# A Well-defined Model of Multiplicative Connectivity Invariants of Jahangir Graph $\mathbf{J}_{\mathbf{G}}(\mathbf{n}, \mathbf{m})$ 

Dr.P.Gayathri, Assistant Professor, A.V.C. College (Autonomous), Mannampandal, Mayiladuthurai, India. pgayathrisundar@gmail.com<br>U.Priyanka, Assistant Professor, A.V.C. College (Autonomous), Mannampandal, Mayiladuthurai, India. upavc95@gmail.com<br>G.K.Bagyalakshmi, Department of Mathematics, A.V.C. College (Autonomous), Mannampandal, Mayiladuthurai, India.

Abstract: In this research paper, we make progress to the multiplicative degree based topological indices of Jahangir graph like the Multiplicative invariants of first Zagreb $\prod_{e \in E(\mathrm{G})}(\mathrm{a}+\mathrm{b})$, the second Zagreb $\prod_{e \in E(\mathrm{G})}(\mathrm{ab})$, the square of first Zagreb $\prod_{e \in E(\mathrm{G})}(\mathrm{a}+\mathrm{b})^{2}$,the square of second Zagreb $\prod_{e \in E(\mathrm{G})}(\mathrm{ab})^{2} \quad$,the sum connectivity index $\prod_{e \in E(\mathrm{G})}\left(\frac{1}{\sqrt{a+b}}\right)$,the Randic index $\prod_{e \in E(\mathrm{G})}\left(\frac{1}{\sqrt{a b}}\right)$,the Generalized first Zagreb index $\prod_{e \in E(\mathrm{G})}(\mathrm{a}+\mathrm{b})^{\gamma}$,the Generalized second Zagreb index $\prod_{e \in E(\mathrm{G})}(\mathrm{ab})^{\gamma}$, the Atom bond connectivity index $\prod_{e \in E(G)} \sqrt{\frac{a+b-2}{a b}}$, the Geometric - Arithmetic index $\prod_{e \in E(G)}\left(\frac{2 \sqrt{a b}}{a+b}\right)$ of $J_{G}(n, m)$ and also find closed forms all the above said indices using M-polynomial of Jahangir graphs $J_{G}(n, m)$ for all values of $n \geq 2, m \geq 3$. Our results are easier to evaluate and simpler than existing results of this article.

Keywords: M-polynomial, Topological invariants, Jahangir graphs

## I. INTRODUCTION

Jahangir Graph is defined by a chemical graph and a cycle graph. In mathematical chemistry, mathematical tools like polynomials and topological-based numbers predict properties of compounds without using quantum mechanics. These tools, in combination, capture information hidden in the symmetry of molecular graphs. A topological index is a function that characterizes the topology of the graph. Most commonly known invariants of such kinds are degree -based topological indices. These are actually the numerical values that correlate the structure with various physical properties, chemical reactivity, and biological activities [1-5]. It is an established fact that many properties such as heat of formation, boiling point, strain energy, rigidity and fracture toughness of a molecule are strongly connected to its graphical structure and this fact plays a synergic role in chemical graph theory. Algebraic polynomials play a significant part in chemistry. Hosoya polynomial is one such well-known example which determines distance-based topological indices. M-polynomial [7-10], introduced in

2015, plays the same role in determining closed forms of many degree-based topological indices [11-18]. The main advantage of M-polynomial [19-40] is the wealth of information that it contains about degree-based graph invariants. The Jahangir graph $J_{G}(n, m)$ is a graph on $\mathrm{nm}+1$ vertices and $\mathrm{m}(\mathrm{n}+1)$ edges for all $\mathrm{n} \geq 2$ and $\mathrm{m} \geq 3 . J_{G}(n, m)$ consists of a cycle graph $C_{G}(n, m)$ with one additional vertex which is adjacent to $m$ vertices of $C_{G}(n, m)$ at distance to each other. Figure [1] shows some particular cases of $J_{G}(n, m)$. The Figure $J_{G}(2,8)$ is carved on Jahangir's tomb. It is situated 5 km northwest of Lahore, Pakistan. In Laurdusamy et al. computed the pebbling number of Jahangir graph $J_{G}(2, m)$ for m $\geq 8$.Mojdeh et al. in computed domination number in $J_{G}(2, m)$ and Ramsey number for $J_{G}(3, m)$ by the MPolynomial of $J_{G}(3, m) \quad J_{G}(2, m), J_{G}(3, m) \quad$ and
$J_{G}(4, m)$ are computed all these results are partial and need to be generalized for all values of $m$ and $n$.

## DEFINITION:

A topological index is a function that characterizes the topology of the Jahangir Graph .Let "V" be the Number of vertices and "E" be the Number of edges for $J_{G}(n, m)$ graph represents $(\mathrm{nm}+1)$ vertices and $\mathrm{m}(\mathrm{n}+1)$ edges respectively for all $n \geq 2, m \geq 2$ i.e., a graph consisting of a cycle Graph $C_{G}(n, m)$ with one additional vertex which is adjacent to m vertices of $C_{G}(n, m)$ at distance n to each other on $C_{G}(n, m)$.

