

Vague infra α –open sets

V.Siva Naga Malleswari,

Department of freshman engineering, Assistant Professor, PVPSIT, Vijayawada, A.P, India. vsnm.maths@gmail.com

Dr. V. Amarendra Babu, Department of Mathematics, Acharya Nagarjuna University, Nagarjuna Nagar, A.P, India. amarendravelisela@ymail.com

P.Siva Naga Raju, Department of mathematics, Sri Chaithanya Jr college, Vijayawada, A.P, India. psnr.maths@gmail.com

Abstract - In this paper we discuss about the fundamental properties of vague infra α –open sets. The relation between vague infra α –open sets and other open sets are studied. Some continuous mappings are defined.

Key words: vague infra open, vague infra α – open, vague infra semi open, vague infra pre open, vague infra semi pre open

I. INTRODUCTION

In 1970,Levine[6] started the study of generalised closed sets in topological spaces .In 1965,the concept of fuzzy sets was introduced by Zadeh [8] in 1965,Fuzzy topology was introduced by C. L. Chang[4] in1967 .H.Maki, k.balachandran, R.Devi [7] introduced the concept of alpha generalised closed sets in topological spaces. After that gau and buhrer[5] introduced the concept of vague sets . The basic concepts of vague set theory and its extensions are defined by [3, 5] .Adel .M.AL-Odhari[1] introduced the concept of infra topological spaces.

In this paper we introduce vague infra α –open sets and we discuss the fundamental properties of vague infra α –open sets. The relation between vague infra α –open sets and other open sets are studied. Some continuous mappings are defined.

II. PRELIMINARIES

Definition 2.1:[2] In the universe of discourse U a vague set P is characterized by

i. A true membership function $t_P: U \rightarrow [0,1]$

ii. A false membership function $f_P: U \rightarrow [0,1]$

where $t_P(u)$ is a lower bound on the grade of membership of u derived from the "evidence for u", $f_P(u)$ is a lower bound on the negation of u derived from the "evidence for u" and $t_P(u) + f_P(u) \le 1$.

Thus the grade of membership u in the vague set A is bounded by subinterval $[t_P(u), 1 - f_P(u)]$ of [0, 1]. This indicates that if the actual grade of membership of u is $\mu(u)$, then $t_P(u) \le \mu(u) \le 1 - f_P(u)$. The vague set A is written as $A = \{ \langle u, [t_P(u), 1 - f_P(u)] | u \in U \rangle \}$ where the interval $[t_P(u), 1 - f_P(u)]$ is called the vague value of u in P denoted by $V_P(u)$.

Definition 2.2: Let P_1 and P_2 be vague sets of the form P_1 = $\{\langle u, [t_{P_1}(u), 1 - f_{P_1}(u)]/u \in U \rangle\}$ and B = $\{\langle u, [t_{P_2}(u), 1 - f_{P_2}(u)]/u \in U \rangle\}$ then

(i) $P_1 \subseteq P_2$ if and only if $t_{P_1}(u) \leq t_{P_2}(u)$ and $1 - f_{P_1}(u) \leq 1 - f_{P_2}(u)$ for all $u \in U$.

(ii) $P_1 = P_2$ if and only if $P_1 \subseteq P_2$ and $P_2 \subseteq P_1$.

$$\begin{aligned} \text{(iii)} P_1^{\ c} &= \{ \langle u, \left[f_{P_1}(u), 1 - t_{P_1}(u) \right] / u \in U \} \} \\ \text{(iv)} P_1 \cap P_2 &= \{ \langle u, \min\left(t_{P_1}(u), t_{P_2}(u) \right), \min\left(1 - f_{P_1}(u), 1 - f_{P_2}(u) / u \in U \right) \} \end{aligned}$$

 $(v)P_1 \cup P_2 = \{ \langle u, max(t_{P_1}(u), t_{P_2}(u)), max(1 - f_{P_1}(u), 1 - f_{P_2}(u)/u \in U) \}$

Definition 2.3: A vague infra topology(*VIT in short*) on X is a family T of vague sets(*VS in short*) in X satisfying the following axioms

 $(1).0, 1 \in T$

(2). $G_1 \cap G_2 \in T$ for any $G_1, G_2 \in T$

In this pair (X,T) is called a vague infra topological space (*VITS in short*) and any vague set in T is known as a vague infra open set(*VIOS in short*) in X. The complement of a VIOS A in a VITS (X,T) is called vague infra closed set (*VICS in short*) in X.

