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ABSTRACT - We study shall in the present paper existence, uniqueness and convergence property of extrapolated cubic 

spline with multiple knots which interpolate a given function at two points of a general choice of set of points  interior 

each mesh interval which includes some earlier results in this direction of particular choice. 
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I. INTRODUCTION 

A spline is a piecewise polynomial such that its derivative are continuous at knots .  It has been observed that piecewise 

polynomials  function  which satisfy a less stringent smoothness requirement than the maximum non trivial smoothness have 

also some interesting and useful properties (see Schumaker [7]).  An important development in this direction is the introduction 

of discrete spline by Mangasarian and Schumaker [5] (See also Rana and Dubey [6], Malcolm [4], Astor and Duris [2], and 

Dikshit and Rana [3]).  It is mentioned that continuous cubic spline may be used as a limiting case of the discrete cubic spline.  

In fact the defining condition for discrete cubic spline involves in some sense a certain process of extrapolation.  We use this 

approach here for defining extrapolated deficient cubic splines. The class of all piecewise polynomial functions si of degree 3 or 

less which satisfy the condition, 

,0)()( 1  jhxss iii  i = 1,2,.....n,       (1.1) 

for h > 0 and j = 0, 1 defines the class ),,3( hPM  of extrapolated deficient cubic splines.  To be more specific we denote the 

elements of ),,3( hPM  by 
hs .  It may be mentioned that condition (1.1) is less stringent the corresponding condition used 

for defining discrete cubic splines.  We study shall in the present paper existence, uniqueness and convergence property of 

extrapolated cubic spline with multiple knots which interpolate a given function at two points of a general choice of set of points 

interior to each mesh interval which includes some earlier results in this direction of particular choice. 

We set for convenience 

iii pxu )4/1(1   ,  iii pxv )4/3(1    for i = 1,2,.....n 

where (1/4 ),3/4 are real numbers and pi is the length of mesh interval [xi-1, xi] for the mesh P of [0, 1] given by 

1........0: 10  nxxxP
 and 

i
i

i
i

pppp min',max 
. 

We propose to study the follwing: 

Problem 1.1: Given functional values 
)}({ iuf

 and 
)}({ ivf

, to find the condition on p which lead to a unique extrapolated 

deficient cubic splines satisfying the following interpolatory conditions : 

)()( ii

h ufus 
         (1.2) 

)()( ii

h vfvs 
      for i = 1,2,......n  (1.3) 

Corresponding Author :DR Yadvendra Prasad dubey 

II. EXISTENCE AND UNIQUENESS. 

In order to answer the problem 1.1, we set for convenience 

)()()()( 1 iiii vxuxxxxG   , 

)()()()( iiii vxuxxxxH  , 

2

1 )()(),( iii uxxxuxG  
 

2)()(),( iii vxxxvxH  . 
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)(xGi  with the factor 
)( 1 ixx

 replaced by 
)( ixx 

define 
)(xQi .  we state the following equations which will be 

useful, 

)43()4()()16/1()( hphphphxH iiiii   

)43()4()16/1()( hphphhxG iiii   

2)43())(16/1(),( hphpuhxH iiii   

and .)4()16/1(),( 2hphvhxH iii   

We shall answer the problem 6.1.1 in the following. 

Theorem 2.1.  Suppose that 
f

is 1 periodic and p' is such that for 
hpih 3')(0 

 or (ii) 
 ip

is a non 

increasing sequence with 
,' hp 

i=1,2,.....n holds then there exist a unique 1 periodic spline 
),,3( hPDsh

which satisfies 

the interpolatory condition (2.2) and (2.3) 

Proof of Theorem 3.1.  It is clear that 
),,3( hPDsh

then we may write 

),(),()()()( vxHDuxGCxGBxAHxS iiii

h

i      (2.1) 

where A, B, C and D are constants to be determined. 

3)64/3()( ii pDuf           (2.2) 

and 
3)64/3()( ii pCvf          (2.3) 

If we now set 
),()( hNxs ii

h 
 i = 0,1,2,.....n and use (2.2) and (2.3), then we have from (2.1). 

)()12()12()( 3

iii vfBPhN        (2.4) 

and 
])([4)( 3

1 iii ufAPhN         (2.5) 

Thus in view of (2.2) - (2.5) we see that for the interval 
],[ 1 ii xx  , 

)()()([)16/1()(64/3( 1

3 hNxHhNxGxsp iiii

h

ii   

)]()4/3(),()4/1[()()],()4/1()()4/3[()( xHuxGvfvxHxGuf iiiiii  .          (2.6) 

Now it follows from (2.6) and (2.1) with j=1 that 

]),()(),()[()(),( 3

11

3

11

3

1 iiiiiiiii phpLhpphpLhphNphpLh  
 

),4/1()(),()( 1

3

1 hFhNphpLhhN iiiii        (2.7) 

where 
 )())4/1()())4/1()(),4/1()4/1( 11111

3

  iiiiiii ufhpvfhphpphhF
 

 )())4/1()())4/3()(3

1 iiiiii ufhpvfhphpph    and 

))4/1())4/1(),( jhpjhpjhPL iii 
 for all i = j = 1, -1. 