## Computational Procedure of M-Polynomial:

M-Polynomial of graph G is defined as If $G=(V, E)$ is a graph and $v \in V$, then $d_{v}(G)$ (or $d_{v}$ for short if G is clear from the context) denotes the degree of $v$. Let G be a graph and let $m_{a b}(G), a, b \geq 1$, be the number of edges $\mathrm{e}=\mathrm{uv}$ of G such that $\left\{d_{u}(G), d_{v}(G)\right\}=\{a, b\}$. The Mpolynomial of G as $M(G ; x, y)=\sum_{a \leq b} m_{a b}(G) x^{a} y^{b}$. For a graph $G=(V, E)$, a degree-based topological index is a graph invariant of the form $I(G)=\sum_{e=u v \in E} f\left(d_{u}, d_{v}\right)$ where $f=f(x, y)$ is a function appropriately selected for possible chemical applications. In this article, we compute closed form of some degree-based topological indices of the Jahangir graph by using the $M$-polynomial. Let " v " be the number of vertices and " e " be the number of edges for $J_{G}(n, m)$ graph represents ( $\mathrm{nm}+1$ ) vertices and $\mathrm{m}(\mathrm{n}+1)$ edges respectively for all $\mathrm{n} \geq 2, \mathrm{~m} \geq 3$. i.e., a graph consisting of a cycle graph $C_{G}(n, m)$ with one additional vertex which is adjacent to m vertices of $C_{G}(n, m)$ at distance n to each other on $C_{G}(n, m)$. Here we considered the Jahangir graphs for $n=2, m \geq 3$, the results are given in case 1 to case 3 and for $n=3, m \geq 3$, the results are given in case 4 to case 6 and for $n=4, m \geq 3$, the results are given in case 7 to case 9 , for $n=5, m \geq 3$, the results are given in case 10 to case 12 , finally, the results are generalized for $n \geq 2, m \geq 3$.

## Case 1:

For $J_{G}(2,3)$, the number of edges with end degrees $(2,2)$ is equal to 0 , the number of edges with end degrees $(2,3)$ is equal to 6 , the number of edges with end degrees $(3,3)$ is equal to 3 , therefore the total number of edges is equal to 9 .

$\boldsymbol{\operatorname { F i g }}(\mathbf{1}) J_{G}(2,3)$

## Case (2):

For $J_{G}(2,4)$, the number of edges with end degrees $(2,2)$ is equal to 0 , the number of edges with end degrees $(2,3)$ is equal to 8 , the number of edges with end degrees $(3,3)$ is equal to 0 ,the number of edges with end degrees $(3,4)$ is equal to 4 , therefore the total number of edges is equal to 12.


Fig(2) $J_{G}(2,4)$

Case (3):
For $J_{G}(2,5)$, the number of edges with end degrees $(2,2)$ is equal to 0 , the number of edges with end degrees $(2,3)$ is equal to 10 , the number of edges with end degrees $(3,3)$ is equal to 0 ,the number of edges with end degrees $(3,4)$ is equal to 0 ,the number of edges with end degrees $(3,5)$ is equal to 5 , therefore the total number of edges is equal to 15.

$\operatorname{Fig}(\mathbf{3}) J_{G}(2,5)$

Case (4):
For $J_{G}(3,3)$, the number of edges with end degrees $(2,2)$ is equal to 3 , the number of edges with end degrees $(2,3)$ is equal to 6 , the number of edges with end degrees $(3,3)$ is equal to 3 , the therefore total number of edges is equal to 12.

$\operatorname{Fig}(4) J_{G}(3,3)$

## Case(5):

For $J_{G}(3,4)$, the number of edges with end degrees $(2,2)$ is equal to 4 , the number of edges with end degrees $(2,3)$ is equal to 8 , the number of edges with end degrees $(3,3)$ is equal to 4 , therefore the total number of edges is equal to 16.

$\operatorname{Fig}(5) \quad J_{G}(3,4)$

## Case (6):

For $J_{G}(3,5)$, the number of edges with end degrees $(2,2)$ is equal to 5 , the number of edges with end degrees $(2,3)$ is equal to 10 ,the number of edges with end degrees $(3,3)$ is equal to 5 , therefore the total number of edges is equal to 20.

$\operatorname{Fig}(6) \quad J_{G}(3,5)$

Case (7):
For $J_{G}(4,3)$, the number of edges with end degrees $(2,2)$ is equal to 6 , the number of edges with end degrees $(2,3)$ is equal to 6 ,the number of edges with end degrees $(3,3)$ is equal to 3 , therefore the total number of edges is equal to 15.

$\operatorname{Fig}(7) \quad J_{G}(4,3)$

Case (8):

$\boldsymbol{\operatorname { F i g } ( 1 0 )} \quad J_{G}(5,3)$

## Case (11):

For $J_{G}(5,4)$, the number of edges with end degrees $(2,2)$ is equal to 12 , the number of edges with end degrees $(2,3)$ is equal to 8 ,the number of edges with end degrees $(3,3)$ is equal to 4 , therefore the total number of edges is equal to 24.

$\operatorname{Fig}(11) \quad J_{G}(5,4)$
Case (12):
For $J_{G}(5,5)$, the number of edges with end degrees $(2,2)$ is equal to 15 , the number of edges with end degrees $(2,3)$ is equal to 10 , the number of edges with end degrees $(3,3)$ is equal to 5 , therefore the total number of edges is equal to 30 .

$\operatorname{Fig}(12) \quad J_{G}(5,5)$

## M-Polynomial of Jahangir graph is developed and it is

 given by$J_{G}(n, m)=$
$\{(n-2) m\} x^{2} y^{2}+\{2 m\} x^{2} y^{3}+\{m\} x^{3} y^{3}$ for all $n \geq 2, m \geq$ 3Proof:
Some important Multiplicative degree based Topological invariants of Jahangir graphs are given below:

1. The Multiplicative invariants of first Zagreb $\Rightarrow$

$$
P_{1}\left[J_{G}(n, m)\right]=\prod_{e}(a+b)
$$

2. The Multiplicative invariants of second Zagreb $\Rightarrow$

$$
P_{2}\left[J_{G}(n, m)\right]=\prod_{e}(a b)
$$

3. The Multiplicative invariants of square of first

$$
\text { Zagreb } \Rightarrow P_{3}\left[J_{G}(n, m)\right]=\prod_{e}(a+b)^{2}
$$

4. The Multiplicative invariants of square of second

$$
\text { Zagreb } \Rightarrow P_{4}\left[J_{G}(n, m)\right]=\prod_{e}(a b)^{2}
$$

