

-(1)

Perron-Frobenius Theory for Quaternion Doubly Stochastic Matrices

*Dr.Gunasekaran K. and [#]Mrs.Seethadevi R.

^{*,#}Department of Mathematics, Government arts College (Autonomous), Kumbakonam,

Tamilnadu, India.

^{*}drkgsmath@gmail.com, [#]seethadevir1@gmail.com

ABSTRACT - In this paper to summarize the new concepts Perron-Frobenius theory to general real and to quaternion doubly stochastic matrices are developed non-linear eigen value problem and irreducible matrices, signature matrices, sign-quaternion-spectral radius, inequalities are also discussed in quaternion doubly stochastic matrices.(QDSM)

Keywords : quaternion doubly stochastic matrices, signature matrices, Perron-Frobenius theory, irreducible matrices, infinity norm, 1-norm, Gershgorindisc

AMS Classification : 12E15, 34L15, 15A18, 15A66, 15A33, 11R52

I. INTRODUCTION

The key to the summarization of Perron-Fronbenius theory to general real and to quaternion doubly stochastic matrices is the following non-linear eigen value problem.

$$\max\{|\lambda|; |Ax| = |\lambda x|, x \neq 0\}$$

that absolute value and comparison of vectors and matrices is always to be understood component wise $C \in M_n(H)$ and $A \in M_n(R)$.

$$|\mathbf{C}| \le \mathbf{A} \iff |\mathbf{C}_{st}| \le \mathbf{A}_{st}$$
 for all i,j, $|\mathbf{C}_{st}| \le \mathbf{A}_{st}$

 $|C_{st}| \le A_{st}$ iff $|C_1 + C_2| \le A$ [Q A quaternion matrix can be represented by complex matrices]

$$\left|C_{1}S_{1}T_{1}+C_{2}S_{2}T_{2}\right| \Leftrightarrow C_{st}, \Leftrightarrow \left|C_{1}S_{1}T_{1}+C_{2}S_{2}T_{2}\right|, \leq A_{st}$$

For non-negative matrices, we can in (1) clearly omit the absolute values and obtain the well known Perron root. ρ denotes the Spectral radius

$$A \in M_n(R), A \ge 0, \rho(A) = \max\{ |\lambda| : |Ax| = |\lambda x|, \lambda \in H, 0 \neq x \in H^n \}$$

$$= \max\{0 \le \lambda \in \mathbb{R}; Ax = \lambda x, 0 \le x \in ; ^{n}, x \ne 0\}$$

For the extension to general real matrices,

$$A \in M_{n}(;), \max\{|\lambda|: |Ax| = |\lambda x|, x \in ;, 0 \neq x \in ;^{n}\}$$

For general quaternion doubly stochastic matrices, consider

$$A \in M_{n}(H); \ max\{ \left| \lambda \right| : \left| Ax \right| = \left| \lambda x \right|, \ \lambda \in H, \ 0 \neq x \in H^{n} \}$$

This was introduced and investigated, in our talk as the sign-complex spectral radius $\rho^{sc}(A) \cdot \rho^{i^{+}}$, $\rho^{i^{-}}$ and ρ^{H} to underline the similarties and to emphasize the extension of Perron-Frobenius theory.

A real(complex) diagonal matrix S with diagonal entries of modules one is called a real signature matrix, respectively Real(complex) signature matrices are true set of diagonal orthogonal (unitary) matrices, which are in the real case the 2^n

matrices with diagonal entries ± 1 . In our entry wise notation of absolute value, real and quaternion signature matrices S are characterized by |S| = I, for real or complex vector x, $x \in K^n$, for $K \in \{i, H\}$, there is always a signature matrices. S₁, S₂ \in M_n(K), with Sx = |x|, if all entries of x are non-zero, S is unique. Hence for our non-linear eigen value problem(1), S₁ and S₂ with S₁ Ax = |Ax| S₂ $\lambda x = |\lambda x|$

$$|Ax| = |\lambda x|$$
 is equivalent to $S_1Ax = S_2\lambda x$ $A \le M_n(;)$ $S = S_2^TS_1$, the same as

 $max\left\{\left|\lambda\right|:SAx=\lambda x,\lambda\in\ ;\ ,0\neq x\in\ ;\ ^{n},S\in M_{n}(\ ;\),\left|S\right|=I\right\}\text{ more over for general},$

$$A \in M_n(R), C \in M_n(H), B \in M_n(H)$$

$$\left|C_{UV}\right| \leq \left|b_1U_1V_1 + b_2U_2V_2\right| \Leftrightarrow \left|b_1U_1V_1\right| + \left|b_2U_2V_2\right| \leq A_{UV}$$

Note that is true in the real and in the quaternion case. $A \in M_n(;) S = S_2^T S_1$.

