

Some Matrix Inequalities Related to χ_s -Orthogonal Matrices

*K. Jaikumar, ¹S. Aarthy

Department of Mathematics, A. V. C. College (Autonomous), Mannampandal, Mayiladuthurai, Tamilnadu, India. * drkjkavcc@gmail.com

Abstract: In this paper we introduced the concept of s-partial ordering and derived some results related to χ_s – orthogonal matrices

Key words: χ_s -orthogonal matrices, s-orthogonal matrices, s-partial ordering.

AMS Classification: 15B99, 15A24, 15A54.

I. INTRODUCTION

The secondary type matrices and results related to secondary type matrices was introduced and discussed in [1-3]. The concept of χ_s -orthogonal matrices was introduced in [4]. Let O_{χ_s} be this set of all χ_s -orthogonal matrices. In this paper we introduce this concept of s-partial ordering and derived some results related to χ_s -orthogonal matrices. Also we have to discussed this same related to minus partial ordering.

II. MAIN RESULTS

Definition 2.1. The s-partial order denoted by \leq is a relation on \mathbb{R} defined by $A \leq B$ if there exists a A^{S} such that $A^{S}A = A^{S}B$ and $AA^{S} = BA^{S}$.

Definition 2.2. The Minus Partial order denoted by \leq is an Engineer $I = AA^s$ relation \mathbb{R} defined by $A \leq B$ if there exists a A^- such that $A^-A = A^-B$ and $AA^- = BA^-$. From (1) and (

Definition 2.3 [6]. The lowener s-partial order denoted by \leq_{s} is a relation \mathbb{R} defined by $A \leq_{s} B$ if there exists a Bsuch that $A^{2} = AB$. **Theorem 2.4.** Let $A \in O_{\chi_{s}}$ and $SA \leq_{s} AS$ then A is sorthogonal. *Proof.* Let $SA \leq_{s} AS$ $\Rightarrow (SA)^{s} (SA) = (SA)^{s} (AS)$

$$\Rightarrow A^{S}S SA = A^{S} S AS$$
$$\Rightarrow SA^{-1} S^{-1} SSA = SA^{-1} S^{-1} SAS$$

 $\Rightarrow S(SA)^{-1}A = S(SA)^{-1}SAS$ $\Rightarrow A^{s}A = S(SA)(SA)^{-1}S$ $\Rightarrow A^{s}A = SIS$ $\Rightarrow A^{s}A = S^{2}$ $\Rightarrow A^{s}A = I$ (1) $SA \leq AS$ $\Rightarrow (SA)(SA)^{s} = (AS)(SA)^{s}$ $\Rightarrow (SA)A^{s}S = (AS)(A^{s}S)$ $\Rightarrow (SA)SA^{-1}S^{-1}S = (AS)(SA^{s})$ $\Rightarrow (SA)S(SA)^{-1}S = AS(SA^{s})$ $\Rightarrow (SA)(SA)^{-1}SS = AIA^{s}$ $\Rightarrow ISS = AA^{s}$

From (1) and (2) we have $A^{s}A = AA^{s} = I$. Therefore A is χ_{s} -orthogonal

Theorem 2.5. Let $A, B \in O_{\chi_s}$ and AS = SA, SB = BSthen $A \leq B \Longrightarrow AS \leq BS$ *Proof.* $A \leq B \Longrightarrow A^T A = A^T B$ and $AA^T = BA^T$. Take, $A^T A = A^T B$ $A^{-1}A = A^{-1}B$ $S^{-1}A^S SA = S^{-1}A^S SB$ $SA^S SA = SA^S SB$ $A^S SA = A^S SB$

$$\begin{aligned} & \text{Theorem 12.7. Let A and B be the orthogonal matrices} \\ & S^{A} S A = S^{A} S S B \\ & (AS)^{5}(SA) = (AS)^{5}(SB) \\ & (AS)^{5}(AS) = (AS)^{5}(BS) \\ & (AS)^{5}(AS) = (AS)^{5}(BS) \\ & AA^{2} = BA^{4} \\ & AA^{-1} = BA^{-1} \\ & AA^{-1} = AA^{-1} \\ & AA^{-1} \\ & BA^{-1} = AA^{-1} \\ & AA^{-1} \\ & AA^{-1} \\ & BA^{-1} \\ & AA^{-1} \\ & AA^{-1$$

$$A \leq B \Leftrightarrow SA \leq SB$$

Similarly, we can prove $A \leq B \Leftrightarrow AS \leq BS$ Hence, $A \leq B \Leftrightarrow SA \leq SB \Leftrightarrow AS \leq BS$

Theorem-2.10. Let A and B be χ_S -orthogonal and non

negative definite. Then $A^2 \stackrel{*}{\leq} B^2$ iff $A \stackrel{*}{\leq} B$.

Example-2.11. Let $A = \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \sqrt{3} & -1 \end{pmatrix}$,

$$\begin{bmatrix} \hline 2 & \hline 2 \\ \hline 2 & \hline 2 \\ B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \text{ and } S = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Then $A^2 \stackrel{*}{\leq} B^2$, but not $A \stackrel{*}{\leq} B$.

Corollary-2.12. Let A and B be χ_s -orthogonal matrices.

If $A \leq B$ then AB = BA.

Example-2.13.
$$A = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

 $S = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

Therefore, AB = BA.

III. REFERENCES

- Anna Lee, Secondary symmetric, skew symmetric and orthogonal matrices, Periodica Mathematica Hungarica, 7(1)(1976), 63-70.
- [2] Anna Lee, On s-symmetric, s-skew symmetric and sorthogonal matrices, Periodica Mathematica Engineer Hungarica, 7(1)(1976), 61-76.

 $\begin{pmatrix} 1\\ 0 \end{pmatrix}$, $B = \begin{pmatrix} 1\\ 0 \end{pmatrix}$

- [3] S.Krishnamoorthy and K.Jaikumar, On s-orthogonal matrices. Global Journal of computational science and Mathematics, 1(1)(2011), 1-8.
- [4] K.Jaikumar, S.Aarthy and K.Sindhu, On χ_s orthogonal Matrices, Mathematical Journal of Interdisciplinary Sciences, 6(1)(2018), 49-53.
- [5] A.Govindarasu, Lowener, Star and θ partial ordering of s-unitary matrices, International Journal of Innovative Research in Science, Engineering and Technology, 3(11)(2014, 17335-17340.
- [6] Jürgen Groß, Löwner partial ordering and space preordering of Hermitian non-negative definite matrices, Linear Algebra and its Applications, 326 (2001), 215–223.

- [7] Krishnamoorthy.S and Govindarasu.A, "On secondary unitary Matrices", International Journal of computational science and Mathematics. Vol 2 number 3, PP 247-253 2010.
- [8] Krishnamoorthy.S and Govindarasu.A, "On the 'θ', partial ordering of S-unitary matrices", "International Journal of Mathematics Archive" 2(12), PP 2534-2537, ISSN 2229-5046, 2011.