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Abstract - Let S, be the set of all extreme vertices of G. A x-Steiner set S of G is called an extreme x- Steiner set of G if

S—{ S.forx ¢ S,
S, —{x}forx €S,

an extreme x- Steiner set of G. Some general properties satisfied by these concepts are studied. The extreme

. A graph G is called an extremex-Steiner graph if there exists a vertex x in G such that x has

vertex Steiner number of some standard graphs are Obtained. For every pair a, b of integers with 2 < a <

b, there exists a connected graph G with Ext(G) = aand s,(G) = b for avertex x in G.
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l. INTRODUCTION

By agraph G = (V,E), we mean a finite undirected connected graph without loops or multiple edges. The order and size of G
are denoted by p and q respectively.The distance d(u, v) between two vertices u and v in a connected graph G is the length
of a shortest u — v path in G. An u — vpath of length d(u, v) is called an u — v geodesic. It is known that the distanceis a
metric on the vertex set of G. For a vertex vof G, the eccentricity e(v) is the distance between v and a vertex farthest from v.
The minimum eccentricity among the vertices of G is the radius, and denoted by radG and the maximum eccentricity is its
diameter, and denoted by diamG of G.

For basic graph theoretic terminology, we refer to Harary [2]. For a nonempty set Wof vertices in a connected graph G, the
Steiner distance d(W) of W is the minimum size of a connected subgraph of G containing W. Necessarily, each such
subgraph is a tree and is called a Steiner tree with respect to W or a Steiner W — tree. It is to be noted that d(W) =
d(u,v)when W = {u,v}. If v is an end vertex of a Steiner W — tree, then v € W. Also if < W > is connected, then any
Steiner W-tree contains the elements of W only. The Steiner distance of a graph is introduced in [6]. The set of all vertices of
G that lie on some Steiner W — tree is denoted by S(W). If S(W) = V, then W is called a Steiner set of G. A Steiner set
of minimum cardinality is a minimum Steiner set or simply a s — set of G and this cardinality is the Steiner numbers(G) of
G. If W is a Steiner set of G and v a cut vertex of G, then v lies in every Steiner W — tree of G and so W U {v} is also a
Steiner set of G. The Steiner number of a graph was introduced in [7] and further studied in [3,4,8,9,10,12]. A vertex v is a
simplicial vertex of a graph G if the subgraph inducedby its neighbors is complete. Let x be a vertex of a connected graph G
and W c V(G) such that x € W. Then W is called an x -Steiner set of G if every vertex of G lies on some Steiner WU{x} -
tree of G. The minimum cardinality of an x- Steiner set of G is defined as the x - Steiner number of G and denoted by
s,.(G). Any x- Steiner set of cardinality s, (G) is called an s, -set of G. Let x be a vertex of a connected graph G and
S c V(G) such that x ¢ S. Then S is called an x - geodetic set of G if every vertex of G lies on some x — y geodesic, where
yeS . The minimum cardinality of an x - geodetic set of G is defined as x - geodetic number of G and denoted by g, (G).
Any x - geodetic set of cardinality g,(G) is called a g, -set of G.The definition of x-geodetic set can also be defined as
follows. Let S c V(G) and x € V such that x & S. Let I.[y] be the set of all vertices that lies in x — y geodesic including x and
y, Where y € S and I,[S] = Uyes I [y]. Then S is said to be an x-geodetic set of G, if I,[S]=V. Let x bea vertex ofa
connected graph G and M c V(G) such that x € M. Then M is called an x - monophonic set of G if every vertex of G lies
on some x — y monophonic path, where yeM . The minimum cardinality of an x - monophonic set of G is defined as x -
monophonic number of G and denoted by m,.(G). Any x - monophonic set of cardinality m,.(G) is called a m,, -set of G. The
definition of x-monophonic set can also be defined as follows. Let M < V(G) and x € V such that x & M. J,[y] is the set of all
vertices that lies in x — y monophonic path including x and y, where y € M and J,,[M] = Uyen J.[y]. Then M is said to be an
x-monophonic set of G, if J,[M] = V.
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The following theorems are used in the sequel.

