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 Abstract - The purpose of this paper is to study some concepts in  probabilistic  normed space.  Also as in the usual 

normed space, we establish that every  finite dimensional probabilistic normed linear space is a complete space. Also we 

establish a connection between a compact set and finite dimensional  probabilistic normed space.  
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I. INTRODUCTION 

In 1942 Menger[10]  introduced the notion of  probabilistic metric space. The idea of Menger was to use distribution function 

instead of non-negative real numbers as values of the metric. The concept of probabilistic normed spaces was introduced by 

A.N.  ̃erstnev[12] in 1963. In 1993 Alsina, Schweizer and Sklar gave a new definition of probabilistic normed spaces which 

includes  ̃erstnev ́ as a special case. In this paper we are interested in some properties of a finite dimensional probabilistic 

normed spaces. Also we establish some important results involving completeness and compactness of finite dimensional 

probabilistic normed  spaces. 

II. PRELIMNARIES 

Definition 1.1[8]. The space of all distance distribution functions (d.d.f) is defined by 
+
 = {F:  {- , } [0,1] / F is left 

– continuous, non decreasing and  F(0) = 0}.Consider D
+
 = {F

+
: 

t
lim F(t) = 1}. 

By setting F<G whenever F(t) < G(t) for all t  +
, one introduces a natural ordering in D

+
. Define the step function H(t) as 

H(t) =         0 if t < 0 

                   1 if t > 0. 

It is clear that H D
+
. 

 

Definition 1.2[10]. A t-norm is a function T:[0,1] x[0,1] [0,1] which is associative, commutative, non decreasing in each 

place and such that T(a,1) = a, for all a[0,1]. 

 

Definition 1.3[4]. A continuous triangle mapping is :
+
x

+


+
 which is associative, commutative, non decreasing 

continuous and for which H is the identity, that is  (H,F)=F for every FD
+
.  

 

Definition1.4[4]. Let X be a vector space over   or   and  be a continuous triangle mapping. A mapping  :XD
+
 satisfying 

the conditions 

(i)   =H if and only if  x=, the zero element in X. 

(ii)       =















t
Fx

   

(iii)      >(  ,   ) 

is called probabilistic norm. The triple (X,  ,) is called probabilistic normed space. In the above definition the value of    at   

is denoted by   . 

 

Note 1.5[9]. Suppose the condition (iii), of the above definition 1.4 is replaced by the condition              ≥ T (      , 

      ) for all t1, t2 >0 where T is a t-norm. Then (X,  ,T) is called Random normed space and    is called Random norm.  
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Example 1.6[16].  Let (X, ║.║) be a usual normed space.  Define       

= H(t–║ ║).Then (X,  ,T) is a random normed space, where T is any t – norm. 

 

Example  1.7[16].  Suppose T is any continuous t–norm and          

T (F,G)(t)  = 
ttt

Sup
 21

{T(F (t1), G (t2))}.  Then (X  ,T) is a probabilistic normed space where    is as given in example 1.6. 

 

 Definition 1.8[5]. Let X be a vector space over   or    and a mapping   :XD
+
. Then the pair  (X,  ) is said to be 

probabilistic semi normed space (PSN space) if    satisfies the following conditions . 

( i )   =H if and only if   = 

(ii)   =    . 

 

Example 1.9. Let (X, ║.║) be a usual normed space. Define      =H(t–║ ║). Then (X  ,) is a probabilistic normed space 

where  (F, G)(t)=           {F(  ), G(  )}. 

Now, we prove the conditions of probabilistic norm. 

 (i)    =   ║ ║= 0       = H(t)      = H 

Hence   = H  if and only if    =  . 

(ii) Let  be a scalar,    X.  Then         = H (t – ║   ║) = H (t–││║   ║). 

Now, H (t–││║  ║) =       0 if t/││ ≤ ║  ║ 

                                                               1 if t/││ > ║  ║  

Also    (t/||) = H ((t/││)–║ ║) = 0 if t/││≤║  ║  

       1 if t/││ >║ ║  

Hence    (t)=   (t/││). 

(iii)Since  (  ,   )(t)=            {  (  ),   (  )}, we have  (  ,   )(t)=           {H(  –║ ║), H(  –║ ║)}. Hence   (  , 

  )(t)=1 if and only if        =1 and        =1for all    ,    with        . This means that   (  ,   )(t)=1 if and only if    > 

║  ║ and   > ║y║ 1for all    ,    with        . Now  ║  +y║ ║  ║+║y║<         . Hence ║  +y║<t. This means 

that        =1. Hence  whenever that   Since  (  ,   )(t)=1 we have        =1 and so     (t)>  (  ,    (t).  