5. The Multiplicative invariants of sum connectivity

$$
\text { index } \Rightarrow P_{5}\left[J_{G}(n, m)\right]=\prod_{e}\left(\frac{1}{\sqrt{a+b}}\right)
$$

6. The Multiplicative invariants of Randic index

$$
\Rightarrow P_{6}\left[J_{G}(n, m)\right]=\prod_{e}\left(\frac{1}{\sqrt{a b}}\right)
$$

7. The Generalized Multiplicative invariants of first Zagreb $\Rightarrow$

$$
P_{7}\left[J_{G}(n, m)\right]=\prod_{e}(a+b)^{\beta}
$$

8. The Generalized Multiplicative invariants of second Zagreb $\Rightarrow$

$$
P_{8}\left[J_{G}(n, m)\right]=\prod_{e}(a b)^{\beta}
$$

The Multiplicative invariants of first Zagreb is denoted by
9. The Multiplicative invariants of Atom bond connectivity $\Rightarrow$

$$
P_{9}\left[J_{G}(n, m)\right]=\prod_{e} \sqrt{\frac{a+b-2}{a b}}
$$

10. The Multiplicative invariants of Geometric Arithmetic $\Rightarrow P_{10}\left[J_{G}(n, m)\right]=\prod_{e}\left(\frac{2 \sqrt{a b}}{a+b}\right)$

## Theorem:1

Let a graph G consists of a pair (V,E) and cycle graph $C_{G}(n, m)$ if it is a Jahangir Graph defined $J_{G}(n, m)$ consisting of a cycle $C_{G}(n, m)$ with one additional vertex which is adjacent to m vertices of $C_{G}(n, m)$ at distance n to each other on $C_{G}(n, m)$, then the Multiplicative invariants of first Zagreb is given by $P_{1}\left[J_{G}(n, m)\right]=m(4 n+8)$.

$$
P_{1}\left[J_{G}(n, m)\right]=\prod_{e}(a+b)
$$

Now, this theorem have to derived by the results of the Multiplicative invariants of first Zagreb of topological invariants is given below :
$P_{1}\left[J_{G}(n, m)\right]=\prod_{e \in E(G)}(a+b)$
$P_{1}\left[J_{G}(n, m)\right]=$
$(a+b)\{(n-2) m\}+(a+b)\{2 m\}+(a+b)\{m\}$
$P_{1}\left[J_{G}(n, m)\right]=$
$(2+2)(n m-2 m)+(2+3)(2 m)+(3+3)(m)$
$P_{1}\left[J_{G}(n, m)\right]=4(n m-2 m)+5(2 m)+6 m$
$P_{1}\left[J_{G}(n, m)\right]=4 m(n-2)+10 m+6 m$
$P_{1}\left[J_{G}(n, m)\right]=4 m(n-2)+16 m$
$P_{1}\left[J_{G}(n, m)\right]=4 n m-8 m+10 m+6 m$
$P_{1}\left[J_{G}(n, m)\right]=4 n m+8 m$
Hence, the final result of the Multiplicative degree based topological invariants of first Zagreb of Jahangir graph is equal to

$$
P_{1}\left[J_{G}(n, m)\right]=m(4 n+8)
$$

## Theorem:2

Let a graph G consists of a pair $(\mathrm{V}, \mathrm{E})$ and a cycle graph $C_{G}(n, m)$ if it is a Jahangir Graph defined $J_{G}(n, m)$ consisting of a cycle $C_{G}(n, m)$ with one additional vertex which is adjacent to m vertices of $C_{G}(n, m)$ at distance n to each other on $C_{G}(n, m)$, then the Multiplicative invariants of second Zagreb is given by $P_{2}\left[J_{G}(n, m)\right]=4 m n+13 m$

## Proof:

The Multiplicative invariants of second Zagreb is denoted
by $P_{2}\left[J_{G}(n, m)\right]=\prod_{e}(a b)$
Now, this theorem have to derived by the results of the Multiplicative invariants of second Zagreb of topological invariants is given below :

$$
\begin{aligned}
& P_{2}\left[J_{G}(n, m)\right]=\prod_{e \in E(G)}(a b) \\
& P_{2}\left[J_{G}(n, m)\right] \\
& \quad(a b)\{(n-2) m\}+(a b)\{2 m\}+(a b)\{m\} \\
& P_{2}\left[J_{G}(n, m)\right]= \\
& (2 \times 2)(n m-2 m)+(2 \times 3)(2 m)+(3 \times 3)(m) \\
& P_{2}\left[J_{G}(n, m)\right]=4 n m-8 m+12 m+9 m \\
& P_{2}\left[J_{G}(n, m)\right]=4 m(n-2)+21 m \\
& P_{2}\left[J_{G}(n, m)\right]=4 m(n+13)
\end{aligned}
$$

Hence, the final result of the Multiplicative degree based topological invariants of second Zagreb of Jahangir graph is equal to

$$
P_{2}\left[J_{G}(n, m)\right]=4 m n+13 m
$$

## Theorem:3

Let a graph G consists of a pair (V,E) and a cycle graph $C_{G}(n, m)$ if it is a Jahangir Graph defined $J_{G}(n, m)$ consisting of a cycle $C_{G}(n, m)$ with one additional vertex which is adjacent to $m$ vertices of $C_{G}(n, m)$ at distance n to each other on $C_{G}(n, m)$, then the Multiplicative invariants of square of first Zagreb is given by $P_{3}\left[J_{G}(n, m)\right]=m(16 n+54)$

