach.  
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Figure 10 : Pareto Front for BNH test function 50 Generations 

 

OSY test problem convergence plots are shown in Fig. 

(11-13). As this test problem has very low feasibility ratio 

of 3.25%, the nature of the convergence plots with respect 

to NFEs and NCEs are expected to be different. The other 

two algorithms show good performance in terms of NCEs 

compared BI approach due to low feasibility ratio.   
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Figure 11: Average IGD values against Run time for OSY test function 
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Figure 12: Average IGD values against NCE for OSY test function 

0 0.5 1 1.5 2 2.5 3

x 10
4

0

5

10

15

20

25

NCEs

m
e

a
n

 I
G

D

 

 

Augmented Penalty

Ignorance Infeasible

Bounday Inspection

 
Figure 13: Average IGD values against NFE for OSY test function 

 

We represent pareto front obtained at the end of 100 

generation and 250 generations for OSY test problem in 

Fig. (14). Though all algorithm converge very close to true 

pareto front better uniformity of distribution of pareto 

optimal solutions is observed in BI approach. Augmented 

penalty approach obtained best coverage of pareto front 

covering both the end of the pareto front. 
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(b) at 100 Generations 
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Figure 14 Pareto Front for OSY test function 

 

VII. CONCLUSION 

Multi-objective constrained optimization problems are 

typically very difficult to solve. In this work, we have 

presented the constraint handling by BI approach in 

evolutionary algorithms. In the proposed algorithm, every 

infeasible member is projected through the randomly 

selected feasible member . This approach uses the original 

objective function values without any modification. The 

selection of parameter which locates the new point on the 

line joining infeasible and feasible point is based on success 

probability history, hence it is automated avoiding adaptive 

tuning during the evolution process. The efficacy of the BI 

approach is presented using multi-objective PUALGA 

algorithm and has been tested with three bench mark test 

functions. Statistical analysis of the performance measure, 

IGD is presented using 20 simulation runs for all the test 

problems. Further, the performance of the BI approach is 

compared with two popular constraint handling algorithms, 

namely augmented penalty function and ignore infeasible. 

Converge plot in terms of IGD are presented against run 

time, NFEs and NCEs to evaluate the comparative 

performance.  
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