

B. Satyanarayana, Associate Professor, Acharya Nagarjuna University, Nagarjuna Nagar, India,

drbsn63@yahoo.co.in

Mohammad Mastan, Teacher Fellow, Acharya Nagarjuna University, Nagarjuna Nagar, India,

chanmastan2009@gmail.com

Abstract: In this article authors introduced the notion of f – derivation, (left - right) – f – derivation, (right – left) – f – derivation and regular f –derivations of an e-commutative BF₁-algebra and some related properties have been investigated.

Keywords — BF_1 – algebra, e-commutative BF_1 – algebra, derivation, f-derivation, left – right and right-left derivations.

I. INTRODUCTION

The classical result of Posner [12], which states that the existence of a non zero centralizing derivation on prime ring implies that the ring has to be commutative, made a great impact on the research work related to derivations of prime and semi prime rings. This result attracted many researchers and was subsequently extended in a number of ways. The concept of reverse derivations of prime rings was introduced by Bresar and Vukman [19]. Relations between derivations and reverse derivations with examples were given by Samman and Alyamani [21]. Recently great deal of work done by many authors on commutativity and centralizing mappings on prime rings and semi prime rings in connection with derivations, skew derivations, reverse derivations, skew reverse derivations. Vukman [16], Mohammad Ashraf [20], have studied the concepts of Symmetric biderivations in prime rings and semi prime rings. Ajda Fosner [1], Faiza Shujat and Abuzaid Ansari [13], Basudeb Dhara and Faiza Shujat [6] have extended and studied the concepts of symmetric skew 3-derivations, 4-derivations and *n*-derivations. Recently Jayasubba Reddy, Vijay Kumar and Hemavati [11], has studied the concepts of symmetric skew reverse derivations.

Jun and Xin [26] have applied the concept of derivation in BCI-algebras, similar to that of derivation in rings and near rings. After this work, many articles have come up with new ideas like (left–right), (right-left)-derivations, regular derivations, *f*-derivations on BCI-algebras [14]. In 2007, Andrez Walendiziak [2] introduced the notion of BF, BF₁ and BF₂ – algebras, which is generalization of Balgebras [15]. Satyanarayana and Mastan [3]- [5] extended their study on BF-algebras with BG-[10], BH-[25], BM-[8], BN-[9], BP-[22]- [23], QS-[24], B-[15], and G-algebra [7]. Inspired by the above works the authors introduced the notion of *f*-derivations of an e-commutative BF₁-algebra and proved related theorems, which may be a contribution to the theory of *propositional calculi*, [17]-[18].

Throughout this article, authors used the notations D: e*(e*x)=x, E: x*(e*y)=y*(e*x), F: y*(y*x)=x, G: (e*x)*(e*y)=y*x=e*(x*y), $(BF_I)^e$: X is an e – commutative BF_I -algebra, Δ : derivation, $(l,r)-\Delta$: (l,r)-derivation, $(r,l)-\Delta: (r,l)$ -derivation and f:endomorphism on X, for all $x, y, z \in X$ and for any fixed $e \in X$.

II. PRELIMINARIES

Definition 3.1. [2, definition 2.1] The algebraic structure (X, *, e) is said to be *BF* - *algebra*, if it satisfies the identities (*I*) x * x = e, (*II*) x * e = x, (*BF*) e * (x * y) = y * x, for all $x, y \in X$ and for any fixed $e \in X$.

Definition 3.2. [2, definition 2.7] A *BF* - algebra is called a *BF*₁ - *algebra*, if it obeys(*BG*): (x*y)*(e*y)=x, for all *x*, *y* \in *X*.

Definition 3.3. [2, definition 2.7] A BF – algebra is called BF_2 -algebra, if it obeys (BH): x * y = e = y * x implies that x = y, for all $x, y \in X$.

Definition 3.4. [3, definition 2.4] Let X be a non-empty set equipped with a binary operation "*" and fixed element "e". Then the algebraic structure (X,*,e) is said to be e - commutative, if it satisfies the axiom x*(e*y) = y*(e*x), for all $x, y \in X$

Definition 3.5. [3, definition 2.5] The BF_1 - algebra (X,*,e) is said to be e - *commutative* BF_1 - algebra if it satisfies the axiom x*(e*y) = y*(e*x), for all $x, y \in X$.

Proposition 3.6. [3, proposition 3.5] If (X,*,e) is an e – commutative BF_i – algebra then (e*x)*y = (e*y)*x, $\forall x, y \in X$.

Proposition 3.7. [3, proposition 3.2] Let (X,*,e), for any fixed $e \in X$ be a BF_I – algebra. Then X is an $(BF_I)^e$ if and only if (e * x) * (e * y) = y * x = e * (x * y), for all $x, y \in X$.

Definition 3.8. [3, definition 3.6] Let (X,*,e) is an $(BF_1)^e$. Then the partial order " \leq " is defined as $x \leq y$ if and only if x*y=e, for all $x, y \in X$ and $x \wedge y$ is defined as, $x \wedge y = y*(y*x)$, for all $x, y \in X$.

Definition 3.9. [5, definition 3.7] Let (X,*,e) is an $(BF_I)^e$. A self map $\Delta: X \to X$ is said to be $(l,r) - \Delta$ of X, if it satisfies the identity $\Delta(x*y) = (\Delta(x)*y) \land (x*\Delta(y))$, for all $x, y \in X$.

Definition 3.10. [5, definition 3.8]Let (X, *, e) is an $(BF_I)^e$. A self map $\Delta: X \to X$ is said to be $(r, l) - \Delta$ of X if, it satisfies the identity $\Delta(x*y) = (x*\Delta(y)) \land (\Delta(x)*y)$ for all $x, y \in X$.

Definition 3.11. [5, definition 3.9] Let (X, *, e) is an $(BF_l)^e$. A self map $\Delta: X \to X$ is said to be a derivation of X if, it is both $(l, r) - \Delta$ and $(r, l) - \Delta$ of X.

Proposition 3.12. [10, Lemma 2.4] Cancellation Laws holds well in BG – algebra.

Proposition 3.13. [3, Lemma 4.1] Cancellation Laws holds well in an $(BF_I)^e$.

Definition 3.14. Let (X, *, e) is an $(BF_I)^e$. A self map $\Delta_f : X \to X$ is said to be a regular f - derivation of X, if $\Delta_f(e) = e$, where e is any fixed element of X.