Theorem 1.1 [ 20 ] (i) Every simplicial vertex of G other than the vertex x (whether x is simplicial or not) belongs to every x
- geodetic set for any vertex x in G.

(if) No cut-vertex of a connected graph G lies in a minimum x- geodetic set of G. (whether x is a cut vertex or not)

Theorem 1.2[22]. (i) Every simplicial vertex of G other than the vertex x (whether x is simplicial or not) belongs to every x -
monophonic set for any vertex x in G.

(ii) No cut-vertex of a connected graph G lies in a minimum x- monophonic set of G. (whether x is a cut vertex or not)
Theorem 1.3[22]. For the complete graph K, (p > 2), m,(K,) = p — 1 for every vertex x.

k if x is a cut vertex of G

Theorem 1.4[22]. For the nontrivial tree T with k end vertices, m,(T) = { k—1 ifxisan end vertex of G

Theorem 1.5. [12] Every simplicial vertex of G other than the vertex x (whether x is simplicial or not) belongs to every x-
Steiner set for any vertex x in G.

Theorem 1.6. [12] No cut-vertex of a connected graph G belongs to any minimum x -Steiner set of G.

Theorem 1.7. [12] For the complete graph K, (p = 2), s, (K,) = p — 1 for every vertex x.

Theorem 1.8 [12] For the nontrivial tree T with k end vertices,
k if x is a cut vertex of G

s:(T) = {k =1 ifx is an end vertex of G
Theorem 1.9. Every vertex Steiner set of a connected graph G = (V, E) is a vertex monophonic set of x of G.

Theorem 1.10. Every vertex geodetic set of a connected graph G = (V, E) is a vertex monophonic set of x of G.

Theorem 1.11. Let x be a vertex of an extreme x- geodesic graph G. Then g,(G) = 1 if and only if there exist only one
antipodal extreme vertex y of x such that every vertex of G is on a diametral path joining x and y.

1. EXTREME VERTEX STEINER GRAPHS

Definition 2.1. Let S, be the set of all extreme vertices of G. A x- Steiner set S of G is called an extreme x- Steiner set of G

it :{ S, forx ¢ S,
S, —{x}forx €85,

extreme x- Steiner set of G.

. A graph G is called an extreme x- Steiner graph if there exists a vertex x in G such that x has an

Example 2.2. For the graph G given in Figure 2.1, S, = {v,,v3,v,} is the set of extreme vertices of G so that Ext(G) = 3.
For the vertex x = vg, S = S, is a minimum x- Steiner set of G so that s,(G) = Ext(G) = 3. Therefore, G is an extreme
x- Steiner graph.

Us
G Figure 2.1
For the complete graph G = K,,(p = 2), every vertex is an extreme vertex so that Ext(G) = p. By Theorem 1.7, s,(G) =
p — 1 for every vertex x in G. Thus K, is an extreme x- Steiner graph. Similarly, for any nontrivial tree with k end vertices,

Ext(G) = kand by Theorem 1.8, s,(G) = kork — 1 for every vertex x in G . Thus any non trivial tree is an extreme x-
Steiner graph. Since a cycle has no extreme vertices, a cycle is not an extreme x- Steiner graph. Also since a complete bipartite
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graph ¢ = K, (2 < r < s) has no extreme vertices, a complete bipartite graph is not an extreme x- Steiner graph. We have
the following results on an extreme x- Steiner graphs.
Theorem 2.3. Let G be a connected graph. Then 0 < Ext (G) — 1 < s,(G) for any vertex x in G.
Proof. This follows from Theorem 1.5
Theorem 2.4. If every vertex of G is either a cut vertex or an extreme vertex, then G is an extreme x- Steiner graph .
Proof. This follows from Theorems 1.5 and 1.6 |
Theorem 2.5. Let x be a vertex of an extreme x- geodesic graph G. Then s, (G) = 1 ifand only g,(G) = 1 for some vertex x
inG.
Proof. Let g,(G) = 1. Then by Theorem 1.11 there exist only one antipodal extreme vertex y of x such that every vertex of
G is on a diametral path joining x and y. Let W = {y}. Then every vertex of G lies on a Steiner W,- tree of G. Since y is an

extreme vertex of G, W is an extreme x-Steiner set of G. Therefore s,(G) = 1. Conversely, let s,(G) = 1 and let W = {y} be
an extreme x-Steiner set of G. Then every vertex of G lies on a Steiner W,.- tree of G. Since every Steiner W,- tree of G is a

x-y geodesic, every vertex of G lies on a x-y geodesic. Hence W is an extreme x-geodetic set of G. Therefore g, (G) = 1.
|