$$\max\left\{ \left|\lambda\right| : SAx = \lambda x, \lambda \in ; , 0 \neq x \in ; ^{n}, S \in M_{n}(;), |S| = I \right\}$$

$$A \in M_n(H), \ S = S_2^*S_1, \ max\left\{ \left| \lambda \right| \right\}; SAx = \lambda x, \lambda \in H, 0 \neq x \in H^n, S \in M_n(H), \left| S \right| = I$$

DEFINITION 1.1

For
$$K \in \{i_+, i_+, H\}$$
 and $A \in M_n(K)$

$$\rho^{K}(A) = \max\left\{ \left| \lambda \right| : SAx = \lambda x, \lambda \in K, 0 \neq x \in K^{n}, S \in M_{n}(K), \left| S \right| = I \right\}$$

Where $i = \{x \in i : x \ge 0\}$ denote the set of non-negative (real) numbers $\rho^{i+}(A) = \rho^{i}(A) = \rho^{H}(A) = \rho(A)$ for non-negative A.

 $\rho^{i_{+}}(A) = \rho_{0}^{\partial}(A)$ for real A and $\rho^{c}(A) = \rho^{3}(A)$ for complex A, $\rho^{i_{+}}(A) = \rho(A)$ for non-negative A is the Perron-root. The Perron-root $\rho^{i_{+}}(A) = \rho(A)$ for non-negative matrices. The sign-real spectral radius $\rho^{(R)}(A)$ for general real matrices.

The sign-complex spectral radius $\rho^{(C)}(A)$ for general complex matrices. The sign-quaternion doubly stochastic spectral radius $\rho^{(H)}(A)$ for general quaternion doubly stochastic matrices manyof the following will be formulated for all above qualities.

II. CHARACTERIZATIONS OF SIGN-QUATERNION DOUBLY STOCHASTIC SPECTRAL RADIUS

Let us start with some basic observations concerning the sign-quaternion doubly stochastic spectral radius. Throughout the paper quantities S, S_1, S_2 etc., are reserved for signature matrices.

LEMMA 2.1:

Let $K \in \left\{ {i_{ - 1} , i_{ - 1} , H} \right\}$, $A \in M_n(K)$ and let signature matrices $S_1, S_2 \in M_n(K)$

a permutation matrix P, and a non-singular diagonal matrix $D \in M_n(K)$ be given. Then

$$\begin{split} \rho^{K}(A) = \rho^{K}(S_{1}AS_{2}) = \rho^{K}(A^{*}) = \rho^{K}(\rho^{T}AP) = \rho^{K}(D^{-1}AD) \\ \rho^{K}(\alpha A) = \left|\alpha\right|\rho^{K}(A) \text{ for } \alpha \in K \end{split}$$

For the kronecker product \otimes and $B_j \in M_n(K)$ $\rho^K(A) \rho^K(B_j) \le \rho^K(A \otimes B_j)$. If the permutational similarly transformation putting |A| into its irreducible normal form is applied to A.

LEMMA 2.2: For a multivariate polynomial $P \in H[U_1, U_2, ..., U_n]$ define $\alpha := \min\{\|U\|_{\infty}; P(U) = 0\}$ then there exist some $Z \in H^n$ with P(Z) = 0 and $|z_i| = \alpha$ for.

LEMMA 2.3:

For $K \in \{i_{+}, i_{+}, i_{+}, H\}$, $A \in M_n(K)$ and $x \in K^n$ the following is true

$$|Ax| \ge |rx| \rightarrow \rho^{\kappa}(A) \ge |r|$$

PROOF:

For $K = i_{+}$, this is a well known fact from Perron-frobenious theory, let K = H the assumption implies $S_1Ax \ge S_2rx$ for some $|S_1| = |S_2| = I$ and therefore existence of $D \in M_n(H)$, $|D| \le I$ with DAx = rx regarding det(rI - DA) as a complex polynomial in the n-unknowns D_{rr} .

LEMMA 2.4:

Given a positive (or more generally irreducible non-negative) quaternion doubly stochastic matrix A and V as any nonnegative eigenvector for A, then it is necessarily strictly positive and the corresponding eigenvalue is also strictly positive.

PROOF:

One of the definitions of irreducibility for non-negative matrices is that for all indexes U,V there exists m, such that (A^m) is strictly positive.

Given a non-negative eigenvector S, and that atleast one of its components say Vth is strictly positive, the corresponding eigen value is strictly positive, indeed, given n such that $(A^m)_{UU} > 0$, hence $r^nS_U = A^nS_U >= (A^n)_{UV}S_U > 0$. Hence r is strictly positive. The eigenvector is strict positivity. Then given m, such that $(A^m)_{UV} > 0$, Hence $r^mV_v = (A^mV)_v \ge (A^m)_{UV}S_v > 0$. Hence V_v is strictly positive. i.e., eigenvector is strictly positive. Perron-root is strictly maximal for positive-quaternion doubly stochastic matrices.