Definition 3.15. Let (X, *, e) is an $(BF_I)^e$. A self map $\Delta_f : X \to X$ is said to be a $(l, r) - f - \Delta$ of X, if $\Delta_f(x * y) = (\Delta_f(x) * f(y)) \land (f(x) * \Delta_f(y)), \forall x, y \in X.$

Definition 3.16. Let (X, *, e) is an $(BF_I)^e$. A self map $\Delta_f: X \to X$ is said to be a $(r,l)-f - \Delta$ of X, if $\Delta_f(x * y) = (f(x)*\Delta_f(y)) \land (\Delta_f(x) * f(y)), \forall x, y \in X.$

Definition 3.17. Let (X, *, e) is an $(BF_I)^e$. A self map $\Delta_f : X \to X$ is said to be a f-derivation of X if, Δ_f is both $(l,r)-f-\Delta$ and $(r,l)-f-\Delta$ of X.

Example 3.18. Let $X = \{e, a, b, c\}$ and * be the binary operation defined on X as shown below.

*	0	1	2	3
0	0	1	3	2
1	1	0	2	3
2	2	3	0	1
3	3	2	1	0

Define a map $\varDelta_f : X \to X$ such that

$$\varDelta_{f}(x) = \begin{cases} 1, & \text{if } x = 0 \\ 0, & \text{if } x = 1 \\ 3, & \text{if } x = 2 \\ 2, & \text{if } x = 3 \end{cases}, \ f(x) = \begin{cases} 0, & \text{if } x = 0 \\ 1, & \text{if } x = 1 \\ 2, & \text{if } x = 2 \\ 3, & \text{if } x = 3 \end{cases}$$

Then one can easily verify that Δ_f is a f - derivation of

X, where $f: X \to X$ is an endomorphism on X.

Remark 3.19. From example 3.18, it is evident that Δ_f is not a regular f - derivation of X, as $\Delta_f(0) \neq f(0)$.

IV. RESULTS ON (l, r) - f, (r, l) - f AND f- DERIVA -TIONS OF AN e-COMMUTAIVE BF₁-ALGEBRA

Proposition 4.1. Let (X, *, e) is an $(BF_I)^e$. If Δ_f : $X \to X$ is a $(l,r) - f - \Delta$ of X then $\Delta_f(x * y) = \Delta_f(x)$ $*f(y), \forall x, y \in X$. **Proof:** Since $\Delta_f : X \to X$ is a $(l,r) - f - \Delta$ of X then, $\Delta_f(x * y) = (\Delta_f(x) * f(y)) \land (f(x) * \Delta_f(y))$ $= (f(x) * \Delta_f(y)) * ((f(x) * \Delta_f(y)) * (\Delta_f(x) * f(y)))$ $= e * (((f(x) * \Delta_f(y)) * (\Delta_f(x) * f(y))) * (e * (f(x) * \Delta_f(y)))$ $= (e * ((f(x) * \Delta_f(y)) * (f(x) * \Delta_f(y))) * (e * (f(x) * \Delta_f(y)))$ $= ((\Delta_f(x) * f(y)) * (f(x) * \Delta_f(y)) * (e * (f(x) * \Delta_f(y))))$ $= \Delta_f(x * y) = \Delta_f(x) * f(y), \forall x, y \in X$.

Corollary 4.2. Let (X, *, e) is an $(BF_I)^e$. If $\Delta_f : X \to X$ is a $(l, r) - f - \Delta$ of X then $\Delta_f(e * x) = \Delta_f(e) * f(x), \forall x \in X$.

Proof: Proof is straight forward by proposition 4.1.

Proposition 4.3 Let (X, *, e) is an $(BF_I)^e$. If Δ_f : $X \to X$ is a $(r,l) - f - \Delta$ of X.then $\Delta_f(x * y) = f(x)$ $* \Delta_f(y), \forall x, y \in X.$

Proof: Proof is similar to the proof of the proposition **4.1**.

Corollary 4.3. Let (X, *, e) is an $(BF_I)^e$. If Δ_f : $X \to X$ is a $(r, l) - f - \Delta$ of X. Then $\Delta_f(e * x) = e * \Delta_f(x), \forall x \in X$.

Proof: Proof is straight forward by proposition 4.3.

Remark 4.3. Let (X, *, e) is an $(BF_I)^e$. If $\Delta_f : X \to X$ is a f-derivation of X then $\Delta_f(x * y) = \Delta_f(x) * f(y) = f(x) * \Delta_f(y), \forall x, y \in X.$

Proposition 4.4. Let (X, *, e) is an $(BF_I)^e$. If Δ_f : $X \to X$ is a $(r,l)-f - \Delta$ of X then $(e * f(x)) * \Delta_f(y) =$ $(e * f(y)) * \Delta_f(x), \forall x, y \in X.$

 $\begin{array}{l} \textbf{Proof: Since}\left(X,*,e\right) \text{ is an } e\text{-commutative } BF_{I}-\text{algebra}\\ \text{then } (e*x)*y=(e*y)*x\,, \ \forall x,y\in X.\\ (e*f(x))*\varDelta_{f}(y)=(f(e)*f(x))*\varDelta_{f}(y)=f(e*x)*\varDelta_{f}(y)\\ =\varDelta_{f}((e*x)*y)=\varDelta_{f}((e*y)*x)=f(e*y)*\varDelta_{f}(x)\\ =(f(e)*f(y))*\varDelta_{f}(x)=(e*f(y))*\varDelta_{f}(x).\\ \text{Hence, } (e*f(x))*\varDelta_{f}(y)=(e*f(y))*\varDelta_{f}(x), \forall x,y\in X. \end{array}$

Proposition 4.5. Let (X,*,e) is $\operatorname{an}(BF_I)^e$ and Δ_f be the $(r,l)-f-\Delta$ of X. Then $\Delta_f(x)=e*(e*\Delta_f(x)), \quad \forall x \in X$. **Proof:** Since $\Delta_f: X \to X$ be the $(r,l)-f-\Delta$ on an e-c commutative BF_I – algebra (X,*,e), then $e*(e*x) = x, \forall x \in X$. Consider, $e*(e*\Delta_f(x)) = e*(f(e)*\Delta_f(x)) = e*\Delta_f(e*x)) = f(e)*\Delta_f(e*x)) = \Delta_f(e*(e*x)) \Delta_f(x)$. Hence, $e*(e*\Delta_f(x)) = \Delta_f(x), \quad \forall x \in X$.