## Proof:

Phe Multiplicative invariants of square of first Zagreb is denoted by $P_{3}\left[J_{G}(n, m)\right]=\prod_{e}(a+b)^{2}$
Now, this theorem have to derived by the results of the Multiplicative invariants of square of first Zagreb invariants is given below :
$P_{3}\left[J_{G}(n, m)\right]=\prod_{e \in E(G)}(a+b)^{2}$
$P_{3}\left[J_{G}(n, m)\right]=$
$(a+b)^{2}\{(n-2) m\}+(a+b)^{2}\{2 m\}+(a+b)^{2}\{m\}$
$P_{3}\left[J_{G}(n, m)\right]=$
$(2+2)^{2}(n m-2 m)+(2+3)^{2}(2 m)+(3+3)^{2}(m)$
$P_{3}\left[J_{G}(n, m)\right]=16(n m-2 m)+50 m+36 m$
$P_{3}\left[J_{G}(n, m)\right]=16 n m-32 m+50 m+36 m$

Hence, the final result of the Multiplicative degree based topological invariants of square of first Zagreb of Jahangir graph is equal to

$$
P_{3}\left[J_{G}(n, m)\right]=m(16 n+54)
$$

## Theorem: 4

Let a graph G consists of a pair $(\mathrm{V}, \mathrm{E})$ and a cycle graph $C_{G}(n, m)$ if it is a Jahangir Graph defined $J_{G}(n, m)$ consisting of a cycle $C_{G}(n, m)$ with one additional vertex which is adjacent to m vertices of $C_{G}(n, m)$ at distance n to each other on $C_{G}(n, m)$, then the Multiplicative invariants of square of second Zagreb is given by $P_{4}\left[J_{G}(n, m)\right]=m(16 n+121)$

## Proof:

The Multiplicative invariants of square of second Zagreb is denoted by $P_{4}\left[J_{G}(n, m)\right]=\prod_{e}(a b)^{2}$
Now, this theorem have to derived by the results of the Multiplicative invariants of square of second Zagreb invariants is given below :

$$
\begin{aligned}
& P_{4}\left[J_{G}(n, m)\right]=\prod_{e \in E(G)}(a b)^{2} \\
& P_{4}\left[J_{G}(n, m)\right]= \\
& (a b)^{2}\{(n-2) m\}+(a b)^{2}\{2 m\}+(a b)^{2}\{m\} \\
& P_{4}\left[J_{G}(n, m)\right]= \\
& (2 \times 2)^{2}(n m-2 m)+(2 \times 3)^{2}(2 m)+(3 \times 3)^{2}(m) \\
& P_{4}\left[J_{G}(n, m)\right]=16 n m-32 m+72 m+81 m \\
& P_{4}\left[J_{G}(n, m)\right] 16(n m-2 m)+153 m
\end{aligned}
$$

Hence, the final result of the Multiplicative degree based topological invariants of square of second Zagreb of Jahangir graph is equal to

$$
P_{4}\left[J_{G}(n, m)\right]=m(16 n+121)
$$

## Theorem:5

Let a graph $G$ consists of a pair (V,E) and a cycle graph $C_{G}(n, m) \quad$ if it is a Jahangir Graph defined $J_{G}(n, m)$ consisting of a cycle $C_{G}(n, m)$ with one additional vertex which is adjacent to m vertices of $C_{G}(n, m)$ at distance n to each other on $C_{G}(n, m)$, then the Multiplicative invariants of sum connectivity index is given by

$$
P_{5}\left[J_{G}(n, m)\right]=\frac{m(\sqrt{30} n-2(\sqrt{5}(\sqrt{6}-1)-2 \sqrt{6}))}{2 \sqrt{30}}
$$

## Proof:

The Multiplicative invariants of sum connectivity index is denoted by $P_{5}\left[J_{G}(n, m)\right]=\prod_{e}\left(\frac{1}{\sqrt{a+b}}\right)$

Now, this theorem have to derived by the results of the Multiplicative invariants of sum connectivity invariants is given below :
$P_{5}\left[J_{G}(n, m)\right]=\prod_{e \in E(G)}\left(\frac{1}{\sqrt{a+b}}\right)$
$P_{5}\left[J_{G}(n, m)\right]=$
$P_{5}\left[J_{G}(n, m)\right]=$
$\left(\frac{1}{\sqrt{a+b}}\right)\{(n-2) m\}+\left(\frac{1}{\sqrt{a+b}}\right)\{2 m\}+\left(\frac{1}{\sqrt{a+b}}\right)\{m\}\left(\frac{1}{\sqrt{2 \times 2}}\right)(n m-2 m)+\left(\frac{1}{\sqrt{2 \times 3}}\right)(2 m)+\left(\frac{1}{\sqrt{3 \times 3}}\right)(m)$
$P_{5}\left[J_{G}(n, m)\right]=$
$\left(\frac{1}{\sqrt{2+2}}\right)(n m-2 m)+\left(\frac{1}{\sqrt{2+3}}\right)(2 m)+\left(\frac{1}{\sqrt{2+3}}\right)(m)$
$P_{5}\left[J_{G}(n, m)\right]=\left(\frac{n m}{2}\right)-\left(\frac{2 m}{2}\right)+\left(\frac{2 m}{\sqrt{5}}\right)+\left(\frac{2 m}{\sqrt{6}}\right)$
$P_{5}\left[J_{G}(n, m)\right]=\frac{1}{2}(n m-2 m)+\frac{m}{\sqrt{6}}+\frac{2 m}{\sqrt{5}}$
$P_{5}\left[J_{G}(n, m)\right]=m\left(\frac{n}{2}+\frac{1}{\sqrt{6}}+\frac{2}{\sqrt{5}}-1\right)$
Hence, the final result of the Multiplicative degree based topological invariants of sum connectivity of Jahangir graph is equal to

$$
P_{5}\left[J_{G}(n, m)\right]=\frac{m(\sqrt{30} n-2(\sqrt{5}(\sqrt{6}-1)-2 \sqrt{6}))}{2 \sqrt{30}}
$$