 

Definition 1.10[16].   Let (X,   ) be a probabilistic normed space. Then a sequence    }in X is said to converge to a point   

X, denoted by      if 
n

lim xxn
F  =H. That is for any t>0, 0<<1, there is a  natural number N such that xxn

F  (t)>1–  for all 

n>N.
             

 

Definition 1.11[16]. A sequence    } in X is said to be a Cauchy sequence if  

mn xxF  =H whenever n, m. A probabilistic normed space (X,  ,) is complete if every Cauchy sequence converges. 

III. INDUCED NORMED SPACES AND INDUCED PROBABILISTIC NORMED SPACES 

Here we establish a link between usual normed space and probabistic normed space.  

 

Theorem 2.1. Let ( X, ,) be a probabilistic normed  space as given in example 1.9. Define║x║=inf{t>0 :   (t)>1–}. 

Suppose   (t)>0 for all t>0. Then  = . 

 

Proof. Now   (t) = H(t–║  ║) =    0 if t ≤║  ║ 

                                                         1 if t >║  ║.  

Hence   (t)>0 for all t>0 means   (t)=1 for all t>0. By definition of   , we have ║  ║<t for all t>0. This means that ║  ║=0 

and so  =  , the zero element in X. 

 

Theorem 2.2. Let ( X, ,) be a probabilistic normed  space in which  

  (t)>0 for all t>0 implies  =  and (F,G) = Min{F,G}.Then (X, ║.║) is a normed space for each (0, 1) and {║  ║ : 

(0, 1)} is a descending family of norms on X. 
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Proof. As in theorem 2.5 of [15], (X, ║.║) is a normed space. Let    <   . By definition,      
= inf{t:   (t)>1   } and 

     
 = inf {t:    (t) > 1   }. Since    <   , it is clear that {t:   (t)>1   }  {t:   (t)>1    }. Hence      

      
. 

 

Remark 2.3. The usual normed space (X, ║.║) obtained in the above theorem is called induced normed space. 

 

Theorem 2.4[16]. Let (X,║.║)be a normed space. Let  :XD
+
 as   (t)=    

 

     
  if t>0 

                                                                                                                              0    if t≤0  

Then (X,  ,M) is a probabilistic normed space where M is the minimum t-norm. 

 

Remark 2.5. The probabilistic normed space (X,  ,M) obtained in the above theorem is called induced probabilistic normed 

space.  

 

Theorem 2.6. Suppose X=  ,  (F, G)(t)= F(t).G(t), the usual product of F(t) and G(t). For  =(  1,  2) in X define    as 

 

   (t) =     
  

                 
         if t>0 

                        0                         if t 0 

Let   be the set of all such   . Then ( X, ,) is a probabilistic normed  space. 

   

Remrk 2.7. The conditions given in theorem 2.2 are essential for getting induced normed space (X,      ). 

 

Theorem 2.8. Suppose X=  ,  (F, G)= Min {F, G}. For  =(  1,  2) in X define    as 

   (t) =     
  

                 
       if t> 0            

                             0                  if t 0. 

Let   be the set of all such   . Then (X,  , ) is not a  probabilistic normed  space. However ( X,  , ) is probabilistic semi 

normed space. 

 

Proof. The conditions (i) of definition 1.4 is proved in  theorem 2.6. Now take  =(1, 0) and y=(0, 1). Then  +y=(1, 1) and 

  (t)=  
  

          
 = 

  

      
 = 

 

     
. Hence   (1) = 

 

 
. Similarly Fy (1) = 

 

 
. Now      (t)= F(1, 1) (t) = 

  

          
. Hence  F(1, 1) (1)= 

 

 
. 

This implies that     (1)=  
 

 
 <Min{   (1), Fy (1)}. Hence (X  ,) is not a probabilistic normed space.  Now    (t) (t) = 

  

                 
 =   (t) and so ( X,  , ) is probabilistic semi normed space. 

IV. FINITE DIMENSIONAL PROBABILISTIC NORMED  SPACES 

Definition 3.1[13] . Let (X  ,) be a probabilistic normed space. 

i) The element    ,   ,…   } of X is linearly dependent, if there exists  1,  2,…    not all zero such that 

                 
(t)=H(t), if finite set    ,   ,…   }is not linearly dependent, it is called linearly independent. 

ii) The element    ,   ,…   } of X is called a basis if    ,   ,…   } are linearly independent and if any element of X is a 

linear combination of element t    ,   ,…   } . 

The X is called a n-dimensional, if X has a basis of n elements. 

 

Lemma 3.2. Let (X  ,) be a probabilistic normed space. Let   1,  2} be a linearly independent set of vectors. Then there 

exists c>0,   (0,1) such that for any two scalars   ,    we have            
(c    +c    )<1  . 