In order to prove theorem 2.2, it is sufficient to show that the system of equation (2.7) for i=1,2,....,n has a unique set of solutions.  

Clearly the coefficients of 
)(1 hN i  is non-negative.  Further in view of the condition (ii) of theorem 3.1 as 

,1/1  ii pp
 we 

observe that the coefficients of 
)(hN i is non-positive and the absolute value of the coefficient of 

)(1 hN i is 

))4/3())4/1(),(|),(| 3

1

3

1 hphPhphPLhPhPLh iiiiii    

 Thus, the excess of the positive value of the coefficient of 
)(hN i over the sum of the positive value of the coefficients 

of 
)(1 hN i  and 

)(1 hN i  in (2.7) is less than 

 )4()()( 2

11

2

1 hpphpppphha iiiiiii    which is clearly positive under the condition (i) or (ii) of Theorem 3.1.  

We thus conclude that the coefficient matrix of the system of equation (2.7) is diagonally dominant and hence invertible.  This, 

completes the proof of Theorem 8.3.1. 
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III. ERROR BOUNDS 

In this section , we have to  obtained  the bounds for the error function 
,fse h 
where 

hs is the interpolaotry spline of 

Theorem 3.1.  For convenience we assume in this section of this paper, that the mesh points are equidistant, so that 

,ppi   i = 0, 1,.....n. 

We now introduce function 
)(rt which is the same as 

)()( rhs
. At the mesh points the function 

,)(rt
r=1,2,..... is defined by 

 i

rh

ii

r xsxt )()( )()( 
, i = 0,1,....n.      (3.1) 

It is of course clear that since 
]1,0[Csh

 

Using the foregoing notation of 
),()( xt r

 we shall prove the following. 

Theorem 3.1. Suppose that f" exist in [0,1] then for interpolatory spline 
hs of theorem 3.1 we have 

)"()4/1,()4/3(||)()(|| 2)()( pfwhKpxft rrr   for r=0,1,2,...... (3.2) 

where 
)4/1,(hK

is a positive function of h and 1/4 

Proof of Theorem 3.1.  It may be observed that the system of equations (2.7) may be written as 

)()()( hFhNhA 
,        (3.3) 

where A(h) is the coefficient matrix having non zero element in each row. 

N(h)= (Ni(h)) and F(h) denotes the single column matrix 
)).,4/1(( hFi  In view of the diagonal dominant property of A(h) (See 

Ahlberg, Nilson and Walsle [1]).  It may be seen that 

)(||)(|| 1 hahA 

       (3.4) 

where 
14 )}(2{)(  hpphha

 

We rewrite the equation (3.3) to obtain 

iiii fhAhFfhNhA )(),4/1())(()( 
.     (3.5) 

We first proceed to estimate the right hand side of (8.3.5).  Applying the Taylor's theorem appropriately we observe 

that the 
thi  row of the right hand side of appearing in (8.3.5) is 

 

(4/3)( )}())64/3()(")4/1)(16/9{)[()( 11

5

  i

n

i fhpfhphpph   

 

)}]("))64/9()(")4/3()16/1{)( ii fhpfhphp  
 

 

)]("))(4/3())4/1()(")4/3())4/1[( 1

5

 ii fhphpzfhphpph 
 

 

where iii z,,
and 

],[ 1 iii xx 
 for all i. 

 

Now using (3.4) and adjusting suitably the terms of right hand side of (3.5), we have 

 

),()4/1,(||))((|| 1

2 pfwlKpfhN n

ii 
     (3.6) 

where 
)1(/)2/3)4/7(2/1()2/3()4/1,( 2 dhddlK i 

 

 

with 
hpd /

. Observing that 

 

hpxHxG iiii  )(2)( ""
 

 

phvxH ii )4/1(),("   and 

)5(),(" puxG ii  , we have from (6.2.6) 

 

 )(")()()32/3( "2

ii

h

i xfxsp 
, 
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)()])(())((2[ 11 fTfhNfhN iiiii        (3.7) 

where iiii fufuffT 2)()2/7()()2/5()(   

)(")32/3( 2

1 ii xfpf   . 

By an appropriate application of Taylor's theorem, we have 

)(")64/7()()64/45[()( 2

ii

n

i ffpfT    

)](")64/3()(")2/1( ii xff  
 

where 
],[,, 1 iiiii xx 

 for all i. Again adjusting suitably the terms of 
),( fGi we get 

),"()32/37(||)(|| 2 pfwpfTi  .      (3.8) 

Then using (3.6) and (3.8), we have from (3.7) 

),"()4/1,(||))(")((|| 2

" pfwhKxfs i

h

i 
 

where 
 32/37)4/1,(3)3/1,( 12  lKhK

 

 "h

is
 is piecewise linear, so that for 

].,[ 1 ii xx                            (3.9) 

)()"( xsp h

i  

       )()( 1

"

1

"

  ii

h

iii

h

i xxxsxxxs
          

         (3.10) 

and hence, 

     )()()()()()()"( 1

"

11

""

i

h

ii

h

ii

h

i xsxsxxxfsp
 

 

   ""

1

"

11

"

1 )()()()()()( ii

h

iiii

h

ii fxsxxfxsxx    
 

))(()()(()( "

1

"

1 xffxxxffxx n

ii

n

ii   . 