## Theorem: 6

Let a graph G consists of a pair (V,E) and a cycle graph $C_{G}(n, m)$ if it is a Jahangir Graph defined $J_{G}(n, m)$ consisting of a cycle $C_{G}(n, m)$ with one additional vertex which is adjacent to m vertices of $C_{G}(n, m)$ at distance n to each other on $C_{G}(n, m)$, then the Multiplicative invariants of Randic index is given by

$$
P_{6}\left[J_{G}(n, m)\right]=m\left(\frac{n}{2}+\sqrt{\frac{2}{3}}-\frac{2}{3}\right)
$$

## Proof:

The Multiplicative invariants of Randic index is denoted by

$$
P_{6}\left[J_{G}(n, m)\right]=\prod_{e}\left(\frac{1}{\sqrt{a b}}\right)
$$

Now, this theorem have to derived by the results of the Multiplicative invariants of Randic index is given below :

$$
P_{6}\left[J_{G}(n, m)\right]=\prod_{e \in E(G)}\left(\frac{1}{\sqrt{a b}}\right)
$$

$P_{6}\left[J_{G}(n, m)\right]=$
$\left(\frac{1}{\sqrt{a b}}\right)\{(n-2) m\}+\left(\frac{1}{\sqrt{a b}}\right)\{2 m\}+\left(\frac{1}{\sqrt{a b}}\right)\{m\}$
$P_{6}\left[J_{G}(n, m)\right]=$
$P_{6}\left[J_{G}(n, m)\right]=\frac{n m}{2}-\frac{2 m}{2}+\frac{2 m}{\sqrt{6}}+\frac{m}{3}$
$P_{6}\left[J_{G}(n, m)\right]=\frac{1}{2}(n m-2 m)+\sqrt{\frac{2}{3}} m+\frac{m}{3}$
$P_{6}\left[J_{G}(n, m)\right]=\frac{1}{6} m(3 n+2 \sqrt{6}-4)$
$P_{6}\left[J_{G}(n, m)\right]=\frac{1}{6}(3 n+2 \sqrt{6}-2)$
Hence, the final result of the Multiplicative degree based topological invariants of Randic invariants of Jahangir graph is equal to

$$
P_{6}\left[J_{G}(n, m)\right]=m\left(\frac{n}{2}+\sqrt{\frac{2}{3}}-\frac{2}{3}\right)
$$

## Theorem:7

Let a graph G consists of a pair (V,E) and a cycle graph $C_{G}(n, m) \quad$ if $\quad$ it is a Jahangir Graph defined $J_{G}(n, m)$ consisting of a cycle $C_{G}(n, m)$ with one additional vertex which is adjacent to $m$ vertices of $C_{G}(n, m)$ at distance n to each other on $C_{G}(n, m)$, then the Generalized Multiplicative invariants of first Zagreb is given by
$P_{7}\left[J_{G}(n, m)\right]=2^{2 \beta}(n m-2 m)+5^{\beta}(2 m)+6^{\beta} m$

## Proof:

The Generalized Multiplicative invariants of first Zagreb is denoted by $P_{7}\left[J_{G}(n, m)\right]=\prod_{e}(a+b)^{\beta}$
Now, this theorem have to derived by the results of the
Generalized Multiplicative invariants of first zagreb index is given below:

$$
\begin{aligned}
& P_{7}\left[J_{G}(n, m)\right]=\prod_{e \in E(G)}(i+j)^{\beta} \\
& P_{7}\left[J_{G}(n, m)\right]= \\
& (a+b)^{\beta}\{(n-2) m\}+(a+b)^{\beta}\{2 m\}+(a+b)^{\beta}\{m\} \\
& P_{7}\left[J_{G}(n, m)\right]= \\
& (2+2)^{\beta}(n m-2 m)+(2+3)^{\beta}(2 m)+(3+3)^{\beta}(m)
\end{aligned}
$$

$P_{7}\left[J_{G}(n, m)\right]=4^{\beta}(n m-2 m)+5^{\beta}(2 m)+6^{\beta}(m)$
$P_{7}\left[J_{G}(n, m)\right]=4^{\beta} n m-8^{\beta} m+5^{\beta}(2 m)+6^{\beta} m$
$P_{7}\left[J_{G}(n, m)\right]=4^{\beta}(n m-2 m)+5^{\beta}(2 m)+6^{\beta}(m)$
Hence, the final result of the Multiplicative degree based topological invariants of Generalized first Zagreb of Jahangir graph is equal to

$$
P_{7}\left[J_{G}(n, m)\right]=2^{2 \beta}(n m-2 m)+5^{\beta}(2 m)+6^{\beta} m
$$

## Theorem:8

Let a graph G consists of a pair ( $\mathrm{V}, \mathrm{E}$ ) and a cycle graph $C_{G}(n, m)$ if it is a Jahangir Graph defined $J_{G}(n, m)$ consisting of a cycle $C_{G}(n, m)$ with one additional vertex which is adjacent to m vertices of $C_{G}(n, m)$ at distance n to each other on $C_{G}(n, m)$, then the Generalized Multiplicative invariants of second Zagreb is given by
$P_{8}\left[J_{G}(n, m)\right]=2^{2 \beta}(m n-2 m)+3^{2 \beta}(m)+6^{\beta} m$

## Proof:

The Generalized Multiplicative invariants of second Zagreb is denoted by $P_{8}\left[J_{G}(n, m)\right]=\prod(a b)^{\beta}$