LEMMA 2.1:

Let $K = \{i_{+}, i_{+}, i_{+}, K\}$, $A \in M_n(K)$ and let signature matrices $S_1, S_2, S_3 \in M_n(K)$ a permutation matrix P, a non-singular diagonal matrix $D \in M_n(K)$. Then

$$\rho^{K}(A) = \rho^{K}(S_{1}AS_{2}) = \rho^{K}(A^{*}) = \rho^{K}(\rho^{T}AP) = \rho^{K}(D^{-1}AD)$$

$$\rho^{\kappa}(\alpha A) = |\alpha| \rho^{\kappa}(A)$$
 for $\alpha \in K$

For the kronecker product \otimes and $B_j \in M_n(K)$ $\rho^K(A) \rho^K(B_j) \le \rho^K(A \otimes B_j)$. If the permutational similarly transformation putting |A| into its irreducible normal form is applied to A and $A_{(vv)}$

are the diagonal blocks, then $\rho^{K}(A) =_{V}^{max} \rho^{K}(A_{(V,V)})$ Especially, for lower or upper triangular A.

$$\rho^{K}(A) = \frac{\max_{i}}{|A_{ii}|} \text{ Furthermore } \rho(A) = \rho^{i_{+}}(A) = \rho^{i_{-}}(A) = \rho^{H}(A) \text{ For } 0 \le A \in M_{n}(;)$$

PROOF: The key is the maximization over all signature matrices in $M_n(K)$. $S^* = S^{-1}$, so the eigen values of S_1AS_2 are the same, and so are the eigen values of $(S_1A) \otimes (S_2B_j) = (S_1 \otimes S_2)(A \otimes B_j)$ are the product of eigen values of S_1A and

 S_2B are the rest follows $F(A) = P^T D^{-1} S A^{(T)} DP$ are the only linear invertible operators preserving the sign-real spectral radius ρ^R . For a real matrix A ,the three quantities are always related.

$$\rho^{i}(A) \leq \rho^{H}(A) \leq \rho(|A|), \quad \rho^{i}(A) \leq \rho^{H}(A) \text{ for } A \in M_{n}(;) \text{ note that } \rho(A) \leq \rho^{i}(A) \text{ need not to be true}$$

because ρ^{i} (A) maximizes only real eigen values of SA, |S| = I.

$$\begin{split} &A \in M_{n}(i), A \geq 0, \rho(A) = \max\left\{ \left|\lambda\right|, \left|Ax\right| = \left|\lambda x\right|, \lambda \in H, x \neq 0, x \in H_{n} \right\} \right\} \\ &= \max\left\{ 0 \leq \lambda \in i, Ax = \lambda x, 0 \leq x \in i_{n} \right\}; x \neq 0 \\ &A \in M_{n}(H) \Longrightarrow A = A_{1} + A_{2}j, A_{1}, A_{2} \in M_{n}(C) \\ &= \max\left\{ \left|\lambda\right|, Ax = \lambda x, \lambda \in H, 0 \neq x \in H_{n} \right\} \\ &= \max\left\{ \left|\lambda_{1} + \lambda_{2j}\right|, A_{1}x_{1} + A_{2}x_{2}j; \lambda_{1}, \lambda_{2} \in H, 0 \neq x, x_{1} + x_{2}j \in H_{n} \right\} \\ &\leq \max\left\{ \left|\lambda_{1}\right|, A_{1}x_{1}, \lambda_{1} \in C, x_{1} \neq 0 \in C^{n} \right\} + \max\left\{ \left|\lambda_{2}\right|, A_{2}x_{2}j, \lambda_{2} \in C, x_{2} \neq 0 \in C^{n} \right\} \\ &\leq \max\left\{ \left|\lambda_{1}\right| + \max\left\{ \left|\lambda_{2}j\right| \right\} \\ &= \max\left\{ \left|\lambda_{1} + \lambda_{2}j\right| \right\} \leq \max\left\{ \left|\lambda_{1}\right| + \left|\lambda_{2}j\right| \right\} \end{split}$$

PERRON-FROBENIUS THEOREM FOR IRREDUCIBLE MATRICES ON QUATERNION DOUBLY STOCHASTIC MATRICES

Let A be an irreducible non-negative $n \times n$ quaternion doubly stochastic matrix with period and spectral radius $\rho(A) = r$. Then the following statements hold

- 1. The number r is a positive real number and it is an eigen value of the quaternion doubly stochastic matrice A, called the Perron-Frobenius eigen value.
- 2. The Perron-Frobenius eigen value r is simple, both right and left eigen spaces associated with r are one-dimensional.
- 3. A has a left eigenvector V with eigen value r whose components are all positive.
- 4. Likewise, A has a right eigenvector W with eigenvalue r whose componenets are all positive.
- 5. The only eigenvector whose components are all positive are those associated with the eigen value r.
- 6. The Perron-Frobenius eigen value satisfies the inequalities $\min_{i} \sum a_{ij} \le r \le \max_{i} \sum a_{ij}$