Theorem 2.6. Let G be an extreme x- Steiner graph of order p > 2. Then x- Steiner number is p — 1 for all vertices x in G if
and only if G = K,,.

Proof. This follows from Theorem 1.7 ]

Theorem 2.7. Let x be a vertex of a nontrivial tree T of order p and diameter d, then s, (T) =p —d + 1 orp — d if and only if
T is a caterpillar.

Proof. Let T be any nontrivial tree. Let P be a diametral path of length d. Let k be the number of end vertices of T and [ the
number of internal vertices of T other than the internal vertices of P. Thend — 1+ [ + k = p. By Theorem 1.8, 5, (T) = k or
k — 1 for any vertex x in T. Hence s, (T) =p —d + 1 or p — d for any vertex x in T if and only if [ = 0, if and only if all the
internal vertices of T lie on the diametral path P, if and only if T is a caterpillar. [
For every connected graph, radG < diamG < 2 radG. Ostrand[23] showed that every two positive integers a and b with
a < b < 2a are realizable as the radius and diameter, respectively, of some connected graph. Now, Ostrand’s theorem can be
extended to an extreme x- Steiner graph so that the x- Steiner number can also be prescribed, when a < d < 2a.

Theorem 2.8. For positive integers r,d and [ > 2 with r < d < 2r, there exists an extreme x- Steiner graph G with radG =
r,diamG = d and s, (G) = Ext(G) = [ for some vertex x in G.

Proof. Whenr =1, letG = K;,; . Thend = 2 and by Corollary 1.8, s, (G) = I = Ext(G) for the cut vertex x in G and G is
an extreme x- Steiner graph. Now, let r = 2. Construct a graph G with the desired properties as follows. Let
Cyri V1,03, ..., Vap, 1 D€ a cycle of order 2rand let Py_,.q : Ug, Uy, Uy, ..., Uq—, D€ & path of order d —r + 1. Let H be the
graph obtained from C,,. and P;_,,; by identifying v, in C,,. and u, in P;_,..,. Now, add (l- 2) new vertices
Wy, Wy, ..., W;_, t0 H and join each vertex w;(1 < i < [ - 2) to the vertex uy_,_, and join the vertices v, and v,.,, and obtain
the graph G of Figure 2.2. Then radG = r and diamG = d. Let x = u,. LetS, = {v,, 1, Wy, Wy, ..., W;_5, Uyz_-} be the set of
[ extreme vertices of G. By Theorem 1.5, S, is a subset of every x- Steiner set of G. It is clear that S, is an x- Steiner set and

it follows from Theorem 3.4 that s,.(G) = Ext(G) = | and G is an extreme x- Steiner graph. ]
1%
Urs2 2r
Vri1 Uq Uz Ug-r-1 Ud-r
CZr cee —@

U1 = Up

7] w1 V.. V2

v,
T WZ

G Figure 2.2

In view of Theorem 2.3, we have the following realization result.
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s,(G) =b foravertexxinG.

