
International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-04, Issue-09, Dec 2018

301 | IJREAMV04I0945077 DOI : 10.18231/2454-9150.2018.1194 © 2018, IJREAM All Rights Reserved.

A Survey on Agile Software Development Model:

Extreme Programming

V S Banupriya,

Assistant Professor, Department of Computer Applications, Chevalier T. Thomas Elizabeth College

for Women, Chennai, India. vsbanu@gmail.com

Abstract: Agile software development methodologies are called as the light weight development methods because of the

informal, adaptive and flexible approach. An agile process provides numerous benefits include quicker return on

investment, better software quality, and higher customer satisfaction. Extreme programming (XP) one of the commonly

used agile model that aim to increase a software organization’s responsiveness while decreasing development overhead.

This research work provides broad overview of the agile model Extreme Programming.

Keywords — Agile software development, Agile model, Extreme Programming, Lightweight development, Software

Quality.

I. INTRODUCTION

Agile software development methodologies provide a more

efficient and lighter way of development that builds

software iteratively and incrementally. Agile models

emphasis on changing requirements, customer satisfaction,

and team collaboration [1]. Agile software development

method is people-focused communication-oriented, flexible,

speedy, lean, responsive, and learning [2]. Agile models are

collections of best practices and principles of software

engineering. These principles are used with different

approach that makes them more flexible and adaptive

during development. Agile software development models

shifted the development focus from process to people and

valued things that were neglected in traditional models [3].

The agile software development method includes, Extreme

Programming (XP), Scrum, Test Driven Development

(TDD), Dynamic System Development Model (DSDM),

Feature Driven Development (FDD) and Crystal methods

etc. All these agile models follow agile values and

principles with some key practices.

A number of agile software development models exist but

extreme programming (XP) is one of the most widely used

agile model [4]. XP was developed by Kent Beck in 2000

when software industry was seeking for new software

development methods to reduce the risk of failure caused by

traditional development models. It first stated as “simply an

opportunity to get the job done” [5]. After a number of

successful trails in practice, the XP methodology was

“theorized” on the key principles and practice used.

XP is a test-driven, “light weight” methodology designed

for small teams that emphasizes customer satisfaction and

promotes team work. XP was created to handle

uncertainties in development environment. XP practices are

set up to mitigate project risk and increase likely hood of

success. The XP can be used for rapid application

development of web applications [6].

XP is said to improve the overall product stability and

maintainability [7]. It is believed to enable effective

software development by allowing organizations to deliver

and change requirements quickly during the software

engineering process. Advantages of XP over conventional

practices include lower management overhead, higher team

productivity, happier customers, and shorter release cycles

[8].

The remaining part of this paper contains Section-II

discusses about existing software development

methodologies, Section III explains about life cycle of

Extreme Programming. Section IV deals with XP practices,

Section V deals with XP values, Section VI deals with

limitation of XP and Section-VII deals with the conclusion.

. II. EXISTING SOFTWARE

DEVELOPMENT METHODOLOGIES

Over a several decade software development teams used the

traditional software development methodologies. As

conventional software systems become big and complex

software development teams often struggle to produce

software that is on time, within budget and with all

promised functionalities so a number of development

lifecycle models have been created to manage the process.

Waterfall model is the most commonly used process model,

in which the various phases of requirements specification,

design, implementation, verification, and maintenance are

executed sequentially. The Waterfall model has some

limitations that the requirements are stable and known at the

beginning of the project. As requirements change are

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-04, Issue-09, Dec 2018

302 | IJREAMV04I0945077 DOI : 10.18231/2454-9150.2018.1194 © 2018, IJREAM All Rights Reserved.

inevitable, with frequently changing requirements the

approach results to inflexibility [10].

Spiral model overcomes the limitation of the waterfall

model [11]. Spiral model have four phases: Planning,

Evaluation, Risk Analysis, and Engineering. These four

phases are iteratively followed in sequence. However, the

spiral model has the limitation that, highly skilled people

are required and process is more time consuming and

expensive [11] [12].

Agile approach, XP effectively deals with changing

requirements, which is difficult to manage in waterfall

model. In Agile approach development activities are carried

out in small phases, based on collaboration, adaptive

planning, early delivery, continuous improvement, regular

customer feedback, frequent redesign resulting in

development of software increments being delivered in

successive iterations in response to the ever-changing

customer requirements [13].

III. LIFE CYCLE OF XP PROCESS

The life cycle of XP consists of six phases: Exploration,

Planning, Iterations to Release, Productionizing,

Maintenance and Death phase (Figure:1)[5].

Exploration Phase: Exploration phase is the first phase of

XP life cycle which deals with requirement and architecture

modeling of the system. In this phase, user requirements,

architecture, tools and technology are defined. A meeting

among customer, users and developers is arranged to plan

release. Customers write out the story cards that they wish

to be included in the first release. Each story card describes

a feature to be added into the program. These user story

cards comprises of short name, priority of story and one or

two text paragraph without technical detail [5]. User story

should be detailed enough that help the developers to

understand system requirement and also in making

estimates.