Now, this theorem have to derived by the results of the Generalized Multiplicative invariants of second Zagreb index is given below :

$$
\begin{aligned}
& P_{8}\left[J_{G}(n, m)\right]=\prod_{e \in E(G)}(a b)^{\beta} \\
& P_{8}\left[J_{G}(n, m)\right]= \\
& \quad(a b)^{\beta}\{(n-2) m\}+(a b)^{\beta}\{2 m\}+(a b)^{\beta}\{m\} \\
& P_{8}\left[J_{G}(n, m)\right]= \\
& (2 \times 2)^{\beta}(n m-2 m)+(2 \times 3)^{\beta}(2 m)+(3 \times 3)^{\beta}\{m\} \\
& P_{8}\left[J_{G}(n, m)\right]=4^{\beta}(n m-2 m)+6^{\beta}(2 m)+9^{\beta} m \\
& P_{8}\left[J_{G}(n, m)\right]=4^{\beta} n m-8^{\beta} m+12^{\beta} m+9^{\beta} m \\
& P_{8}\left[J_{G}(n, m)\right]=4^{\beta} m(n-2)+6^{\beta}(2 m)+9^{\beta} m
\end{aligned}
$$

Hence, the final result of the Multiplicative degree based topological invariants of Generalized second Zagreb of Jahangir graph is equal to
$P_{8}\left[J_{G}(n, m)\right]=2^{2 \beta}(m n-2 m)+3^{2 \beta}(m)+6^{\beta} m$

## Theorem:9

Let a graph G consists of a pair $(\mathrm{V}, \mathrm{E})$ and a cycle graph $C_{G}(n, m)$ if it is a Jahangir Graph defined $J_{G}(n, m)$ consisting of a cycle $C_{G}(n, m)$ with one additional vertex which is adjacent to m vertices of $C_{G}(n, m)$ at distance n to each other on $C_{G}(n, m)$, then
the Multiplicative invariants of Atom bond connectivity is given by $P_{9}\left[J_{G}(n, m)\right]=m\left(\frac{n}{\sqrt{2}}+\frac{1}{\sqrt{3}}-\sqrt{2}+\frac{2}{3}\right)$

## Proof:

The Multiplicative invariants of Atom bond connectivity is denoted by
$P_{9}\left[J_{G}(n, m)\right]=\prod_{e \in E(G)} \sqrt{\frac{a+b-2}{a b}}$
Now, this theorem have to derived by the results of the Multiplicative invariants of Atom - Bond connectivity index is given below :
$P_{9}\left[J_{G}(n, m)\right]=$
$\left(\sqrt{\frac{a+b-2}{a b}}\right)\{(n-2) m\}+\left(\sqrt{\frac{a+b-2}{a b}}\right)\{2 m\}+\left(\sqrt{\frac{a+b-2}{a b}}\right)\{m\}$
$P_{9}\left[J_{G}(n, m)\right]=$
$\left(\sqrt{\frac{2+2-2}{2 \times 2}}\right)(n m-2 m)+\left(\sqrt{\frac{2+2-2}{2 \times 2}}\right)(2 m)+\left(\sqrt{\frac{2+2-2}{2 \times 2}}\right)(m)$
$P_{9}\left[J_{G}(n, m)\right]=\frac{\sqrt{2}}{2}(n m-2 m)+\frac{\sqrt{3}}{6}(2 m)+\frac{2}{3} m$
$P_{9}\left[J_{G}(n, m)\right] \frac{n m-2 m}{\sqrt{2}}+\frac{m}{\sqrt{3}}+\frac{2 m}{3}$
$P_{9}\left[J_{G}(n, m)\right]=\frac{n m-2 m}{\sqrt{2}}+\frac{m}{\sqrt{3}}+\frac{2 m}{3}$
Hence, the final result of the Multiplicative degree based topological invariants of Atom-Bond Connectivity invariants of Jahangir graph is equal to
$P_{9}\left[J_{G}(n, m)\right]=m\left(\frac{n}{\sqrt{2}}+\frac{1}{\sqrt{3}}-\sqrt{2}+\frac{2}{3}\right)$

## Theorem:10

Let a graph G consists of a pair (V,E) and a cycle graph $C_{G}(n, m)$ if it is a Jahangir Graph defined $J_{G}(n, m)$ consisting of a cycle $C_{G}(n, m)$ with one additional vertex which is adjacent to m vertices of $C_{G}(n, m)$ at distance n to each other on $C_{G}(n, m)$, then the Multiplicative invariants of Geometric - Arithmetic is given by $P_{10}\left[J_{G}(n, m)\right]=m n+\left(\frac{4 \sqrt{6}}{5}-1\right) m$

## Proof:

The Multiplicative invariants of Geometric - Arithmetic is denoted by $P_{10}\left[J_{G}(n, m)\right]=\prod_{e \in E(G)}\left(\frac{2 \sqrt{a b}}{a+b}\right)$

Now, this theorem have to derived by the results of the Multiplicative invariants of Geometric - Arithmetic index is given below :
$P_{10}\left[J_{G}(n, m)\right]=\prod_{e \in E(G)}\left(\frac{2 \sqrt{a b}}{a+b}\right)$
$P_{10}\left[J_{G}(n, m)\right]=$
$\left(\frac{2 \sqrt{a b}}{a+b}\right)\{(n-2) m\}+\left(\frac{2 \sqrt{a b}}{a+b}\right)(2 m)+\left(\frac{2 \sqrt{a b}}{a+b}\right)\{m\}$
$P_{10}\left[J_{G}(n, m)\right]=$
$\left(\frac{2 \sqrt{2 \times 2}}{2+2}\right)(n m-2 m)+\left(\frac{2 \sqrt{2 \times 3}}{2+3}\right)(2 m)+\left(\frac{2 \sqrt{3 \times 3}}{3+3}\right)(m)$
$P_{10}\left[J_{G}(n, m)\right]=\frac{4}{4}\left(n m-2 m+\frac{2 \sqrt{6}}{5}(2 m)+\frac{6}{6} m\right)$
$P_{10}\left[J_{G}(n, m)\right]=n m-2 m+\frac{2 \sqrt{6}}{5}(2 m)+m$
$P_{10}\left[J_{G}(n, m)\right]=n m+\frac{4 \sqrt{6}}{5} m-m$
$P_{10}\left[J_{G}(n, m)\right]=n m+\frac{4 \sqrt{6}}{5} m-m$
$P_{10}\left[J_{G}(n, m)\right]=\frac{1}{5} m(5 n+4 \sqrt{6}-5)$
$P_{10}\left[J_{G}(n, m)\right]=m\left(n+\frac{4 \sqrt{6}}{5}-1\right)$
Hence, the final result of the Multiplicative degree based topological invariants of Geometric-Arithmetic invariants of Jahangir graph is equal to
$P_{10}\left[J_{G}(n, m)\right]=m n+\left(\frac{4 \sqrt{6}}{5}-1\right) m$
THE RESULTS OF MULTIPLICATIVE INVARIANTS OF DEGREE BASED TOPOLOGICAL INDICES OF JAHANGIR GRAPH $\mathbf{J}_{\mathbf{G}}(\mathrm{n}, \mathrm{m})$.