Proof. Let P: w,y, z be a path on three vertices. Add b new vertices z,, z,, ..., z, and hy, h,, ..., h;_, and join each z; (1 <
i < a) withy, and join each h;(1 <i < b — a) with both w and z in P, there by obtaining the graph G of Figure 2.3. Let
S. = {21, 25, ..., 75} be the set of end vertices of G. Then Ext(G) = a. Next we show that s, (G) = b. LetS be a s,-set of G.
Let x = w. By Theorem 1.5, S, & S. Itis clear that S, is not a s, —set of G. We show that each h;eS(1<i <b—a.
). Suppose that h; ¢S for some i(1 < i < b—a). Then it is clear that h; does not lie on any Steiner tree joining x and a
vertex of S, which is a contradiction. Therefore, each h;eS(1 < i < b—a) and s0 s,(G) = a + b—a = b. Since
S = S8.U {hy,hy, .., hy_g} isas,-setof G so that s, (G) = b. [ ]

G Figure 2.3
I1l. EXTREME VERTEX MONOPHONIC GRAPHS

Definition 3.1. Let S, be the set of all extreme vertices of G. A x- monophonic set S of G is called an extreme x-
S, forx & S,

S, —{x}forx €8S,’

vertex x in G such that x has an extreme x- monophonic set of G.

monophonic set of G if S = { A graph G is called an extreme x- monophonic graph if there exists a

Example 3.2. For the graph G given in Figure 5.7, S, = { v;, v, } is the set of extreme vertices of G so that Ext(G) = 2. For
the vertex x = v, S = S, is a minimum x- monophonic set of G so that m,(G) = Ext(G) = 2. Also for x = v,

S =S8, —{v,}isam, setof G, so that m,(G) = Ext(G) — 1. Therefore, G is an extreme x- monophonic graph.

V1
vy v,
Vg
Us VU3
Vs
G Fiaure 3.1

For the complete graph G = K,(p = 2), every vertex is an extreme vertex so that Ext(G) = p. By Theorem 1.3,
m,(G) = p — 1 for every vertex x in G. Thus K,, is an extreme x- monophonic graph. Similarly, for any nontrivial tree with
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k end vertices, Ext(G) = k and by Theorem 1.4, m,(G) = k or k — 1 for every vertex x in G. Thus any non trivial tree is an
extreme x- monophonic graph. Since a cycle has no extreme vertices, a cycle is not an extreme x- monophonic graph. Also
since a complete bipartite graph G = K, (2 < r < s) has no extreme vertices, a complete bipartite graph is not an extreme
x- monophonic graph. We have the following results on an extreme x- monophonic graphs.

Theorem 3.3. Let G be a connected graph. Then 0 < Ext(G) — 1 < m,(G) for any vertex x in G.

Proof. This follows from Theorem 1.2 |

Theorem 3.4. If every vertex of G is either a cut vertex or an extreme vertex, then G is an extreme x- monophonic graph.
Proof. This follows from Theorems 1.2 (i) and (ii) ]

Definition 3.5. Let x be any vertex in G. A vertex y in G is said to be an x-monophonic superior vertex if for any vertex z
with d,,(x,y) < d,,(x, 2), z lies on an x - y monophonic path.

Theorem 3.6. For a vertex x in a graph G, m,.(G) = 1 if and only if there exists an x-monophonic superior extreme vertex y in
G such that every vertex of G is on an x - y monophonic path.

Proof. Let m,(G) = 1 and let S, = {y} be a m,-set of G. If y is not an x-monophonic superior extreme vertex, then there is a
vertex z in G with d,,,(x,y) < d,,(x,z) and z does not lie on any x - y monophonic path. Thus S, is not a m,-set of G,
which is a contradiction. The converse is clear from the definition. ]

Theorem 3.7. Let G be an extreme x- monophonic graph G of order p = 2. Then x- monophonic number is p — 1 for all
vertices x in G ifand only if G = K,

Proof. This follows from Theorems 1.2 and 1.3 [ |

Theorem 3.8. Let x be a vertex of a nontrivial tree T of order p and monophonic diametral path d, then m,(T) = p — d,,, +
1 or p—d, ifand only if T is a caterpillar.

Proof. Let T be any nontrivial tree. Let P be a monophonic diametral path of length d,,,. Let k be the number of end vertices
of T and [ the number of internal vertices of T other than the internal vertices of P. Then d,, — 1+ L + k = p. By Theorem
1.4, m,(T) = k or k — 1 for any vertex x in T. Hence m,(T) =p —d,, + 1 or p — d,, for any vertex x in T if and only if
[ = 0, if and only if all the internal vertices of T lie on the monophonic diametral path P, if and only if T is a caterpillar.