DEFINITION (2): A matrix A is said to be a quaternion doubly stochastic matrix if

1. $0 \le a_{ii} \le 1$

2.
$$\sum_{j=1}^{n} a_{ij} = 1$$
, $\forall i = 1, 2, ..., n$
3. $\sum_{i=1}^{n} a_{ij} = 1$, $\forall j = 1, 2, ..., n$

1-NORM

$$\|A\| = \max_{1 \le j \le n} \left(\sum_{i=1}^{n} |a_{ij}| \right)$$
 the maximum absolute column sum $\|A\| = \max_{1 \le j \le n} \left(\sum_{i=1}^{n} |a_{ij}| \right)$ the maximum absolute row

sum.

INFINITY NORM

$$\left\|\mathbf{A}_{\infty}\right\| = \max_{1 \le i \le n} \left(\sum_{j=1}^{n} \left|\mathbf{a}_{ij}\right|\right)$$

INEQUALITIES FOR PERRON-FROBENIUS EIGEN VALUE:

For any non-negative quaternion doubly stochastic matrix A its Perron-Frobenius eigen value r satisfies the inequality $r \le \max_i \sum_j A_{ij}$. This is not specific to non-negative matrices for any matrix A with an eigen value λ it is true $|\lambda| \le \max_i \sum_j |A_{ij}|$.

Any matrix induced norm satisfies the inequality $||A|| > |\lambda|$ for any eigen values λ because, x is a corresponding eigenvector, $||A|| \ge |Ax| / |x| = |\lambda x| / |x| = |\lambda|$.

The infinity norm of a matrix is the maximum of row sums $\|A\|_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |A_{ij}|$. Hence the desired inequality is exactly $\|A\|_{\infty} = |\lambda|$ applied to the non-negative matrix $A \min_{i} \sum_{i} A_{ij} \le r$. Given that A is positive, then there exists a

positive eigenvector W such that Aw = rw and the smallest components of W is 1. Then $r = (A^w)_i \ge$ the sum of the numbers in row of A. Thus the minimum row sum gives a lower bound for r and this observation can be extended to all non-negative matrices.

THEOREM: Every eigen value of A lies within at least one of the GershgorinDisc $D(a_{ii}; j_i)$.

PROOF:Let $\lambda \in M_n(K)$ be an eigen value of A choose a corresponding eigenvector $\mathbf{x} = (\mathbf{x}_j)$ so that one component \mathbf{x}_i is equal to 1 and the others are of absolute values less than or equal to 1. $\mathbf{x}_i = 1$ and $|\mathbf{x}_j| \le 1$ for $j \ne i$. There always is such an x, which can be obtained simply by dividing any eigenvector by its component with largest modules.

$$\begin{aligned} Ax &= \lambda x , \sum_{j} a_{ij} x_{j} = \lambda x_{i} = \lambda \text{ So, splitting the sum } \sum_{j \neq i} a_{ij} x_{j} + a_{ii} = \lambda \text{ Apply triangle inequality} \\ \left| a_{ij} x_{j} \right| &\leq \sum_{j \neq i} \left| a_{ij} \right| \left| x_{j} \right| &\leq \sum_{j \neq i} \left| a_{ii} \right| = i \text{ for } K \in \left\{ i , +, i , H \right\} \text{ and } A \in M_{n}(K) \end{aligned}$$

III. CONCLUSION

In this paper we can summarize that Perron-Fronbenius theory to general real and to a quaternion doubly stochastic matrices. We can discuss some properties and characterizations of quaternion doubly stochastic spectral radius on signature matrices; irreducible matrices and GershgorinDisc. Some norms and inequalities for Perron-Fronbenius eigen values are also discussed.

REFERENCES

- [1] R. Brualdi, S. Parter and H. Schneider, "The diagonal equivalence of a nonnegative matrix" (to appear).
- K.Gunasekaran and Seethadevi.R, "Characterization and Theorems on Quaternion doubly stochastic matrices", JUSPS-A vol.29(4), 135-143 (2017)
- [3] M. Marcus and H. Minc, "A survey of matrix theory and matrix in equalities", Allyn and Bacos, 1964.
- [4] M. Marcus and M. Newman, unpublished paper.
- [5] J. Maxfield and H. M, "A doubly stochastic matrix equivalent to a given matrix", Notices Amer. Math. Soc. 9 (1962), 309.
- [6] R. Sinkhorn, "A relationship between arbitrary positive matrices and doubly stochastic matrices", Ann. Math. Statist. 35 (1964, 876-879.