| Topological Index | Formulas obtained |
| :---: | :---: |
| The product of first <br> Zagreb | $P_{1}\left[J_{G}(n, m)\right]=m(4 n+8)$ |
| The Product of second <br> Zagreb | $P_{2}\left[J_{G}(n, m)\right]=4 m n+13 m$ |
| The Product of square of <br> first Zagreb | $P_{3}\left[J_{G}(n, m)\right]=m(16 n+54)$ |
| The Product of square of <br> second Zagreb | $P_{4}\left[J_{G}(n, m)\right]=$ |


| The Product of sum connectivity index | $\begin{aligned} & P_{5}\left[J_{G}(n, m)\right]= \\ & \frac{m(\sqrt{30} n-2(\sqrt{5}(\sqrt{6}-1)-2 \sqrt{6}))}{2 \sqrt{30}} \end{aligned}$ |
| :---: | :---: |
| The Product of Randic index | $\begin{gathered} P_{6}\left[J_{G}(n, m)\right]= \\ m\left(\frac{n}{2}+\sqrt{\frac{2}{3}}-\frac{2}{3}\right) \end{gathered}$ |
| The Generalized product of first Zagreb | $\begin{gathered} P_{7}\left[J_{G}(n, m)\right]= \\ 2^{2 \beta}(n m-2 m)+5^{\beta}(2 m)+6^{\beta} m \end{gathered}$ |
| The Generalized product of second Zagreb | $\begin{gathered} P_{8}\left[J_{G}(n, m)\right]= \\ 2^{2 \beta}(m n-2 m)+3^{2 \beta}(m)+6^{\beta} m \end{gathered}$ |
| The Product of Atom bond connectivity | $\begin{gathered} P_{9}\left[J_{G}(n, m)\right]= \\ m\left(\frac{n}{\sqrt{2}}+\frac{1}{\sqrt{3}}-\sqrt{2}+\frac{2}{3}\right) \end{gathered}$ |
| The Product of Geometric - Arithmetic index | $\begin{gathered} P_{10}\left[J_{G}(n, m)\right]= \\ m n+\left(\frac{4 \sqrt{6}}{5}-1\right) m \end{gathered}$ |

## Conclusion:

In this article, we computed closed forms of Multiplicative invariants of degree based topological indices of $J_{G}(n, m)$
for all $\mathrm{n} \geq 2, \mathrm{~m} \geq 3$. These results will also play a vital role in industries and pharmacy in the realm of that molecular graph which contains $J_{G}(n, m)$.

## References

[1] P. Gayathri, U. Priyanka, S. Sandhiya, S. Sunandha, K.R. Subramanian, "M-Polynomials of Penta-Chains", Journal of Ultra Scientist of Physical Sciences, Vol. 29(4), pp.164168,2017.
[2] P. Gayathri,U.Priyanka , S. Sandhiya, " A significant computation for finding PI index of Phenylene", Journal of Ultra Chemistry, Vol.13(3) ,pp. 60-64, 2017.
[3] P. Gayathri ,U. Priyanka, "Degree Based Topological Indices of Banana Tree Graph", International Journal of Current Research and Modern Education, Special Issue NCETM,pp.13-24,2017.
[4] P. Gayathri, U. Priyanka , "Degree based topological indices of Linear Phenylene", International Journal of Innovative Research in Science,Engineering and Technology,Vol. 6(8), pp.2319-8753, 2017.
[5] P. Gayathri and T.Ragavan, " Wiener matrix sequence , Hyper - Wiener Vector, Wiener Polynomial sequence and Hyper- Wiener Polynomial of Bi-phenylene" International Journal of Innovative Research in science, Engineering and Technology, Vol. 6, Issue 8, August 2017.
[6] P. Gayathri and T.Ragavan, " Wiener vector , Hyper - wiener vector , Wiener number and Hyper Wiener number of