Example 2.4: Let $U=\{u,v\}$ and $T=\{0, P_1, P_2, P_3, 1\}$ is a vague infra topology on U where

 $\begin{array}{ll} P_1 = & \{ \langle u[0.2, 0.6], v[0.3, 0.5] \rangle \}, & P_2 = \\ \{ \langle u[0.4, 0.5], v[0.1, 0.6] \rangle \}, & P_3 = & \{ \langle u[0.2, 0.5], v[0.1, 0.5] \rangle \}, \\ 0 = \{ \langle u[0, 0], v[0, 0] \rangle \}, 1 = \{ \langle u[1, 1], v[1, 1] \rangle \}. \end{array}$

Here the open sets are 0, P_1 , P_2 , P_3 , 1 and corresponding closed sets are 1, P_1^{c} , P_2^{c} , P_3^{c} , 0 respectively.

Example 2.5: Let $U = \{u, v, w\}$ and P_1, P_2, P_3 are vague sets on U as follows:

 $P_1 = \{ \langle u[0.3, 0.6], v[0.2, 0.5], w[0.4, 0.7] \rangle \}$

 $P_2 = \{ \langle u[0.4, 0.5], v[0.3, 0.7], w[0.2, 0.6] \rangle \}$

 $P_3 = \{ \langle u[0.3, 0.5], v[0.2, 0.5], w[0.2, 0.6] \rangle \}$

Then $P_1 \cap P_2 = P_2 \cap P_3 = P_1 \cap P_3 = P_3$. Then T= {0, P_1 , P_2 , P_3 , 1} is a vague infra topology.

Definition 2.6: Let (U,T) be a vague infra topological space and $P_1 = \{ \langle u, [t_A(u), 1 - f_A(u)] / u \in U \}$ be a vague set in U. The vague infra closure of U is defined by

 $VIcl(P_1)=\cap \{k \mid k \text{ is a vague infra closed set in U and } P_1 \subseteq k\}$

Definition 2.7: Let (U,T) be a vague infra topological space and $P_1 = \{\langle u, [t_{P_1}(u), 1 - f_{P_1}(u)] | u \in U \}$ be a vague set in U. The vague infra interior of P_1 is defined by

VIint(P_1)= $\cup \{k \mid k \text{ is a vague infra open set in U and } P_1 \supseteq k\}$

III. VAGUE INFRA α – OPEN SET

Definition 3.1: A set $H \subseteq U$ is called vague infra α –open(vague infra α –closed) if set $H \subseteq VIint(VIcl(VIint(H)))(VIcl(VIint(VIcl(H))) \subseteq H).$ The class of all vague infra α –open (vague infra α –closed) in U will sets be denoted as $VI\alpha O(U)(VI\alpha C(U)).$

Definition 3.2: For any set H, we have,

(i) VIαCl(H) =
 ∩ {k: k ⊇ H, H is an vague infra α - closed set of U} is called an vague infra α - closure
 (ii) WL L + (W)

(ii) $VI\alpha Int(H) = \bigcup \{k: k \subseteq H, H \text{ is an vague infra } \alpha - open set in U\}$ is called an vague infra $\alpha - interior$.

(iii) VIsCl(H) =

∩ {k: k ⊇ H, H is an vague infra semi – closed set of U} is called an vague infra semi closure.

(iv) VIsInt(H) = \cup $\{k: k \subseteq$

H, H is an vague infra semi open set in U} is called an vague infra semiinterior.

(v) VIgCl(H) =

∩ {k: k ⊇ H, H is an vague infra g closed set of U} is called an vague infra gclosure.

(vi) VIgInt(H) =

↓
{k: k ⊆

H, *H* is an vague infra g open set in U} is called an vague infra g- interior.

Theorem 3.3: A set $K \in VI\alpha O(U)$ if and only if there exist an open set H such that $H \subseteq K \subseteq VIint(VIgcl(H))$.

Proof: Necessity: If $K \in VI\alpha O(U)$ then $K \subseteq VIint(VIcl(VIint(H)))$. Put H=VIint K, then H is an vague infra open set and $H \subseteq K \subseteq VIint(VIgcl(H))$

Sufficiency: Let H be an vague infra open set such that $H \subseteq k \subseteq Vlint(Vlgcl(H))$, this implies that $Vlint(Vlgcl(H)) \subseteq Vlint(Vlcl(Vlint(H)))$ then $k \subseteq Vlint(Vlcl(Vlint(H)))$.