Proof. Take s=    +    . If s=0 then   =  =0. Hence 

           
(c    +c    )=   (0)= H(0) =0. This means that            

(c    +c    )<1   for all   (0,1) and for all 

c>0. Suppose s>0. Then  
  

 
 + 

  

 
 =1. Take   = 

  

 
  and   =

  

 
, then ∑          =1. Now c    +c     = c   s +c   s  

=   (    +    ) =   . Hence           
(c    +c    )=             

(c(     +     ))=              
 

(cs(    +    )) =          
(c). Hence           

(c    +c    ) =           
 (c). Suppose the result 

          
(c    +c    )<1    does not hold. Then for each c>0 and   (0,1) there is a set   ,    with ∑          =1 such 

that           
(c)    . Take c= =

 

 
, m an integer. Then corresponding to each m there are scalar   

   
>  

   
 with 

   
    +   

     =1 such that   
  

        
   

   
 (

 

 
)   

 

 
. Since    

    +   
     =1, it is clear that 0<   

    <1 and 
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0<   
     1. Hence we get bounded sequences of real numbers    

   
},    

   
}and so there are real numbers   ,   such 

that 

    +    =1,    
   

    and   
   

   . Consider      
   

     
   

 
  . Then    

 (
 

 
)    

 

 
. Take   =      

     . Since    
 (

 

 
) 

   
 

 
,     

      
 

 
 for all t>

 

 
. This implies that    

 H. Hence    
    1 as m   for all t>0. Now 

  =        
  (     

,    
). Since      as m  , we get    H . This means that    H and so  = . Hence       

     =  . Since   1,  2} are linearly independent        . Hence            
(c)     for some c>0,   (0,1). 

 

Theorem 3.3. Let (X  ,) be a probabilistic normed space. Let   1,  2,…   } be a linearly independent set of vectors. Then 

there exists c>0,   (0, 1) such that for any scalars   ,   ,…,     we have                   
(c    +c    +….+ 

c    )<1  . 

 

Theorem 3.4.  Let (X  ,) be a probabilistic normed space. Then every finite dimensional probabilistic normed space (X  ,) 

is a complete space. 

 

Proof. Let {  ,   ,…,   } be a basis. Consider      
        

   
 
  +…..+  

   
 
    where   

   
 
are scalars. Now 

      
(t)=  

   
      

       (  
   

   
   

 )        
   

   
   

    
(t). By theorem 3.2, there exists c>0,   (0,1) such that 

 
   

      
            

      
        

(c    
      

     +…..+   
      

    )     . Suppose {  } is a Cauchy 

sequence. Then       
(t)=H(t) for all t>0 and n, m  . Hence        

(t) >     > 

       
 (c    

      
    +…..+   

      
    )). Since F is non decreasing, c    

      
    +…..+   

    

  
    )<t. Hence∑    

      
     

    < 
 

 
. This implies that    

      
     =0 for i=1,2, …., k. Hence for a fixed i, {  

   
} 

is a Cauchy sequence and so   
       for some real   . Take y=             . Now      (t) = 

 
   

               
           

(t). Hence            =    H. This means that    y. Hence (X  ,) is a complete space. 

 

Definition 3.5[16]. Let (X  ,) be a probabilistic normed space. A subset A of X is said to be bounded if there is a 0<  <1, t>0 

such that   (t)>1   for all   A . 

 

Lemma 3.6. Let (X  ,) be a probabilistic normed space. A subset A of X is said to be bounded if and only if for each 0<  <1 

there is a t>0 such that   (t)>1   for each   A. 

 

Proof. Suppose A is bounded. Hence there is a 0<  <1, t>0 such that   (t)>1  . Take    such that  <  <1 then 1    <1  . 

Since   (t)>1  , we have    (t)>1     for all   A. Suppose there is a 0<  <  and   (t)      for some   A and all t>0. 

Since   (t) 1 as t   there is t1>t such that    (t1)>     . Which is a contradiction. Conversely suppose for each 0<  <1 

there is a t>0 such that   (t)>1   for each   A. Then trivially A is bounded. 

 

Definition 3.7. Let (X  ,) be a probabilistic normed space. A subset A of X is said to be closed if for any    }in  A such that 

     implies   A. 

A subset A of X is said to be compact if every sequence in A has a convergent subsequence . 

 

Theorem 3.8. Suppose (X  ,) is a finite dimensional probabilistic normed space. A subset A of X is compact if and only if A 

is closed and bounded. 

 

Proof. Suppose A is compact. Let {    be a sequence and      in A. Since A is compact there exists a subsequence {   
}of 

{     such that    
   in A. By uniqueness of limit y=  A. Hence A is closed. Now we have to prove that A is bounded. 

Suppose A is not bounded, then there exists    (0, 1) such that for each n, there exists    A such that    
(n) 1   . 