Molecular Graphs" Annalss of Pure and Applied Mathematics vol.15(No.1), pp.51-65, Dec 2017.
[7] P. Gayathri and S.Pavithra, " A consequential computation of degree based topological indices of Triangular Benezoid " International journal of mathematics and its Applications, Vol:6(1-D),pp:617-627, Nov 2018.
[8] Rucker.G, Rucker.C, On topological indices, boiling points, and cycloalkanes, Journal of Chemical Information and Computer Science 1999, 39, 788-802.
[9] Klavzar.S, Gutman .I, A comparison of the Schultz molecular topological index with the Wiener index. J. Chem. Inf. Comput. Sci. 1996, 36, 1001-1003.
[10] Brückler F.M, Doslic .T, Graovac. A, Gutman.I, On a class of distance-based molecular structure descriptors.Chem. Phys. Lett. 2011, 503, 336-338.
[11] Deng, H.; Yang, J.; Xia, F. A general modeling of some vertex-degree based topological indices in benzenoid systems and phenylenes. Comput. Math. Appl. 2011, 61, 3017-3023.
[12] Zhang.H, Zhang.F, The Clar covering polynomial of hexagonal systems I. Discret. Appl. Math. 1996, 69,147-167.
[13] Gutman. I, Some properties of the Wiener polynomials. Graph Theory Notes N. Y. 1993, 125, 13-18.
[14] Deutsch. E, Klavzar. S, M-Polynomial, and degree-based topological indices. Iran. J. Math. Chem. 2015, 6,93-102.
[15] Munir. M, Nazeer.W, Rafique. S, Kang, S.M. M-polynomial and related topological indices of Nanostar dendrimers. Symmetry 2016, 8, 97.
[16] Munir. M, Nazeer. W, Rafique. S, Kang.S.M, M-Polynomial and Degree-Based Topological Indices of Polyhex Nanotubes. Symmetry 2016, 8, 149.
[17] Munir. M, Nazeer. W, Rafique. S, Nizami. A.R, Kang. S.M, Some Computational Aspects of Triangular Boron Nanotubes. Symmetry 2016, 9, 6.
[18] Munir. M, Nazeer. W, Shahzadi. Z, Kang. S.M., Some invariants of circulant graphs. Symmetry 2016, 8,134.
[19] Lourdusamy. A, Jayaseelan. S.S, Mathivanan. T, On pebbling Jahangir graph. Gen. Math. Notes 2011, 5, 42-49.
[20] Mojdeh. M.A, Ghameshlou. A.N, Domination in Jahangir Graph J2,m. Int. J. Contemp. Math. Sci. 2007, 2, 1193-1199.
[21] Ali. K, Baskoro. E.T, Tomescu. I, On the Ramsey number of Paths and Jahangir, graph J3, m. In Proceedingsof the 3rd International Conference on 21st Century Mathematics, Lahore, Pakistan, 4-7 March 2007.
[22] Farahani. M.R,Hosoya Polynomial and Wiener Index of Jahangir graphs J2,m. Pac. J. Appl. Math. 2015, 7,221-224.
[23] Farahani. M.R, The Wiener Index and Hosoya polynomial of a class of Jahangir graphs J3,m. Fundam. J. Math.Math. Sci. 2015, 3, 91-96.
[24] Wang. S, Farahani. M.R, Kanna. M.R, Jamil. M.K, Kumar. R.P, TheWiener Index and the Hosoya Polynomialof the Jahangir Graphs. Appl. Comput. Math. 2016, 5, 138-141. Symmetry 2017, 9, 1715 of 15
[25] Wiener. H, Structural determination of paraffin boiling points. J. Am. Chem. Soc. 1947, 69, 17-20.
[26] Dobrynin. A.A, Entringer. R, Gutman. I, Wiener index of trees: Theory and applications. Acta Appl. Math.2001, 66, 211-249.
[27] Gutman. I, Polansky. O.E, Mathematical Concepts in Organic Chemistry; Springer Science \& Business Media:New York, NY, USA, 2012.
[28] Randic, M. Characterization of molecular branching. J. Am. Chem. Soc. 1975, 97, 6609-6615.
[29] Bollobas. B, Erdos. P, Graphs of extremal weights. Ars Comb. 1998, 50, 225-233.
[30] Amic. D, Beslo. D, Lucic. B, Nikolic. S, Trinajstic. N, The vertex-connectivity index revisited. J. Chem. Inf.Comput. Sci. 1998, 38, 819-822.
[31] Gutman.I, On molecular graphs with smallest and greatest zero th-order general Randic index. MATCH Commun. Math. Comput. Chem. 2005, 54, 425-434.
[32] Caporossi. G, Gutman. I, Hansen. P, Pavlovic. L, Graphs with maximum connectivity index. Comput. Biol. Chem. 2003, 27, 85-90.
[33] Li.X, Gutman.I, Mathematical Aspects of Randic-Type Molecular Descriptors; University of Kragujevac and Faculty of Science Kragujevac, Serbia, 2006.
[34] Kier.L.B, Hall. L.H, Molecular Connectivity in Chemistry and Drug Research; Academic Press: New York, NY,USA, 1976.
[35] Kier. L.B, Hall. L.H, Molecular Connectivity in StructureActivity Analysis; Wiley: New York, NY, USA, 1986.
[36] Randic. M, On history of the Randic index and emerging hostility toward chemical graph theory. MATCH Commun. Math. Comput. Chem. 2008, 59, 5-124.
[37] Randic. M, The connectivity index 25 years after. J. Mol. Graph. Model. 2001, 20,19-35.
[38] Nikolic. S, Kovacevic. G, Milicevic. A, Trinajstic. N, The Zagreb indices 30 years after. Croat. Chem. Acta2003, 76, 113-124.
[39] Gutman. I, Das. K.C, The first Zagreb index 30 years after. MATCH Commun. Math. Comput. Chem. 2004, 50,83-92.
[40] Das. K.C, Gutman. I, Some properties of the second Zagreb index. MATCH Commun. Math. Comput. Chem.2004, 52, 103-112.
[41] Trinajstic. N, Nikolic. S, Milicevic. A, Gutman. I, On Zagreb indices. Kem. Ind. 2010, 59, 577-589.
[42] Huang. Y, Liu. B, Gan. L, Augmented Zagreb Index of Connected Graphs. MATCH Commun. Math. Comput. Chem. 2012, 67, 483-494.
[43] Furtula. B, Graovac. A, Vukicevic. D, Augmented Zagreb index. J. Math. Chem. 2010, 48, 370-380.
[44] Shirdel. G.H, Pour. H.R, Sayadi. A.M, The hyper-Zagreb index of graph operations. Iran. J. Math. Chem.2013, 4, 213220.
[45] Ghorbani. M, Azimi. N, Note on multiple Zagreb indices. Iran. J. Math. Chem. 2012, 3, 137-143.