Proposition 4.6. Let $\Delta_f : X \to X$ be the $(r,l) - f - \Delta$ of an e - commutative BF_l - algebra (X, *, e). Then f(x) * $(e * \Delta_f(y)) = f(y) * (e * \Delta_f(x)), \forall x, y \in X$. **Proof:** Since (X, *, e) is an e - commutative BF_l algebra, then $x * (e * y) = y * (e * x), \forall x, y \in X$. Consider, $f(x) * (e * \Delta_f(y)) = f(x) * (f(e) * \Delta_f(y))$ $= f(x) * \Delta_f(e * y)) = \Delta_f(x * (e * y)) = \Delta_f(y * (e * x))$ $= f(y) * \Delta_f(e * x)) = f(y) * (f(e) * \Delta_f(x)) = f(y) * (e * \Delta_f(x))$. Hence, $f(x) * (e * \Delta_f(y)) = f(y) * (e * \Delta_f(x)), \forall x, y \in X$.

Proposition 4.7. Let $\Delta_f : X \to X$ be the $(l,r) - f - \Delta$ of an e - commutative BF_l - algebra (X, *, e). Then f(x)* $(e*\Delta_f(y)) = f(y)*(e*\Delta_f(x)), \forall x, y \in X$. Proof: Since (X, *, e) is an e- commutative BF_l algebra then $\forall x, y \in X, x*(e*y) = y*(e*x)$. Consider, $f(x)*(e*\Delta_f(y)) = \Delta_f(y)*(e*f(x))$ $= \Delta_f(y)*(f(e)*f(x)) = \Delta_f(y)*(f(e*x)) = \Delta_f(y)*(e*(e*x)))$ $= \Delta_f(x)*(e*\Delta_f(y)) = f(y)*(e*\Delta_f(x)), \forall x, y \in X.$ $\therefore f(x)*(e*\Delta_f(y)) = f(y)*(e*\Delta_f(x)), \forall x, y \in X.$ $\therefore f(x)*(e*\Delta_f(y)) = f(y)*(e*\Delta_f(x)), \forall x, y \in X.$ $= \Delta_f(x) = (\Delta_f(x) + (\Delta_f(x))) = \Delta_f(y) + (E*\Delta_f(x)), \forall x, y \in X.$

Theorem 4.8. Let $\Delta_f : X \to X$ be the f derivation of an e - commutative BF_I - algebra (X, *, e). Then $f(x)*(e*\Delta_f(y)) = f(y)*(e*\Delta_f(x)), \forall x, y \in X$.

Proof: Combining the proofs of proposition 4.6 and proposition 4.7, the theorem can be proved.

Proposition 4.9. Let (X,*,e) is an $(BF_I)^e$ and Δ_f be the f derivation of X. Then $(e*\Delta_f(x))*f(y) = (e*\Delta_f(y))$ * $f(x), \forall x, y \in X$. **Proof:** Since (X,*,e) is an e – commutative BF_I – algebra then (e*x)*y = (e*x)*y, $\forall x, y \in X$. Consider, $(e*\Delta_f(x))*f(y) = (f(e)*\Delta_f(x))*f(y)$ $= \Delta_f(e*x))*f(y) = \Delta_f((e*x))*y) = \Delta_f((e*y))*x)$ $= \Delta_f((e*y))*x) = \Delta_f(e*y)*f(x)$ $= (f(e)*\Delta_f(y))*f(x) = (e*\Delta_f(y))*f(x)$. Hence, $(e*\Delta_f(x))*f(y) = (e*\Delta_f(y))*f(x), \forall x, y \in X$.

Proposition 4.10. Let (X,*,e) is an $(BF_I)^e$ and Δ_f be the $(l,r) - f - \Delta$ of X. Then $(\Delta_f(e)*f(x))*f(y) = (\Delta_f(e)*f(y))*f(y) = (\Delta_f(e)*f(y))*f(y) = \Delta_f(e*x)*f(y) = \Delta_f(e*x)*f(y) = \Delta_f((e*x)*y) = \Delta_f((e*y)*x) = \Delta_f(e*y)*f(x) = (\Delta_f(e)*f(y))*f(x)$. Hence, $(\Delta_f(e)*f(y))*f(x)$. Hence, $(\Delta_f(e)*f(x))*f(y) = (\Delta_f(e)*f(y))*f(x), \forall x, y \in X$.

Proposition 4.11. Let (X, *, e) is an $(BF_1)^e$ and Δ_f be the f derivation of *X*. Then $(e * \Delta_f(x)) * (e * \Delta_f(y))$ $= \Delta_f(y) * \Delta_f(x) = e * (\Delta_f(x) * \Delta_f(y))$ if and only if $\Delta_f(x)*(e*\Delta_f(y)) = \Delta_f(y)*(e*\Delta_f(x)), \,\forall x, y \in X.$ **Proof:** Suppose that $(e * \Delta_f(x)) * (e * \Delta_f(y)) = \Delta_f(y)$ * $\Delta_f(x) = e * (\Delta_f(x) * \Delta_f(y)), \forall x, y \in X \text{ holds good.}$ Consider, $\Delta_f(x) * (e * \Delta_f(y)) = e * ((e * \Delta_f(y)) * \Delta_f(x)))$ $\therefore \Delta_f(x) * (e * \Delta_f(y)) = \Delta_f(y) * (e * \Delta_f(x)), \forall x, y \in X.$ Conversely, suppose that $\Delta_f(x) * (e * \Delta_f(y)) = \Delta_f(y) * (e$ $*\Delta_f(x)$), $\forall x, y \in X$, holds good. Consider, $(e * \Delta_f(x)) * (e * \Delta_f(y)) = \Delta_f(y) * (e * (e * \Delta_f(x)))$ $= \varDelta_f(y) \ast \varDelta_f(x) = e \ast (\varDelta_f(x) \ast \varDelta_f(y))$ $\therefore (e * \varDelta_f(x)) * (e * \varDelta_f(y)) = \varDelta_f(y) * \varDelta_f(x)$ $= e * (\Delta_f(x) * \Delta_f(y)), \forall x, y \in X.$

Proposition 4.12. Let (X, *, e), for any fixed $e \in X$ be an e – commutative BF_I – algebra and $\Delta_f : X \to X$ is a $(l,r)-f-\Delta$ of X. Then (1) $\Delta_f(a) = \Delta_f(e)*(e * f(a))$, $\forall a \in X$, (2) $\Delta_f(a) = f(a)*(e * \Delta_f(e))$, $\forall a \in X$, if X is an e - commutative BF_I – Algebra, (3) $\Delta_f(a) = f(a)$ if $\Delta_f(e) = e$, where f is an Endomorphism on X.