 

Thus, 
    ||)()()(||)()(|| 1

"

1

"""

 i

h

i

h

i

h

i xssxfs
 

  ),"(||))"((|| " pfwxfs i

h

i 
.     (3.11) 

Next, we see that 

 

,)()(2 1

"

1

" hpxQHxG iiii  
 

 

phuxG ii )4/1(),( 1

" 
and pvxH ii 5)( 1

"   

 

So in view of (6.2.6), we have 

 

 )()(2

)()()(32/3(

1

1

"2

hNhN

xSp

ii

i

h

i









 
 

)()2/7()()2/5( ii vfuf 
 

and 

   )()(2)4/3()()32/3( 1

"2 hNhNixsp ii

h

i 
 

)()3/10()()3/8( ii vfuf 
. 

Thus, 

 

 )())"()(()27/2( 11

"2

 i

h

i

h

i xssp
 

    )(])()()3/2( 22 fVfhNfhN iiiii       (3.12) 
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where 
   )()()2/5()()()2/7()( 11   iiiii ufvfufvffV

 

 ii ff  2 . 

 

Again using the Taylor's theorem appropriately, we see that, 

),(.)16/187(||)(|| "2 pfwpfVi 
      (3.13) 

 

and therefore, using (3.6) and (3.13), we have from (3.12) 

),()4/1,(||)()()((|| "

31

"

1 pfwhKxss ii

h

i        (3.14) 

where 
 16/191,(2)4/1,( 13 hKhK 

. 

 

Thus, combining (3.9), (3.11) and (3.14), we get 

),,()4/1,()0,(1(||)())((|| "

32

" pfwhKhKxfs th

i 
   3.15) 

which proves the result of Theorem 3.1 for r=2,with 

)4/1,()4/1,(1)4/1,( 32 hKhKhK 
. 

 

Next, we observe that in view of the interpolatory condition (1.2) and (1.3), there exist a point 
),( iii vut 

s.t. 

.0)()')'(  i

h

i tfs
 

Thus, for any 
 ii xxx ,1

 

 

x

Q
i

i

dqqftxft ))("(max||)()'(|| )2()1(

 

||)()"(||)4/3( )2( qftp 
,     (3.16) 

 

which along with (3.15) gives the result of Theorem 3.1 for r=1. 

Since 
0)()( )0(  iuft

 

we finally get 

 

||)()(|| )0( xft 
 

 
x

ui i

dqft 2

)1( )()'(max
 

.||)()'(||)4/3( )1( qftp 
    (3.17) 

This completes the proof of Theorem 3.1. 

IV. DIFFERENCE BETWEEN TWO EXTRAPOLATED SPLINES 

Considering two values 
vu,

of h, we propose to compare in this section two extrapolated cubic splines in the classes S

),,3( uP
 and S

),,3( vP
 which are the interpolant of Theorem 3.1. 

 

In this section, we shall prove the following : 

 

Theorem 4.1. Suppose 
hs is 1 periodic spline of Theorem 3.1 interpolating to the periodic function f. Then, for 

0,  vuh
, 

||)(||),,4/1(||2||)()(|| 1 uAvuKuvxss vu 
    (4.1) 

where 
),,3/1( vuK

is a positive function which depends on u and v. 

 

Proof of Theorem 4.1. For any function g, we define, the operation vu ,
by 

)()(, vguggvu 
 and for convenience, we 

write   for vu ,
. 

Thus, we see that (2.6) implies 

1

3 )()()()()16/3(  iiii

v

i

u

i NAxHNxGxssp  .    (.4.2) 

 

Rewrite the equation (3.3) for h=u and h=v, respectively, we assume at the following equality. 
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AvNFNuA  )()( 
.       (4.3) 

Further, in view of (3.4), we have 

1})(2{||)(||  ny pupuuA
.       (4.4) 

Next we observe that the matrix A  has at the most three non-zero elements. Thus, substractly the matrix A(u) from A(v), we 

see that 

.||2|||| 5puvA 
       (4.5) 

Also, we observe that 

||)(||.||)(||)}}(|| 1 vFvAvN 
.       (4.6) 

Further, we have 

),()2(6)(3(|||||||| 3222 pfwpuvuvuvppuvF 
.   (4.7) 

Thus, combining (4.3) - (4.7), we have 

||)(||),,4/1(|||||||| 1 uAvuKuvN 
,      (4.8) 

where 
),,4/1( vuK

is a operator function which depends on u and v. 

Finally, in view of (4.2) and observing that 

3)6̀1/3(|)(|max pxRi
i


,       (4.9) 

This  completes the proof of theorem 4.1. 

V. CONCLUSION 

We have to find convergence and bounds  of deficient Extrapolated Cubic Spline 
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