Theorem 3.9. Let G be an extreme x- geodesic graph G of order p = 2. Then G is an extreme x- monophonic graph.

Proof. Let G be an extreme x- geodesic graph G and x be an vertex of G. Then there exists an extreme x- geodetic set Z such
that I,(Z) = V. By Theorem 1.10, Z is an extreme x-monophonic set of G such that J,(Z) = V. Therefore G is an extreme x-
monophonic graph. [

Theorem 3.10. Let G be an extreme x- Steiner graph G of order p = 2. Then G is an extreme x- monophonic graph.

Proof. Let G be an extreme x- Steiner graph and x a vertex of G. Then there exists an extreme x-Steiner set Z such that
S,(Z) =V. By Theorem 1.9, Z is an extreme x-monophonic set of G such that J,(Z) = V. Therefore G is an extreme x-
monophonic graph. [

In view of Theorem 3.3, we have the following realization result.

Theorem 3.11. For every pair a,b of integers with 2 < a < b, there exists a connected graph G with Ext(G) = a and
m, (G) = b foravertex x in G.

Proof. Let P;:w;, x;,y;(1 < i <b— a) be a copy of path on three vertices. Let H be the graph obtained from
P;,(1<i<b-—a) by adding new vertices y and z and joining each w; (1 <i<b—a) withyand each
yi(1 <i<b— a) with z and joining y with z. Let G be the graph obtained from H by adding new vertices
24,24, .., Zq and joining each z; (1 <i<a) withz. The graph G is given in Figure 5.8. Let x =y and let Z =
{z1,2,, ..., 4 } be the set of extreme vertices of G such that Ext(G) = a. Since ], (Z) # V, Z is not a vertex monophonic set of
G.Let H; ={x;,y;}(1 < i <b— a). Itiseasily observed that every m,, -set of G must contain at least one vertex from each
HA<i<b—a)andso m,(G)= b—a+a=b.LetM = Z U{xy, x5, ..., Xp_q}. Then J,[M] = V,so that m,(G) =
b. ]
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Xp—a

G Figure 3.2

Theroem 3.12. For every three integers a, b,c with 2 < a < b < ¢, there exists an extreme x- monophonic graph G which is
neither extreme x- geodesic graph nor extreme x- Steiner graph such that m,(G) = a, g,(G) = b and s5,(G) = c for a vertex x
ingG.

Proof. Let P:t,u,v,w,y,z be a path on six vertices. Let P;:u;,v;(1 <i<b—a) be a copy of path on two
vertices. Let H be the graph obtained from P; by joining each w; (1 <i<b—a) withv and each v;(1<i <
b— a) with y. Let G be the graph obtained from P and H by adding new vertices z,2z,,..,z,_; and
hi, hy, ..., h._p, by joining each h; (1 <i<c—>b) witht and v and each z; (1 <i <a—1) with u. The graph G is
given in Figure 3.3. LetS, = {z;,2,,...,2,-1,2} be the set of extreme vertices of G. Then Ext(G) = a. Let x = t. First we
show that m,.(G) = a. Let M be m, - set of G. Then by Theorem 1.72, S, € M. It is clear that S, is a m, —set of G so
that m,.(G) = a. Let Z be a x- geodetic set of G. Then by Theorem 1.1, S, € Z and so g,(G) = a. It is clear that S, is
not an x- geodetic set. We observe that every g,-set must contain v; (1<i<b—a) and so g,(G)=a+b—a=
b. Now Z = S, U {vy,V,, ..., Uy_o} iS an x- geodetic set of G so that g, (G) = b. Next we show that s,(G) = c. Let W be a
vertex Steiner set of x of G. Then by Theorem 1.5, S, € W. It is clear that S, is not an x- Steiner set of G. For
1<i<b-a, let H; = {u;,v;}. We observe that s, -set of G must contain atleast one vertex from H; (1 <i<b —a) and
S0 s,(G) =a+b—a=h.Itis easily observed that if the vertex h; (1 <i <c—b) does not belong to W, then
vertex h; (1 <i <c—b) does not lie on

any Steiner W, -tree of G and so s,(G)=c—b+b=c. Let Z=S, U {vy,v,, ..., 0p_q} U{hy, hy, ..., ho_p}. Since
S (W) =71, W is the unique minimum x- Steiner set of G and S0 5,.(G) = c.