Proof:

Definition 4.13. Let (X, *, e) is an $(BF_I)^e$. If $\Delta_f^{\ l}, \Delta_f^{\ 2}$ be the two f - derivations of X then we define $(\Delta_f^{\ l} \wedge \Delta_f^{\ 2})(x) = \Delta_f^{\ l}(x) \wedge \Delta_f^{\ 2}(x), \forall x \in X.$

Proposition 4.14. If
$$\Delta_f^{-1}, \Delta_f^{-2}$$
 be the two $(l,r) - f - \Delta$ of
an e – commutative BF_l – algebra $(X, *, e)$. Then
 $\Delta_f^{-1} \wedge \Delta_f^{-2}$ is also a $(l,r) - f - \Delta$ of X .
Proof: To prove that $(\Delta_f^{-1} \wedge \Delta_f^{-2})(x*y) = (\Delta_f^{-1} \wedge \Delta_f^{-2})(x) * f(y), \forall x, y \in X$.
Consider, $(\Delta_f^{-1} \wedge \Delta_f^{-2})(x*y) = \Delta_f^{-1}(x*y) \wedge \Delta_f^{-2}(x*y)$
 $= (\Delta_f^{-1}(x) * f(y)) \wedge (\Delta_f^{-2}(x) * f(y))$
 $= (\Delta_f^{-2}(x) * f(y)) * ((\Delta_f^{-2}(x) * f(y))) * (\Delta_f^{-1}(x) * f(y)))$
 $= ((\Delta_f^{-2}(x) * f(y)) * (e*((\Delta_f^{-1}(x) * f(y)))) * ((\Delta_f^{-2}(x) * f(y)))) * (e*(\Delta_f^{-2}(x) * f(y)))) * (e*(\Delta_f^{-2}(x) * f(y))))$
 $= ((\Delta_f^{-1}(x) * f(y)) * (\Delta_f^{-2}(x) * (\Delta_f^{-2}(x) * \Delta_f^{-1}(x))) * f(y))$
 $= (\Delta_f^{-1}(x) \wedge \Delta_f^{-2}(x)) * f(y) = (\Delta_f^{-1} \wedge \Delta_f^{-2})(x) * f(y)$
Hence, $(\Delta_f^{-1} \wedge \Delta_f^{-2})(x*y) = (\Delta_f^{-1} \wedge \Delta_f^{-2})(x) * f(y), \forall x, y \in X.$
 $\therefore \Delta_f^{-1} \wedge \Delta_f^{-2}$ is also a $(l, r) - f - \Delta$ of X .

Proposition 4.15. If $\Delta_f^{\ l}, \Delta_f^{\ 2}$ be the two $(r,l) - f - \Delta$ of an e – commutative BF_l – algebra(X, *, e). Then $\Delta_f^{\ l} \wedge \Delta_f^{\ 2}$ is also a $(r,l) - f - \Delta$ of X.

Proof: Proof is similar to the proof of the proposition 4.14.

Theorem 4.16. If $\Delta_f^{\ l}$, $\Delta_f^{\ 2}$ be the two f derivations of an e – commutative BF_I – algebra (X, *, e). Then $\Delta_f^{\ l} \wedge \Delta_f^{\ 2}$ is also a derivation of X.

Proof: Combining the proofs of proposition 4.14 and proposition 4.15, the theorem can be proved.

Definition 4.17. Let (X,*,e) is an $(BF_I)^e$ and $\Delta_f^{-1}, \Delta_f^{-2}$ be two derivations of X. Then the composition mapping of Δ_f^{-1} and Δ_f^{-2} is denoted by $\Delta_f^{-1} o \Delta_f^{-2}$ and is defined as, $(\Delta_f^{-1} o \Delta_f^{-2})(x) = \Delta_f^{-1} (\Delta_f^{-2}(x))$, where f is an endomorphism on X.

Proposition 4.18. Let (X,*,e) is an $(BF_I)^e$ and $\Delta_f^{-1}, \Delta_f^{-2}$ be the two $(l,r) - f - \Delta s$ of an e – commutative BF_I – algebra X. Then $(\Delta_f^{-1}o \Delta_f^{-2})(x*y) = (\Delta_f^{-1}o \Delta_f^{-2})(x)*$ $f^2(y), \forall x, y \in X$, where f is an endomorphism on X. **Proof:** Since $\Delta_f^{-1}, \Delta_f^{-2}$ be the two $(l,r) - f - \Delta$ of an e – commutative BF_I – algebra (X,*,e) then $\Delta_f^{-1}(x*y)$ $= \Delta_f^{-1}(x)*f(y), \forall x, y \in X$ and $\Delta_f^{-2}(x*y) = \Delta_f^{-2}(x)*$ $f(y), \forall x, y \in X$. Consider, $(\Delta_f^{-1}o \Delta_f^{-2})(x*y) = \Delta_f^{-1}(\Delta_f^{-2}(x))*f(f(y))$ $= (\Delta_f^{-1}o \Delta_f^{-2})(x*y)*(fof)(y)$. Hence, $(\Delta_f^{-1}o \Delta_f^{-2})(x*y) = (\Delta_f^{-1}o \Delta_f^{-2})(x)*f^2(y), \forall x, y \in X$.

Remark 4.19. From proposition 4.18, it is clear that $\Delta_f^{\ l} o \Delta_f^{\ 2}$ is not a $(l,r) - f - \Delta$ of X. But if $f^2(x) = f(x), \forall x \in X$, then $\Delta_f^{\ l} o \Delta_f^{\ 2}$ is a $(l,r) - f - \Delta$ of X.