Theorem 3.4: A set $H \in VI\alpha C(U)$ if and only if there exist a closed set k such that $VIcl(VIgint(K)) \subseteq H \subseteq K$.

Proof: Necessity: If $H \in VI\alpha C(U)$ then $VIcl(VIgint(VIcl(H))) \subseteq H$, put K=VI cl(H), then K is a closed set $VIcl(VIgint(K)) \subseteq H \subseteq K$.

Sufficiency: Let K be a closed set such that $Vlcl(Vlgint(K)) \subseteq H \subseteq K$, this implies that $Vlcl(Vlgint(Vlcl(H))) \subseteq Vlcl(Vlgint(K))$ then $Vlcl(Vlgint(Vlcl(H))) \subseteq H$.

Theorem 3.5: Let H be a set of U. Then, the following properties are true:

- (a) $VIsint(H) = H \cap VIgcl(VIint(H))$
- (b) $VIscl(H) = H \cap VIgint(VIcl(H))$

Proof: (a) We know that *VIsint* is vague infra semi open,

Then $VIsint(H) \subseteq VIgcl(VIint(VIsint(H))) \subseteq VIgcl(VIint(H))$

So, $VIsint(H) \subseteq H \cap VIgcl(VIint(H))$

We have $VIint(H) \subseteq H \cap VIgcl(VIint(H)) \subseteq VIgcl(VIint(H))$

Then $H \cap VIgcl(VIint(H))$ is an vague infra semi open set and $H \cap VIgcl(VIint(H)) \subseteq H$, then $H \cap VIgcl(VIint(H)) \subseteq VIsint(H)$

Then $VIsint(H) = H \cap VIgcl(VIint(H))$

Corollory 3.6:. Let H be a set of U. Then, the following properties are true:

(a) If H is a vague infra generalized closed set, thenVIsint(H) = VIgcl(VIint(H))

(b)If H is a vague infra generalized open set, then VIscl(H) = VIgint(VIcl(H))

Proof: We know that $VIgint(H) \subseteq VIgint(VIcl(H))$ but VIgint(H) = H, this implies that $H \subseteq VIgint(VIcl(H))$, then VIscl(H) = VIgint(VIcl(H)).

Theorem 3.7: For any subset H of a space U, the following implication hold

 $(i) \Longrightarrow (ii) \Longrightarrow (iii) \Longrightarrow (iv)$

(i) $H \in VI\alpha C(U)$

(ii) $Vlcl(Vlgint(K)) \subseteq H \subseteq K$ for closed set K

(iii) $VIsint(k) \subseteq H \subseteq K$ for closed set K

 $(iv)VIsint(VIcl(H)) \subseteq H$

Theorem 3.8: For any subset H of a space U, the following statements are hold:

- (i) $H \subseteq K \subseteq Vlint(Vlgcl(H))$ and $Vl\alpha O(U)$ then $K \in Vl\alpha O(U)$.
- (ii) $VIcl(VIgint(K)) \subseteq H \subseteq K$ $VI\alpha C(U)$ then $K \in VI\alpha C(U)$

Proof:

(i) Let $H \in VI\alpha O(U)$ then there exist M an open set such that $M \subseteq H \subseteq VIint(VIgcl(M))$

This implies that $M \subseteq K$ and $H \subseteq VIint(VIgcl(K))$. Therefore, $VIint(VIgcl(H)) \subseteq VIint(VIgcl(M))$ and $M \subseteq K \subseteq VIint(VIgcl(M))$, then $K \in VI\alpha O(U)$

Proposition3.9: Let H be the set in U. Then the following statements hold;

 $1.VI\alpha int(H)$ is the largest vague infra α -open set contained in H

2. $VIaint(H) \subseteq H$

3. $VIaint(H) \subseteq VIaint(k)$

 $4.VI\alpha int(VI\alpha int(H)) = VI\alpha int(H)$

5. $H \in VI\alpha O(U) \Leftrightarrow VI\alpha int(H) = H$

Proposition 3.10: Let H and K be the sets in U and $H \subseteq K$. Then the following statements hold:

1. $VI\alpha icl(H)$ is the smallest vague infra α -open set containing H

2. $H \subseteq VIacl(H)$

3. $VI\alpha cl(H) \subseteq VI\alpha cl(K)$

4.VIacl(VIacl(H)) = VIacl(H)

5. $H \in VI\alpha C(U) \Leftrightarrow VI\alpha cl(H) = H$

Theorem 3.11: Let H be a set of U. Then the following statements are true:

- (a) $(VIaint(H))^c = VIacl(H)$
- (b) $(VIacl(H))^c = VIaint(H)$
- (c) $VIaint(H) \subseteq H \cap VIint(VIgcl(VIint(H)))$
- (d) $VI\alpha cl(H) \supseteq H \cup VIcl(VIgint(VIcl(H)))$

Corollary 3.12: Let H be a set of U. Then, the following statements are true:

- (a) If H is an open set then $VI\alpha int(H) \subseteq VIint(VIgcl(VIint(H)))$
- (b) If **H** is a closed set then $VI\alpha cl(H) \subseteq VIcl(VIgint(VIcl(H)))$

Theorem 3.13:

- (a) The arbitrary union of vague infra α -open sets is a vague infra α -open set.
- (b) The arbitrary intersection of vague infra α-closed sets is a vague infra α-closed set.

Proof: Let $\{H_i\}$ be the family of vague infra α -open set. Then for each $i, H_i \subseteq VIint(VIgcl(VIint(H_i)))$ and $\cup H_i \subseteq \cup (VIint(VIgcl(VIint(H_i))) \subseteq VIint(VIgcl(\cup H_i)))$

Hence \cup *H*_{*i*} is a vague infra α -open set.

Theorem 3.14: Let H be a set in U. Then, $VIgint(H) \subseteq VIaint(H) \subseteq H \subseteq VIacl(H) \subseteq VIgcl(H)$

Proof: We know that $VIgint(H) \subseteq H$,

Then $VIaint(VIgint(H)) \subseteq VIaint(H)$

Then VIaint(VIgint(H)) = VIgint(H) and so $VIgint(H) \subseteq VIaint(H)$

Also we know that $H \subseteq VIgcl(H)$,

He

H€

h in Engineerit

and

Then $VIacl(H) \subseteq VIacl(VIgcl(H)))$.

Then VIacl(VIgcl(H)) = VIgcl(H) and so $VIacl(H) \subseteq VIgcl(H)$

Then $VIgint(H) \subseteq VIaint(H) \subseteq H \subseteq VIacl(H) \subseteq VIgcl(H)$

Theorem 3.15:Let H be a set of a VITS U. Then the following statements hold:

- a) If H is VI open set then H is VI α -open set.
- b) If H is VI α -open set then H is VI *semi* open set
- c) If H is VI open set then H is VI semi open set
- d) If H is VI α -open set then H is VI semi pre open set
- e) If H is VI semi open set then H is VI semi pre open set
- f) If H is VI open set then H is VI semi pre open set
- g) If H is VI pre open set then H is VI *semi pre* open set

Remark: The following examples shows that the converses of these relations are not true in general.

Example 3.16: Let $U = \{u,v\}$ and $T = \{0, P_1, P_2, P_3, 1\}$ is a vague infra topology on U where

 $\begin{array}{l} P_1 = \{ \langle u[0.5, 0.6], v[0.4, 0.4] \rangle \}, \\ P_2 = \{ \langle u[0.3, 0.6], v[0.5, 0.5] \rangle \}, P_3 = \{ \langle u[0.3, 0.6], v[0.4, 0.4] \rangle \}, 0 = \{ \langle u[0, 0], v[0, 0] \rangle \}, \\ \langle u[0.3, 0.6], v[0.4, 0.4] \rangle \}, 0 = \{ \langle u[0, 0], v[0, 0] \rangle \}, \end{array}$

 $1 = \{ \langle u[1,1], v[1,1] \rangle \}$

Then

- $A_1 = \{ \langle u[0.5, 0.8], v[0.5, 0.4] \rangle \}$ is VI α -open set but not VI open set.
- $A_2 = \{ \langle u[0.4, 0.7], v[0.5, 0.5] \rangle \}$ is VI semi open set but not VI α -open set
- $A_3 = \{ \langle u[0.5, 0.6], v[0.5, 0.5] \rangle \}$ is VI semi open set but not VI open set
- *A*₄ ={(*u*[0.3,0.5], *v*[0.5,0.7])} is VI semi pre open set but not VI α-open set
- $A_5 = \{ \langle u[0.4, 0.7], v[0.6, 0.6] \rangle \}$ is VI semi pre open set but not semi open set
- $A_6 = \{ (u[0.4, 0.5], v[0.5, 0.5]) \}$ is VI semi pre open set but not VI open set
- $A_7 = \{ \langle u[0.2, 0.4], v[0.4, 0.5] \rangle \}$ is VI semi pre open set but not VI pre open set