| |
)
A oo 2Zg—1
Z
1% w y
t ® L
u

&

hc—b

G Figure 3.3
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Theroem 3.13. For every pair of integers a,b with 2 < a < b, there exists an extreme x- monophonic graph G which is
also an extreme x- Steiner graph but not an extreme x- geodesic graph such that m,(G) = s,(G) = aand g,(G) = b for a
vertex x in G.

Proof. Let (C;be w,v,w,u. Let H be the graph obtained from C; by adding new vertices
Y, Z, Uy, Uy, oo, Up_g, Py, Ry, oo, Ap_q DY joining each h; (1 <i<b—a) withy and z, y with v and z, z with w.
Also join u; with h;(1<i<b— a) and u; with u. Let G be the graph obtained from H by adding new
vertices zy,7,, ..., 241, f by joining f with y and each z;(1 <i < a — 1) with

z. The graph G is given in Figure 3.4. Let x =u. First we show that G is an extreme x- Steiner graph. Let
Z ={f,2y,2,, ..., 24_1} be the set of extreme vertices of G so that Ext(G) = a. Then by Theorem 1.5, Z is a subset of
every x- Steiner set of G. Since S, (Z) =V, s,(G) = a = Ext(G). Therefore G is an extreme x- Steiner graph. By Theorem
3.10, G is an extreme x- monophonic graph so that m,(G) = a = Ext(G). Next we show that G is not an extreme x- geodesic
graph. By Theorem 1.1, Z is a subset of every x- geodetic set of G. Since I,(Z) # V, Z is not an x- geodetic set of G so
that G is not an extreme x- geodesic graph. It is easily observed that every x- geodetic set contains each h; (1 <i <
b—a)andso g,(G) =a+b—a=>b. LetS=ZU{hy,hy, ...,hy_o}. Then I,(S) =V so that g,(G) = b.

u

t Figure 3.4

Theroem 3.14. For every pair of integers a, b with 2 < a < b, there exists an extreme x- monophonic graph G which is also
an extreme x- geodesic graph but not an extreme x- Steiner graph such that m,.(G) = g,(G) = a and s,(G) = b for a vertex x
inG.

Proof. Let P: u,v,w, y, z be a path on five vertices. Add new vertices z;, zy, ..., Z4_3, hy, Ry, ..., hy_g @nd join each z;(1 < i <
a— 2) tow, and join each h;(1 < i < b — a) with vand y there by obtaining the graph G of Figure 3.5. Let x = w. First we
show that G is an extreme x- geodesic graph and extreme x- monophonic graph. Let Z = {u, z,z;, 24, ..., Z4_,} be the set of all
extreme vertices of G so that Ext(G) = a. Then by Theorem 1.67, Z is a subset of every vertex geodetic set of x of G. Since
L[Z] = V, Z isan extreme x- geodetic set of G and so that g,(G) = a = Ext(G).

Therefore G is an extreme x- geodesic graph. By Theorem 1.8, G is an extreme x- monophonic graph so that m,(G) = a =
Ext(G). Next we show that G is not an extreme x- Steiner graph such that s,(G) = b. By Theorem 1.5, Z is a subset of
every x- Steiner set of G. Since S,(Z) # V, Z is not an extreme x- Steiner set of G, so that G is not an extreme x- Steiner
graph. It is easily observed that every x- Steiner set of G contains each h;(1<i<b—a). Let W=ZuU
{hi, by, o by} Then S, (W) =V, so that W is not an extreme x- Steiner set of G such that s,.(G) = b.
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Ry

o

& Figure 3.5

IV. CONCLUSION

Theory of Extreme Vertex Steiner Graphs is one of the potential areas of research. Many domination models in Extreme
Vertex Steiner Graphs are available in the literature. The Steiner graphs are one such model which depends upon steiner
distance in graphs.
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