Consider this sequence {  }. Since A is compact there exists   A such that    
  . That is       

(t)>1 
 

  
 for all t>0. That 

is        
(  )>1 

 

  
. Now     

     1   . Hence 1             
(  )          

    )(  ). Since   is continuous and 

   
  , 1                )=1. This implies that   =0, which is a contradiction. Conversely, suppose A is closed and 

bounded. We claim that A is compact. Let dim X=n and {e1, e2,…., en}be a basis. Let {   } be a sequence in A.  Then 
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  +…..+  

   
 
  . By theorem 3.2 there exists c>0,   (0,1) such that 

 
  

        
   

        
   

    
(c(∑    

   
 
  

   ))<1  . Since A is bounded,  
∑   

   
   

 
   

( )> 1   for some  . Hence  
∑   

   
   

 
   

 

(c(∑    
   

 
  

      <1  <  
∑  

   
   

( ). Hence c(∑      

   
    

 
   <  . This implies that ∑    

   
 
  

   <
 

 
. Hence {  

   
} is a 

bounded  sequence in   for each i. This implies that, for a fixed i for some real number    the sequence    
       . Take 

               . Now for any t>0 we have       
(t)=  

∑    
   

       
 
   

(t)= 
   

   
            

   
       

(t) 

 ( 
   

   
       

,., 
   

   
       

)(t) =1. Hence     
   

      
   and so    

  . Hence  A is compact. 

 

Definition 3.9[15]. Let (X, ,) be a probabilistic normed space. Let aX, 0<λ <1, >0. Define V(a,,)={ X :     ()>1–λ} 

called (,λ) neighborhood of  a. 

 

Lemma 3.10. Let (X  ,) be a probabilistic normed space. Let Y, Z be subspaces of X. If Y Z X, Y is a proper closed 

subset of Z. Then for every real number   (0, 1) there exists   Z such that   (1)>0 and     ( )=0 for all   Y. 

 

Proof. Let   Z Y and   Y. Denote   =inf {t (0,1]:     (t)>1 t}. Suppose    =0. Then     (
 

 
)>1 

 

 
 for all n. Now, for 

any t>0 there exist n0 such that t>
 

 
 for all n n0. Hence      (t)      (

 

 
 > 1 

 

 
 for all n n0. This implies that     (t)=1 for 

any t>0. Hence     =H and so  =  , a contradiction. Hence 0<   1 for any   Y. Define  =inf {  :   Y}. Then 0  ≤1. 

If  =0 then for all 0< <1  there exists  =   )  Y such that   <   implies     (  )>1  . Hence  V( ,  ,) Y   for all 

0< <1. Hence every neighborhood of   intersect Y. That is    ̅, the closure of Y. Since Y is closed    Y, which is a 

contradiction. Hence 0<   1. Choose any   (0, 1). Then  
 

 
  . Since   = inf {  : y Y}, there is a    Y such that d     

 

< 
 

 
  Hence there is some  >0 such that       

< < 
 

 
. Take z=

    

 
 . Since  >   

,    (1)=     
 

 (1) =      
(     

     
(   

)>1    
 0. Hence   (1)>0. Now for any    Y we have 

 inf{t (0,1]:     ( )>1  } = inf{   (0,1]:      
 

   ( )>1  } =inf{   (0,1]:         (  )>1  } = 

inf{t (0,1]:           (  )>1   } = inf{
 

 
 (0,1]:           ( )>1   } =

 

 
inf{  (0,1]:           ( )>1  } 

=
 

 
      ≥

 

 
 =

 

 
>r. Hence inf{     (0,1]:     ( )> 1  }> . This means that       )  1  . Since F is non decreasing  

      )  1   if    . Since    (0, 1) is arbitrary       ) =0 if     . In particular        =0, 0< <1. 

 

Theorem 3.11.  Let (X  ,) be a probabilistic normed space. If the set M={ :   (1)>0}is a compact set. Then the space 

(X  ,) is finite dimensional. 

Proof. Suppose dim X= . Since   (1)=1, M is a non empty set. Take    X  such that    
(1)>0. Consider X1={   , the 

subspace spanned by   . Then X1  is a closed subspace of  X. Hence by lemma 3.9, there exists    X such that    
(1)>0 and 

      
(
 

 
)=0. Consider X2={      . Since    

(1)>0 there exists    X with    
(1)>0 and       

(
 

 
)=0 and       

(
 

 
)=0.  

Proceeding like this we get a sequence {  } in X such that    
(1)>0 and       

(
 

 
)=0 if m n. By the construction of the 

sequence {  }, it is clear that neither {  } nor its  subsequence converges. It is a contradiction to  M={ :   (1)>0} is a 

compact set. Hence the dimension of  X is finite. 

V. CONCLUSION 

Finite dimensional  normed spaces  plays a vital role in Functional  Analysis. Here we have studied finite dimensional 

probabilistic norrmed spaces. This idea throw some light on further development on Fuzzy Analysis.  
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