Proposition 4.20. Let $\Delta_f^{\ l}, \Delta_f^{\ 2}$ be the two $(r,l) - f - \Delta$ of an *e*-commutative BF_l -algebra (X, *, e). Then $(\Delta_f^{\ l} o \Delta_f^{\ 2})$ $(x*y) = f^2(x)*(\Delta_f^{\ l} o \Delta_f^{\ 2})(y), \quad \forall x, y \in X$, where *f* is an endomorphism on *X*. **Proof:** Similar to the proof of the proposition 4.18.

Remark 4.21. From proposition 4.20, it is clear that $\Delta_f{}^l o \Delta_f{}^2$ is not a $(r,l)-f-\Delta$ of X. But if $f^2(x) = f(x), \forall x \in X$, then $\Delta_f{}^l o \Delta_f{}^2$ is a $(r,l)-f-\Delta$ of X.

Theorem 4.22. Let $\Delta_f^{\ l}, \Delta_f^{\ 2}$ be the two derivations of a BF_I – algebra (X, *, e). Then the composition mapping $\Delta_f^{\ l} o \Delta_f^{\ 2}$ is also a derivation of X, if $f^2(x) = f(x)$, $\forall x \in X$, where f is an endomorphism on X.

Proof: The proof can be easily obtained by combining the proofs of proposition 4.18 and proposition 4.20.

Definition 4.23. Let(X, *, e) be an e – commutative BF_1 – algebra and Δ_f be the f – derivation of X. Define $\Delta^2_f : X \to X \text{ such that } \Delta^2_f(x) = (\Delta_f o \Delta_f)(x) = \Delta_f(\Delta_f f)(x), \forall x \in X, \text{ where } f \text{ is an endomorphism on } X.$

Theorem4.24. Let Δ_f be the $(l,r) - f - \Delta$ of an e-commutative BF_I - algebra (X, *, e). Then $\Delta^2_f(x * y) = \Delta^2_f(x) * f^2(y), \forall x, y \in X$.

Proof: Consider, $\Delta_f^2(x * y) = (\Delta_f o \Delta_f) (x * y) = \Delta_f (\Delta_f (x * y)) = \Delta_f (\Delta_f (x) * f(y)) = \Delta_f (\Delta_f (x)) * f(f(y)) = (\Delta_f o \Delta_f) (x) * (fof) (y) = \Delta_f^2(x) * f^2(y).$ $\therefore \Delta_f^2 f(x * y) = \Delta_f^2(x) * f^2(y), \forall x, y \in X.$

Remark 4.25. From proposition 4.24, it is clear that Δ^2_f is not a $(l,r)-f-\Delta$ of X. But if $f^2(x) = f(x), \forall x \in X$, then Δ^2_f is a $(l,r)-f-\Delta$ of X.

Theorem 4.26. Let Δ_f be the $(r,l)-f-\Delta$ of an e – commutative BF_l – algebra (X, *, e). Then $\Delta^2_f(x*y) = f^2(x)*\Delta^2_f(y), \forall x, y \in X$, where f is an endomorphism on X.

Proof: Consider, $\Delta^2_f(x*y) = (\Delta_f o \Delta_f)(x*y)$ $= \Delta_f(\Delta_f(x*y)) = \Delta_f(f(x)*\Delta_f(y)) = f(f(x))*\Delta_f(\Delta_f(y))$ $= f^2(x)*(\Delta_f o \Delta_f)(y) = f^2(x)*\Delta^2_f(y), \quad \forall x, y \in X.$ $\therefore \Delta^2_f(x*y) = f^2(x)*\Delta^2_f(y), \quad \forall x, y \in X.$

Remark 4.27. From proposition 4.26, it is clear that $\Delta^2 f$ is not a $(r,l)-f-\Delta$ of X. But if $f^2(x) = f(x), \forall x \in X$, then $\Delta^2 f$ is a $(r,l)-f-\Delta$ of X.

Remark 4.28. From proposition 4.24 and proposition 4.26, it is clear that Δ^2_f is not a derivation of X. But if $f^2(x)$ is End f(x), $\forall x \in X$, then Δ^2_f is a derivation of X.

Theorem 4.29. Let Δ_f be the *f* derivation of an e – commutative BF_I – algebra(X, *, e). Then $\Delta_f^2(x*y) = (\Delta_f of)(x) * (f o \Delta_f)(y), \quad \forall x, y \in X$, where *f* is an endomorphism on *X*. **Proof:** Consider, $\Delta_f^2(x*y) = (\Delta_f o \Delta_f)(x*y) = \Delta_f(\Delta_f)(x*y)$

 $(x * y)) = \Delta_f(f(x) * \Delta_f(y)) = \Delta_f(f(x)) * f(\Delta_f(y))$ $\therefore \Delta_f^2(x * y) = (\Delta_f of)(x) * (f o \Delta_f(y)), \forall x, y \in X.$

V. REGULAR DERIVATIONS OF AN *e* – COMMUTA -TIVE BF₁-ALGEBRA

Theorem 5.1. If $\Delta_f^{\ l}$, $\Delta_f^{\ 2}$ be the two regular $(r,l) - f - \Delta$ of an e – commutative BF_1 – algebra(X, *, e). Then $(\Delta_f^{\ l} \wedge \Delta_f^{\ 2})(x) = f(x),$ $\forall x \in X$, where f is an endomorphism on X. **Proof:** Since Δ_f^{l} , Δ_f^{2} are two regular $(r,l) - f - \Delta$ of an e - commutative BF_1 - algebra (X,*,e) then (i) $\Delta_{f}^{l}(e) = e_{h} \Delta_{f}^{2}(e) = e_{h} \text{ and } (\text{ii})(\Delta_{f}^{l} \wedge \Delta_{f}^{2})(x * y) = f(x)$ * $(\Delta_f^{\ l} \wedge \Delta_f^{\ 2})(y), \ \forall x, y \in X.$ Now, substituting y by e in (ii), $(\Delta_f^l \wedge \Delta_f^2)(x * e)$ $= f(x) * (\Delta_f^{\ l} \wedge \Delta_f^{\ 2})(e),$ $\Rightarrow (\Delta_f^l \wedge \Delta_f^2)(x) = f(x) * (\Delta_f^l(e) \wedge \Delta_f^2(e))$ = f(x)*(e*(e*e)) = f(x)*e = f(x).Hence, $(\Delta_f^1 \wedge \Delta_f^2)(x) = f(x), \forall x \in X.$

Proposition 5.2. Let $\Delta_f : X \to X$ be a self map of an e – commutative BF_l – algebra (X, *, e). If Δ_f is regular $(l, r) - f - \Delta$ then $\Delta_f(x) \le f(x) \ \forall x \in X$.