The exploration phase takes between a few weeks to a few

months, depending largely on how familiar the technology

is to the programmers.

Planning Phase: Sets the priority order for the stories and

an agreement of the contents of the first small release is

made. The programmers first estimate how much effort each

story requires and the schedule is the agreed upon. The time

span of the schedule of the first release does not normally

exceed two months. The planning phase itself takes a couple

of days. During planning phase decision about team size,

code ownership, schedule, working hours are taken.

Iterations to Release Phase: This phase includes several

iterations of the systems before the first release. The

schedule set in the planning stage is broken down to a

number of iterations that will each take one to four weeks to

implement. The first iteration creates a system with the

architecture of the whole system. This is achieved by

selecting the stories that will enforce building the structure

for the whole system. The customer decides the stories to be

selected for each iteration. The functional tests created by

the customer are run at the end of every iteration. At the end

of the last iteration the system is ready for production.

Productionizing Phase: This phase requires extra testing

and checking of the performance of the system before the

system can be released to the customer. At this phase, new

changes may still be found and the decision has to be made

if they are included in the current release. During this phase,

the iterations may need to be quickened from three weeks to

one week. The postponed ideas and suggestions are

documented for later implementation during, e.g., the

maintenance phase.

Maintenance Phase: In this phase new functionality is built

while keeping the old one running [5]. New architectural

design and technologies can be introduced however XP

team has to do more care as the system is in production

also. The changes that cause production problems are

stopped immediately. The maintenance phase may require

incorporating new people into the team and changing the

team structure.

Death Phase: This is the last phase of XP. There are two

possible situations in which a software system reaches to

death phase. In first case, if the developed software has all

the needed functionality and customer is satisfied and has

no more stories, then it is time to finally release the system.

A small document of five to ten pages is created, about the

system for future use. In other case, customer may require a

set of features that cannot be developed economically. In

such situation, it will be better to close the software

development which is called entropic death of system [5].

IV. XP PRACTICES

There are twelve XP practices that distinguish XP from

other software process models. These practices are used

during software development under the guidance values and

principles of XP[5].

Planning Game: System requirements are collected on story

cards that are used for further planning. Different team

roles, team size, working hours and overall schedule is

defined during planning game. Planning game is performed

in two parts called release planning and iteration planning.

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-04, Issue-09, Dec 2018

303 | IJREAMV04I0945077 DOI : 10.18231/2454-9150.2018.1194 © 2018, IJREAM All Rights Reserved.

Figure1 Life Cycle of XP Process

Small Releases: In each release a set of requirements are

developed that have some business and development value

[3]. Small releases make the system open and available for

evaluation by the customer. Small releases help in getting

immediate customer’s feedback about system. Metaphor: It

is the architectural design of the system that describes how

system should works. For developers, It is very important

way to understand the system.

Simple Design: Simple design is a great practice of XP that

helps to design basic required functionality of the system

and avoids unnecessary details. It focuses on currently

needed features not on future requirements. Continuous

Testing: Continuous testing provides quick feedback. XP

uses unit testing and acceptance testing continuously.

Refactoring: Refactoring is restructuring the system without

changing its behavior. It is performed to improve the quality

and flexibility of design. It is a routine activity of XP

developers to make the code quality better.

Pair Programming: It is very interesting feature of XP that

distinguish it from other development approaches. In XP,

coding is performed by the two programmers at same

machine. The idea behind pair programming is to develop

high quality software at lower cost. As most of the errors

are captured and corrected within seconds by the

companion programmer.

Collective Ownership: Any programmer can access any part

of code any time to improve it. This is called collective

ownership of code. Code review by number of

programmers; enhance the quality of software to be

developed.

Continuous Integration: After completing every task,

system is integrated and tested. It may happen many times a

day. This reduces integration problems and improves

software quality.

40-Hour Week: XP discourages extra-long working hours

for developers. Tired and bored programmers make more

mistakes that’s why unnecessary overtimes are avoided in

XP. It is a rule of XP, to work 40 hours a week not more

than this.

On-Site Customer: A customer’s representative is a part of

XP team and remains on site all the time. He/ she is usually

a domain expert that can decide about system's desired

features, answer the questions and can steer the

development process. On-site presence help to reduce

communication gap between developers and customer. A

quick feedback remains available to developers about

desired software.

Coding Standards: Coding standards are followed in XP.

Code is owned collectively and can be accessed or changed

by any programmer. To share the code among

programmers, it is necessary to follow some common

coding standards.

V. XP VALUES

Extreme Programming (XP) is based on values. Start with

five XP's values listed [8] Simplicity: We will do what is

needed and asked for, but no more. This will maximize the

value created for the investment made to date. We will take

small simple steps to our goal and mitigate failures as they

happen. We will create something we are proud of and

maintain it long term for reasonable costs.