IV. VAGUE INFRA CONTINUOUS MAPPINGS

Definition 4.1: A mapping $f: (U, \tau) \to (V, \sigma)$ is said to be Vague infra continuous if $f^{-1}(K)$ is vague infra open (VI *-closed*) set in U for each vague infra open (closed) set K in V.

Example 4.2 :- Let $U = \{u_1, u_2\}$ and $V = \{v_1, v_2\}$ and $P_1 = \{u_1 \ [0.5, 0.6] >, < u_2[0.4, 0.5] >\}, P_2 = \{< v_1 \ [0.5, 0.5] >, < v_2 \ [0.3, 0.6] >\}, P_3 = \{< u_1[0.5, 0.5] >, < u_2[0.3, 0.6] >\}, P_4 = \{< v_1[0.4, 0.5] >, < v_2[0.5, 0.6] >\}, P_5 = \{< v_1 \ [0.3, 0.6] >, < v_2[0.5, 0.5] >\}, P_6 = \{< v_1 \ [0.3, 0.5] >, < v_2[0.5, 0.5] >\}, P_6 = \{< v_1 \ [0.3, 0.5] >, < v_2[0.5, 0.5] >\}, P_6 = \{< v_1 \ [0.3, 0.5] >, < v_2[0.5, 0.5] >\}, P_6 = \{< v_1 \ [0.3, 0.5] >, < v_2[0.5, 0.5] >\}, P_6 = \{< v_1 \ [0.3, 0.5] >, < v_2[0.5, 0.5] >\}, P_6 = \{< v_1 \ [0.3, 0.5] >, < v_2[0.5, 0.5] >\}, P_6 = \{< v_1 \ [0.3, 0.5] >, < v_2[0.5, 0.5] >\}, P_6 = \{< v_1 \ [0.3, 0.5] >, < v_2[0.5, 0.5] >\}, P_6 = \{< v_1 \ [0.3, 0.5] >, < v_2[0.5, 0.5] >\}, P_6 = \{< v_1 \ [0.3, 0.5] >, < v_2[0.5, 0.5] >\}, P_6 = \{< v_1 \ [0.3, 0.5] >, < v_2[0.5, 0.5] >\}, P_6 = \{< v_1 \ [0.3, 0.5] >, < v_2[0.5, 0.5] >\}, P_6 = \{< v_1 \ [0.3, 0.5] >, < v_2[0.5, 0.5] >\}, P_6 = \{< v_1 \ [0.3, 0.5] >, < v_2[0.5, 0.5] >\}, P_6 = \{< v_1 \ [0.3, 0.5] >, < v_2[0.5, 0.5] >\}, P_6 = \{< v_1 \ [0.3, 0.5] >, < v_2[0.5, 0.5] >\}, P_6 = \{< v_1 \ [0.3, 0.5] >, < v_2[0.5, 0.5] >\}, P_6 = \{< v_1 \ [0.3, 0.5] >, < v_2[0.5, 0.5] >\}, P_6 = \{< v_1 \ [0.3, 0.5] >, < v_2[0.5, 0.6] >\}$ is a vague infra open set in Q. So f¹(A) = {<, u_1 \ [0.5, 0.6] >, < u_2, [0.4, 0.5] >} is a vague infra open set in P. So f is a vague infra continuous mapping.

Definition 4.3: A mapping $f: (U, \tau) \to (V, \sigma)$ is said to be Vague infra *semi* continuous if $f^{-1}(K)$ is vague infra *semi*-open (VI *semi* - *closed*) set in U for each VI open (VI closed) set k in V.