Proof: Since $\Delta_f : X \to X$ is regular $(l,r) - f - \Delta$ of X then from proposition 4.1, $\Delta_f(x * y) = \Delta_f(x) * f(y)$, $\forall x, y \in X$. Consider, $\Delta_f(e) = e \Rightarrow \Delta_f(x * x) = \Delta_f(e)$ $\Rightarrow \Delta_f(x) * f(x) = e \Rightarrow \Delta_f(x) \le f(x)$, using the definition 3.8, $\forall x \in X$.

Proposition 5.3. Let $\Delta_f : X \to X$ be a self map of an e – commutative BF_I – algebra (X, *, e). If Δ_f is regular $(r,l)-f - \Delta$ of X then $f(x) \le \Delta_f(x), \forall x \in X$. **Proof:** Proof is similar to the proof of the proposition 5.2.

Theorem 5.4. Let $\Delta_f : X \to X$ be a self map of an e – commutative BF_I – algebra (X, *, e). If Δ_f is regular f – derivation of X then $\Delta_f(x) = f(x), \forall x \in X$.

Proof: Combining the proofs of the proposition 5.2 & proposition 5.3, the theorem can be proved. Alternatively if, Δ_f is regular $(r,l) - f - \Delta$ of X then $\Delta_f(x) = \Delta_f(x * e) = f(x) * \Delta_f(e) = f(x) * e = f(x)$. Hence, $\Delta_f(x) = f(x), \forall x \in X$.

Proposition 5.5. Let (X, *, e), for any fixed $e \in X$ is an e – commutative BF_1 – algebra and $\Delta_f : X \to X$ be a $(l, r) - f - \Delta$ of X. Then $\Delta_f(x) = \Delta_f(x) \wedge f(x), \forall x \in X$ if and only if Δ_f is regular on X.

Proof: Given that $\Delta_f : X \to X$ be a $(l,r) - f - \Delta$ of X and $\Delta_f(x) = \Delta_f(x) \wedge f(x), \forall x \in X$. Let x = e, then $\Delta_f(e) = \Delta_f(e) \wedge f(e) = e \wedge e = e$. Therefore, $\Delta_f(e) = e$.

Conversely, suppose that $\Delta_f(e) = e, e \in X$. Consider, $\Delta_f(x) = \Delta_f(x * e) = (\Delta_f(x) * f(e)) \land (f(x) * \Delta_f(e))$ $= (\Delta_f(x) * e) \land (f(x) * e) = \Delta_f(x) \land f(x)$. Hence, if $\Delta_f(e) = e$, then $\Delta_f(x) = \Delta_f(x) \land f(x), \forall x \in X$.

Proposition 5.6. Let (X, *, e), for any fixed $e \in X$. be an e– commutative BF_I – algebra and $\Delta_f : X \to X$ b be a $(r,l)-f-\Delta$ of X. Then $\Delta_f(x)=f(x)\wedge\Delta_f(x)$, $\forall x \in X$ if and only if Δ_f is regular on X. **Proof:** Proof is similar to the proof of proposition 5.5

Theorem 5.7. Let Δ_f be the regular f derivation of an e – commutative BF_I – algebra (X, *, e). Then $\Delta^2_f(x) = (\Delta_f of)(x), \forall x, y \in X.$

Proof: Since Δ_f is the f derivation of an e – commutative BF_I – algebra X then $\Delta_f(e) = e$ and $\Delta_f^2(x * y) = (\Delta_f of)(x) * (fo\Delta_f)(y), \forall x, y \in X$. Now replacing y by $e, \Delta_f^2 f(x * e) = (\Delta_f of)(x) * (fo\Delta_f)(e) = (\Delta_f of)(x)$ $* f(\Delta_f(e)) = (\Delta_f of)(x) * f(e) = (\Delta_f of)(x) * e = \Delta_f(f(x))$ Hence, $\Delta_f^2 f(x) = (\Delta_f of)(x) \forall x \in X$.

Corollary 5.8. Let Δ_f be the regular f derivation of an e– commutative BF_I – algebra(X, *, e). Then $\Delta^n_f(x) = \Delta^{n-1}_f(f(x)), \quad n \in Z^+, \quad \forall x \in X,$ where f is an endomorphism on X.

Theorem 5.9. Let Δ_f be the regular f derivation of an e – commutative BF_1 – algebra (X, *, e). Then $\Delta^2_f(e) = e$, $\forall x \in X$, where f is an endomorphism on X.

Proof: Since Δ_f is the regular f derivation of X, then Engine $\Delta_f(e) = e$ and from theorem 5.7, $\Delta^2_f(x) = (\Delta_f of)(x)$, **P** $\forall x \in X$. Now replacing x by e, $\Delta^2_f(e) = (\Delta_f of)(e) =$ ($\Delta_f(f(e)) = \Delta_f(e) = e \Rightarrow \Delta^2_f(e) = e$.

Theorem 5.10. Let (X, *, e), for any fixed $e \in X$ is an e – commutative BF_I – algebra and $\Delta_f : X \to X$ be the regular $(r, l) - f - \Delta$ of X. Then $\Delta^2_f(x) = f^2(x)$, $\forall x \in X$. **Proof:** Since $\Delta_f : X \to X$ is regular $(r, l) - f - \Delta$ of X, then $\Delta^2_f(x) = (\Delta_f o \Delta_f)(x) = \Delta_f(\Delta_f(x))$ $= \Delta_f(\Delta_f(x*e)) = \Delta_f(f(x)*\Delta_f(e)) = \Delta_f(f(x)*e) = = = (fof)(x)*e = f^2(x)$ Hence, $\Delta^2_f(x) = f^2(x)$, $\forall x \in X$. **Corollary 5.11** Let (X, *, e), for any fixed $e \in X$ is an e – commutative BF_l – algebra and $\Delta_f : X \to X$ be the regular $(r, l) - f - \Delta$ of X. Then $\Delta^n_f(x) = f^n(x), \forall x \in X$.