Communication: Everyone is part of the team and we

communicate face to face daily. We will work together on

everything from requirements to code. We will create the

best solution to our problem that we can together.

Feedback: We will take every iteration commitment

seriously by delivering working software. We demonstrate

our software early and often then listen carefully and make

any changes needed. We will talk about the project and

adapt our process to it, not the other way around.

Respect: Everyone gives and feels the respect they deserve

as a valued team member. Everyone contributes value even

if it's simply enthusiasm. Developers respect the expertise of

the customers and vice versa. Management respects our

right to accept responsibility and receive authority over our

own work.

Courage: We will tell the truth about progress and

estimates. We don't document excuses for failure because

we plan to succeed. We don't fear anything because no one

ever works alone. We will adapt to changes whenever they

happen.

VI. LIMITATIONS OF XP

Although XP methodology can result in an improved

process which is more efficient, predictable more flexible

and more fun it also has weaknesses such as [9]

 XP is not suited for difficult and complex projects.

 Pair programming cannot be applied for projects

exclusively with one developer.

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjcjeno_4PeAhXYfH0KHUr-CcAQjRx6BAgBEAU&url=https://www.researchgate.net/figure/Life-Cycle-of-Extreme-Programming-6_fig1_316845761&psig=AOvVaw1mKY3hbJByWodrlPZXuVHu&ust=1539540053867908

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-04, Issue-09, Dec 2018

304 | IJREAMV04I0945077 DOI : 10.18231/2454-9150.2018.1194 © 2018, IJREAM All Rights Reserved.

 It needs great amount of coordination amongst the

programmers during the course of pair.

 Less focus on design.

 Can result in a never-ending project if not managed

properly.

VII. CONCLUSION

The results of the research conducted indicate that the XP

approach to software development is far better and

productive as compared to traditional software development

methods. It has several features and aspects to support

projects for large or small organization, and the projects

that’s need short or long period of time to be finished. This

model used best practices in agile fashion to accommodate

rapid application development needs. Despite of these

advantages there are some limitations also. XP’s 12 core

practices are closely related, and implementing only a few

will not necessarily bring all potential benefits. Having a

full-time on-site customer is sometimes impractical.

Overall, XP a agile software process that speeds up

development and lets teams react flexibly to requirement

changes, but some issues remain.

REFERENCES

[1] L. Williams, “Agile software development

methodologies and practices,” in Advances in

Computers, vol. 80, Elsevier Inc. 2010, pp.1-44.

 [2] Manish Kumar, (2015)” A Detail Study of Agile

Software Development with Extreme Programming,

International Journal of Advanced Research in

Computer Science and Software Engineering

[3] D. Cohen, M. Lindvall, and P. Costa, (2004) “An

introduction to agile methods.” ADVANCES IN

COMPUTERS, vol. 62, 62, pp.166

[4] M. R. J. Qureshi and J. S. Ikram, “Proposal of Enhanced

Extreme Programming Model,” International Journal of

Information Engineering and Electronic Business, vol.

7, no. 1, p.37- 42, 2015.

[5] K. Beck, Extreme Programming Explained: Embrace

Change, Addison-Wesley, Boston, MA, USA, 1999.

[6] Maurer, F, Martel S , (2002) “Extreme Programming

Rapid Development for Web Based Applications”,

[7] Poole, C.; Murphy, T.; Huisman, J.; and Higgins, A.

Extreme maintenance. In G. Canfora and A. Amschler

Andrews (eds.), Proceedings of the Seventeenth IEEE

International Conference on Software Maintenance.

Los Alamitos, CA: IEEE Computer Society Press,

2001, pp. 301–312.

[8]. Cao, L.; Mohan, K.; Xu, P.; and Ramesh, B. How

extreme does programming have to be? Adapting XP

practices to large-scale projects. In R.H. Sprague (ed.),

Proceedings of the ThirtySeventh Hawaii International

Conference on System Sciences. Los Alamitos: IEEE

Computer Society Press, 2004.

 [9] John Noll, Darren C. Atkinson, Comparing Extreme

Programming to Traditional Development for Student

Projects: A Case Study, Department of Computer

Engineering Santa Clara University, year unknow.

[10] Pressman R.S., „Software Engineering: A

Practitioner‟s Perspective‟, 5th ed., McGraw- Hill,

New York, 2000, pp. 769-798.

[11] Boehm B, „A Spiral Model of Software Development

and Enhancement‟,(1986) ACM SIGSOFT Software

Engineering Notes, ACM, 11(4):14-24

[12] Jalote, Pankaj, Aveejeet Palit, Priya Kurien, and V. T.

Peethamber, (2003) "A Process Model for Iterative

Software Development." Infosys Technologies Limited

Electronics City, Bangalore-561 229

[13] Matharu, Gurpreet Singh, Anju Mishra, Harmeet

Singh, and Priyanka Upadhyay, (2015) "Empirical

Study of Agile Software Development Methodologies:

A Comparative Analysis." ACM SIGSOFT Software

Engineering Notes 40, no.1