Example 4.4 :- Let $U = \{u_1, u_2\}$ and $Y = \{v_1, v_2\}$ and $P_1 = \{\langle u_1, [0.4, 0.6] \rangle, \langle u_2, [0.4, 0.5] \rangle\}, P_2 = \{\langle u_1, [0.5, 0.5] \rangle, \langle u_2, [0.3, 0.6] \rangle\}, P_3 = \{\langle u_1, [0.4, 0.5] \rangle, \langle u_2, [0.3, 0.5] \rangle\}, P_4 = \{\langle v_1, [0.4, 0.5] \rangle, \langle v_2, [0.4, 0.6] \rangle\}, P_5 = \{\langle v_1, [0.3, 0.6] \rangle, \langle v_2, [0.5, 0.5] \rangle\}, P_6 = \{\langle v_1, [0.3, 0.5] \rangle, \langle v_2, [0.4, 0.5] \rangle\}, P_6 = \{\langle v_1, [0.3, 0.5] \rangle, \langle v_2, [0.4, 0.5] \rangle\}, P_6 = \{\langle v_1, [0.3, 0.5] \rangle, \langle v_2, [0.4, 0.5] \rangle\}, P_6 = \{\langle v_1, [0.3, 0.5] \rangle, \langle v_2, [0.4, 0.5] \rangle\}, P_6 = \{\langle v_1, [0.3, 0.5] \rangle, \langle v_2, [0.4, 0.5] \rangle\}, P_6 = \{\langle v_1, [0.3, 0.5] \rangle, \langle v_2, [0.4, 0.5] \rangle\}, P_6 = \{\langle v_1, [0.3, 0.5] \rangle, \langle v_2, [0.4, 0.5] \rangle\}, P_6 = \{\langle v_1, [0.3, 0.5] \rangle, \langle v_2, [0.4, 0.5] \rangle\}, P_6 = \{\langle v_1, [0.4, 0.5] \rangle, \langle v_2, [0.4, 0.6] \rangle\}$ is a vague infra topological spaces on P and Q respectively. Define a mapping f: $(U, \tau) \rightarrow (V, \sigma)$ by $f(u_1) = v_1$, $f(u_2) = v_2$. If $A = \{\langle v_1, [0.4, 0.5] \rangle, \langle v_2, [0.4, 0.6] \rangle\}$ is a vague infra open set in Q. So $f^1(A) = \{\langle u_1, [0.4, 0.6] \rangle, \langle u_2, [0.4, 0.5] \rangle\}$ is a vague infra semi open set in P. So f is a vague infra semi continuous mapping.

Definition 4.5: A mapping $f: (U, \tau) \to (V, \sigma)$ is said to be Vague infra *semi pre* continuous if $f^{-1}(K)$ is vague infra *semi pre*open (VI *semi pre* - *closed*) set in U for each open (closed) set K in V.

Example 4.6 :- Let $U = \{u_1, u_2\}$ and $V = \{v_1, v_2\}$ and $P_1 = \{\langle u_1, [0.5, 0.6] \rangle, \langle u_2, [0.4, 0.5] \rangle\}, P_2 = \{\langle u_1, [0.5, 0.5] \rangle, \langle u_2, [0.3, 0.6] \rangle\}, P_3 = \{\langle u_1, [0.5, 0.5] \rangle, \langle u_2, [0.3, 0.6] \rangle\}, P_4 = \{\langle v_1, [0.4, 0.5] \rangle, \langle v_2, [0.5, 0.6] \rangle\}, P_5 = \{\langle v_1, [0.3, 0.6] \rangle, \langle v_2, [0.5, 0.5] \rangle\}, P_6 = \{\langle v_1, [0.3, 0.5] \rangle, \langle v_2, [0.5, 0.5] \rangle\}, P_6 = \{\langle v_1, [0.3, 0.5] \rangle, \langle v_2, [0.5, 0.5] \rangle\}, P_6 = \{\langle v_1, [0.3, 0.5] \rangle, \langle v_2, [0.5, 0.5] \rangle\}, P_6 = \{\langle v_1, [0.3, 0.5] \rangle, \langle v_2, [0.5, 0.5] \rangle\}, P_6 = \{\langle v_1, [0.3, 0.5] \rangle, \langle v_2, [0.5, 0.5] \rangle\}, P_6 = \{\langle v_1, [0.3, 0.5] \rangle, \langle v_2, [0.5, 0.5] \rangle\}, P_6 = \{\langle v_1, [0.3, 0.5] \rangle, \langle v_2, [0.5, 0.5] \rangle\}, P_6 = \{\langle v_1, [0.3, 0.6] \rangle, \langle v_2, [0.5, 0.5] \rangle\}$ is a vague infra topological spaces on P and Q respectively. Define a mapping f: $(U, \tau) \rightarrow (V, \sigma)$ by $f(u_1) = v_1, f(u_2) = v_2$. If $A = \{\langle v_1, [0.3, 0.6] \rangle, \langle v_2, [0.5, 0.5] \rangle\}$ is a vague infra open set in Q. So $f^{-1}(A) = \{\langle u_1, [0.5, 0.5] \rangle, \langle u_2, [0.3, 0.6] \rangle\}$ is a vague infra semi open set in P. So f is a vague infra semi pre continuous mapping.