Corollary 5.12. Let Δ_f be the regular f derivation of an e – commutative BF_I – algebra (X, *, e). Then $\Delta^n_f(e) = e$, $n \in \mathbb{Z}^+$ i.e. $\Delta^n_f(x)$ is also a regular f derivation of X.

Proposition 5.13. Let $\Delta_f : X \to X$ be the regular $(r,l) - f - \Delta$ of an e – commutative BF_l – algebra (X, *, e). Then $e * (e * \Delta_f(e)) = e$.

Proof: Since $\Delta_f : X \to X$ be the $(r,l) - f - \Delta$ of an e – commutative BF_l – algebra (X, *, e), then from proposition 4.5, $e*(e*\Delta_f(x)) = \Delta_f(x), \forall x \in X$. Now taking x = e, $e*(e*\Delta_f(e)) = \Delta_f(e) = e$. Hence, $e*(e*\Delta_f(e)) = e$.

Corollary 5.14. Let (X, *, e) is an $(BF_I)^e$. If Δ_f : $X \to X$ is a regular $(l, r) - f - \Delta$ of X then $\Delta_f(e * x) = e * f(x), \forall x \in X$.

Proposition 5.15. Let $\Delta_f : X \to X$ be the regular $(r,l)-f-\Delta$ of an e - commutative BF_I - algebra (X, *, e). Then $\Delta_f(x) = f(x), \forall x \in X$.

Proof: Since $\Delta_f : X \to X$ is the regular $(r,l) - f - \Delta$ of an *e* - commutative BF_i - algebra (X, *, e), then from the proposition 4.11, $f(x)*(e*\Delta_f(y)) = f(y)*(e*\Delta_f(x))$, $\forall x, y \in X$. Now taking y by $e f(x)*(e*\Delta_f(e)) = f(e)*(e * \Delta_f(x)) \Longrightarrow f(x)*(e*e) = e*(e*\Delta_f(x))$

 $\Rightarrow \Delta_f(x) = f(x) * e \text{ Hence, } \Delta_f(x) = f(x), \forall x \in X.$

Proposition 5.16. Let $\Delta_f : X \to X$ is the regular $(l,r)-f-\Delta$ of an e – commutative BF_I – algebra (X, *, e). Then $\Delta_f(x) = f(x), \forall x \in X$, where f is an endomorphism on X.

Proof: Since $\Delta_f : X \to X$ is a $(l,r) - f - \Delta$ of an e – commutative BF_l – algebra (X, *, e), then from the proposition 4.11, $\Delta_f(x) * (e * f(y)) = \Delta_f(y) * (e * f(x))$, $\forall x, y \in X$. Now taking y by e, $\Delta_f(x) * (e * f(e)) = \Delta_f(e)$ $* (e * f(x)) \Rightarrow \Delta_f(x) * (e * e) = e * (e * f(x))$ $\Rightarrow \Delta_f(x) * e = f(x)$. Hence, $\Delta_f(x) = f(x), \forall x \in X$.

Theorem 5.17. Let $\Delta_f : X \to X$ be the regular f derivation of an e - commutative BF_I - algebra (X, *, e). Then $\Delta_f(x) = f(x), \forall x \in X$.

Proof: Combining the proofs of proposition 5.15 and proposition 5.16, the theorem can be proved.

Proposition 5.18. Let $\Delta_f : X \to X$ be the regular $(l, r) - f - \Delta$ of an e – commutative BF_l – algebra (X, *, e). Then $(e * f(x)) * f(y) = (e * f(y)) * f(x), \forall x, y \in X.$ **Proof:** Consider, $(e * f(x)) * f(y) = (\Delta_f (e) * f(x)) * f(y)$ $= \Delta_f (e * x) * f(y) = \Delta_f ((e * x) * y) = \Delta_f ((e * y) * x)$ $= \Delta_f (e * y) * f(x) = (\Delta_f (e) * f(y)) * f(x) = (e * f(y)) * f(x).$ Hence, $(e * f(x)) * f(y) = (e * f(y)) * f(x), \forall x, y \in X.$

Proposition 5.19. Let (X, *, e) be an $(BF_1)^e$ and Δ_f is a regular $(r,l)-f-\Delta$ of X. Then $\forall x, y \in X$, the following are true, where f is an endomorphism on X. (1) $e * \Delta_f(x) = e * \Delta_f(y) \Leftrightarrow \Delta_f(x) = \Delta_f(y).$ (2) $f(x) * \Delta_f(y) = e = f(y) * \Delta_f(x) \Leftrightarrow \Delta_f(x) = \Delta_f(y).$ (3) $e * \Delta_f(x) = \Delta_f(y) \Leftrightarrow x = e * \Delta_f(y)$. (4) $f(y) * (f(y) * \Delta_f(x)) = \Delta_f(x)$. **Proof:** (1) Let $e * \Delta_f(x) = e * \Delta_f(y)$ $\Leftrightarrow e^{*}(e^{*}\Delta_{f}(x)) = e^{*}(e^{*}\Delta_{f}(y))$ $\Leftrightarrow e * (f(e) * \Delta_f(x)) = e * (f(e) * \Delta_f(y))$ $\Leftrightarrow e * \Delta_f(e * x) = e * \Delta_f(e * y)$ $\Leftrightarrow f(e) * \Delta_f(e * x) = f(e) * \Delta_f(e * y)$ $\Leftrightarrow \varDelta_f(e^{*}(e^{*}x)) = \varDelta_f(e^{*}(e^{*}y))$ $\Leftrightarrow \Delta_f(x) = \Delta_f(y) \Leftrightarrow \Delta_f(x * e) = \Delta_f(y * e)$ $\Leftrightarrow f(x) * \Delta_f(e) = f(y) * \Delta_f(e)$ $\Leftrightarrow f(x) * e = f(y) * e \Leftrightarrow f(x) = f(y)$ (2) Let $f(x) * \Delta_f(y) = e \Rightarrow f(x) * \Delta_f(y) = f(y) * \Delta_f(y)$ $\Rightarrow f(x) = f(y)$, using RCL Again let $f(y) * \Delta_f(x) = e \Rightarrow f(y) * \Delta_f(x) = \Delta_f(x * x)$ $\Rightarrow f(y) * \Delta_f(x) = f(x) * \Delta_f(x) \Rightarrow f(x) = f(y)$, by RCL. Also if x = y then $f(x) = f(y) \Rightarrow f(x) * \Delta_f(y)$ $= f(x) * \Delta_f(x) = \Delta_f(x * x) = e$ and $f(y) * \Delta_f(x) = f(y) * \Delta_f(y) = \Delta_f(y * y) = e$. $\therefore f(x) * \Delta_f(y) = \Delta_f(e) = f(y) * \Delta_f(x) \Leftrightarrow x = y$ (3)Let $e * \Delta_f(x) = y \iff e * (e * \Delta_f(x)) = e * \Delta_f(y)$ $\Leftrightarrow \Delta_f(x) = e * \Delta_f(y).$ (4) Since $(X, *, e), e \in X$, is an e – commutative BF_{1} – algebra then $y * (y * x) = x, \forall x, y \in X$. $\Rightarrow f(y)*(f(y)*\Delta_f(x)) = f(y)*\Delta_f(y*x)$ $= \Delta_f(y \ast (y \ast x)) = \Delta_f(x).$ $\therefore f(y)*(f(y)*\Delta_f(x)) = \Delta_f(x), \forall x, y \in X.$

VI. CONCLUSION

Using the concepts of (l, r) and (r, l)-derivations, authors developed the new concepts such as (l, r)-f- and (r, l)-fderivations of *e*-commutative BF₁-algebra and further applied the concept of regularity to *f*-derivations, which is useful in future work to establish the concepts of generalized derivations, fuzzy derivations, fuzzy intuitionistic derivations and cubic derivations.

ACKNOWLEDGEMENT

The authors thanks the referees and editor-in-chief for their valuable suggestions for the improvement of this article and the second author thanks the University Grants Commission, Hyderabad, India, for supporting this research work under Faculty Development Programme, during XII plan.

REFERENCES

[1] A. Fosner, "Prime and semiprime rings with symmetric skew 3-derivations", *Aequationes Mathematicae*, Vol. 87, pp. 191-200, 2014.

[2] A. Walendziak, "On BF – algebras", *Mathematica Slovaca*, Vol. 57, pp. 119 – 128, 2007.

[3] B. Satyanarayana and M. Mastan, "On Cubic BF₁algebras", "unpublished".

[4] B. Satyanarayana and M. Mastan, "Relation between algebraic structures", in *Conf.2018 GJESR*, *Int. Conf. on Science, Engineering and Technology*, pp. 127–140.

[5] B. Satyanarayana and M. Mastan, "Derivations of *e*-commutative BF₁-algebra", *Journal of Computer and Mathematical Sciences*, Vol. 10, Issue 1, 2019, "to be published".

[6] B. Dhara and F. Shujat, "Symmetric skew *n*-derivations in prime and semi prime rings", *Southeast Asian Bull. of Mathematics*, pp. 1-9, 2017.

[7] B. Ravi Kumar and N. Ra, "On G – algebras", *Scientia Magna*, Vol. 8, pp. 1 – 7, 2012.

[8] C. B Kim and H. S. Kim, "On BM – Algebras", *Scientiae Mathematica Japonicae*, Vol. 63, pp. 421-427, 2006.

[9] C. B Kim and H. S. Kim, "On BN-algebras", *Kyungpook Mathematical Journal*, Vol. 53, pp. 175 – 184, 2013.

[10] C. B. Kim and H. S. Kim, "On BG – algebras", *Demonstratio Mathematica*, Vol. 41,pp. 497 – 505, 2008.

[11] C. Jayasubba Reddy, V. Vijaya Kumar and K. Hemavati, "Prime ring with symmetric skew 3-reverse derivation", *IJMCAR*, Vol. 4, pp. 69-73, 2014.

[12] E.C. Posner, "Derivations in prime rings", *American* .*Mathematical Society*, Vol. 8, pp. 1093-1100, 1957.

[13] F. Shujat, and A. Ansari, "Symmetric skew 4derivations on prime rings", *Journal of Mathematics and Computer Sciences*, Vol. 4, pp. 649-656, 2014.

[14] J. Zhan and Y. L. Liu, "On *f*-derivations of BCIalgebras", *Int. Jr. of Math. and Mathematical Sciences*, Vol. 11, pp. 1675-1684, May, 2005

[15] J. Neggers and H. S. Kim, "On B – algebras", *Math. Vesnik*, Vol. 54, pp. 21 – 29, 2002.

[16] J. Vukman, "Symmetric biderivations on prime and semiprime rings", *Aequationes Mathematicae*, Vol. 38, pp. 245-254, January, 1989.

[17] K. Iseki, "An Algebra related with a Propositional Calculus", *Proceedings of Japan Academy*, Vol. 42, pp. 26 – 29, January, 1966.

[18] K. Iseki, "On BCI – Algebras", *Mathematics Seminar Notes*, Vol. 8, pp. 125-130, 1980.

[19] M. Bresar and J. Vukman, "On some additive mappings in rings with involution", *Aequationes Mathematicae*, Vol. 38, pp. 178-185, 1989.

[20] M. Ashraf, "On symmetric biderivations in rings", *Rend. Institute of Mat. Univ. Trieste*, Vol. 31, pp. 25-36, 1999.

[21]M. Samman and N. Alyamani, "Derivations and Engineering Reverse Derivations", *International Math. Forum*, Vol. 2, pp. 1895-1902, 2007.

[22] N. Kandaraj and A.A. Devi, "*f*-derivations of BPalgebras", *Inter. Journal of Scientific and Research Publications*, Vol. 6, pp. 8-18, October 2016.

[23] S. S Ahn and J. S Han, "On BP – Algebras", *Hacettepe Journal of Mathematics and Statistics*, Vol. 42, pp. 551 – 557, 2013.

[24] S. S. Ahn and H. S. Kim, "On QS-algebras", *Journal of Chungcheong Mathematical Society*, Vol. 12, pp. 33–41, 1999.

[25] Y. B. Jun, E. H. Roh and H. S. Kim, "On BH-algebras", *Scientiae Mathematicae*, Vol. 1, pp. 347–354, 1998.

[26] Y. B. Xin and X. L. Xin, "On derivations of BCIalgebras", *Information Sciences*, Vol. 159, pp. 167-176, 2004.