Definition 4.7: A mapping $f: (U, \tau) \to (V, \sigma)$ is said to be Vague infra *pre* continuous if $f^{-1}(K)$ is vague infra *pre*open (VI *pre* - *closed*) set in U for each open (closed) set k in V.

Example 4.8:- Let $U = \{u_1, u_2\}$ and $Y = \{v_1, v_2\}$ and $G_1 = \{\langle u_1, [0.5, 0.6] \rangle, \langle u_2, [0.4, 0.5] \rangle\}, G_2 = \{\langle v_1, [0.5, 0.5] \rangle\}$

>,< v_2 , [0.3,0.6]>}, G_3={ $\langle u_1, [0.5,0.5] \rangle$,< $u_2, [0.3,0.5] \rangle$ }, G_4={ $\langle v_1, [0.4,0.5] \rangle$,< $u_2, [0.5,0.6] \rangle$ }, G_5={ $\langle v_1, [0.3,0.6] \rangle$, $\langle v_2, [0.5,0.5] \rangle$ }, G_6={ $\langle v_1, [0.3,0.5] \rangle$,< $v_2, [0.5,0.5] \rangle$ },.Then τ ={0,P₁, P₂, P₃,1} and σ ={0, P₄, P₅, P₆,1} are vague infra topological spaces on P and Q respectively. Define a mapping f: (U, τ) \rightarrow (V, σ) by f(u_1)= v_1 , f(u_2) = v_2 . If A= { $\langle v_1, [0.3,0.5] \rangle$,< v_2 , [0.5,0.5] \rangle } is a vague infra open set in Q. So f⁻¹(A) = { $\langle u_1, [0.5,0.5] \rangle$,< $u_2, [0.3,0.5] \rangle$ } is a vague infra pre open set in P. So f is a vague infra pre continuous mapping.

Definition 4.9: A mapping $f: (U, \tau) \rightarrow (V, \sigma)$ is said to be an vague infra α – open (vague infra α – closed) if f(H) is a vague infra α – open (vague infra α – closed) set in V for each open (closed) set H in U.

Theorem 4.10: If $f: (U, \tau) \to (V, \sigma)$ is a vague infra α – open then $f(VIint(H)) \subseteq VI \alpha int(f(H))$, for each set $H \in U$.

Proof: Let f be an infra α – open mapping and H be a set in U, $f(VIint(H)) \subseteq f(H)$. We have $VI \ \alpha int(f(VIintf(H)))$. Then $f(VIint(H)) \subseteq$ $VI \ \alpha int(f(H))$.

Corollary 4.11: If $f: (U, \tau) \to (V, \sigma)$ is a vague infra α – closed then $f(VI\alpha cl(H)) \subseteq VI cl(f(H))$, for each set $H \in V$

REFERENCES

- [1] Adel.M.AL-Odhari,On infra topological spaces, International journal of mathematical Archive-6(11),2015,179-184.
- [2] Biswas R, vague groups,Internat J comput cognition 2006,4(2):20-23.
- [3] Bustince H.Burillo P.vague sets are institutionistic fuzzy sets and systems 1996;79:403-405.
- [4] Chang CL.Fuzzy topological spaces. J Math Anal Appl.1968;24:182-190
- [5] Gau WL, Buehrer DJ, Vague sets, IEEE Trans. Systems Man and cybernet.1993;23(2):610-614.
- [6] Levine N.Generalized closed sets in topological spaces Rend.Circ.Mat.Palermo.1970;19:89-96.
- [7] Maki H, Balachandran K, Devi R. Associated topologies of generalized α-closed sets and αgeneralized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A Math. 1994; 15:51-63.
- [8] Zadeh LA, Fuzzy sets, Information and control,1965, 338-353.