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Abstract - A bijection O from the vertex set V of a graph G to {1,2,.....|V|} is called prime cordial labeling of G if each
edge uv is assigned the label 1 if ged(O (u),00 (v))=1 and 0 if ged(C (u),00 (v)) > 1 where the number of edges
labeled with 0 and the number of edges labeled with 1 differ atmost by 1. In this paper we exhibit prime cordial

labeling of a special type of graph P (a, b).
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. INTRODUCTION

Graph labeling is a strong relation between numbers and structure of graphs. Various labeling schemes have been introduced
so far and explored as well by many researchers.

A dynamic survey on different graph labeling problems with an extensive bibliography can be found in J.A.Gallian [4]. The
concept of cordial labeling was introduced by Cahit [3]. Sundaram et al. [7] introduced the concept of prime cordial labeling.
J.Basker Babujee [1,2] worked on prime cordial labeling on graphs . G.V.Ghodasara, J.P.Jena [5] established prime cordial
labeling for certain graphs. M.A.Seoud and M.A.Salim[6] determined upper bounds of prime cordial graphs.

Il. SOME DEFINITIONS
Definition 2.1

The graph labeling is an assignment of numbers to the vertices or edges or both subject to certain condition(s). If the domain
of the mapping is the set of vertices (edges) then the labeling is called a vertex labeling (edge labeling).

Definition 2.2
A mapping [ : V(G) —{0,1} is called binary vertex labeling of G and [ (V) is called the label of the vertex v of G under .
If for an edge e = uv, the induced edge labeling 1 *: E(G) —{0,1} is given by [J *(e) = | (u)-C1[] (v)|then we introduce
following notations.

Vi, (i) = number of vertices of G having label i under where i =0or 1

e (i )= number of edges of G having label i under [ *
A binary vertex labeling [ of a graph G is called a cordial labeling if Vo (0)-vs(1)<land|e;(0)-es (1)< 1.

Definition 2.3

A prime labeling of a graph G of order n is an injective function [1:V—{1,2,...n} such that for every pair of adjacent vertices u
and v, ged(™ (u), (v))=1. The graph which admits prime labeling is called a prime graph.

Definition 2.4

A bijection 71 from vertex set V(G)to { 1,2,3,... OV (G)10O01 ofagraph G is called a prime cordial labeling of G if for
each edge e=uv € E (G)

[*(e=uv)=1; if gcd(" (u), (v)=1
=0;if ged (L1 (u),l 111 (v))>1
andle ; (0)-e - (1)|< 1, wheree  (0)is the number of edges labeled with 0 and e ; (1) is the number of edges labeled with
1.
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1. MAIN RESULT

Definition 3.1

Let u and v be two fixed vertices. We connect u and v by means of “b” internally disjoint paths of length “a”. The resulting
graph is denoted by P(a,b)

Theorem 3.1
The graph P (3n+1,4m) has prime cordial labeling for some specific values of n and m.
Proof

We name the vertices of the graph P (3n+1,4m) as follows:

u1 2 u1,3 l"l1 4 % =

u2 2 u2,3 u2 4 b N

u} 2 l!3,3 l!3 4 = =
- A * -
l‘lztm,1 u4m,2 udm,3 u4m,4

This graph has 12mn+2 vertices and 12mn+4 edges.
Lete;s €y1, ... €4m1 e the edges joining the vertex ug with U; 3 Up g,...Usm 1 respectively

Similarly let €; 3141, €23n+1, - .- €aman+1 D€ the edges joining the vertex v with Uy an, U 3n, ... Usman respectively.
Let e ; j be the edge joining u ; ;.1 and u ; j for i=1,2,....4mand j=1,2,...3n+1.
Case 1
Graph P (3n+1,4m) has prime cordial labeling for
n=4,6,9,11,... and for m#2,4,7,9,...
Define [1: V(G) — {1,2,... 12mn+2} as follows:
[ (u) =6n (2m-1) + 2
[J(Vo)=6n(2m-1) +3
| (ui,j ) = 6n(| '1)"'2] -1
i =1.2,..2m-1
j=12,...3n
[ (Uzm, j) = 6n (2m-1)+2j-1 for j =1,3,4,5...3n
[ (Upmo) =12 nNm + 1
| (U i ):6n(| '2m'1)+2j
i =2m+1, 2m+2,... 4m-1
j=1,2,...3n
[ (Ugm1) = 12nm+2
[ (Usm, j )= 6N(2M-1)+2

j=2,3,...3n
Clearly, f is one- one. It is clear that,
D*(e i,j):]- i =1,2,...2m
j=1,2,3,...3n+1
O*(eij)=0 i =2m+1,2m+2,... 4m

i=1,23,...... ,3n+1
Ulen (0) —eq (D=0 11001
This shows that the graph P (3n+1,4m) has a prime cordial labeling for n=4,6,9,11,14,...
m+#2,4,7,9,12,...
Example 3.2
Prime Cordial Labeling of P (13,4)

250 | IJREAMV0411046053 DOI : 10.18231/2454-9150.2018.1315 © 2019, IJIREAM All Rights Reserved.



International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150  \V/GIR04; ISsUies10;Jan 2019

1 = = rd 9 11 13 15 17 19 21 23

o

- _,./-"/—
5 8 1012 1416 18 20 22 2*4;___,..#""
- - - - - - - - - o

—— “+

S0 28 30 32 34 36 38 40 42 44 45 4

e (0)=26 e (1) =26
Case 2
Graph P (3n+1,4m) has prime cordial labeling for
n=2,3,7,8,12,13,... and for m# 5,6,10,11,15,16,...
Define [ : V(G) [I{1,2,... 12mn+2} as follows:
L (up) =6n (2m-1) + 2
L (Vo) =6n (2m-1) + 3
O (uij)=6n(i-1)+2j-1
i=12..2m-1
j=12...3n
[ (Uam,j) = 6n (2m-1)+2j-1 for j=1,3,4,5...3n
U (Upmo) =12 nm + 1
U (u )=6n(i -2m-1)+2j
i =2m+1, 2m+2,... 4m-1
j=1.,2,...3n
L) (Ugm1) = 12nm+2
[ (Uam, j )= 6n(2M-1)+2

j=2,3,...3n

Clearly, [1 is one- one. It is clear that,

\ \*(e i’j)zl i= 1,2,...2m
j=1,2,3,...3n+1

\ \*(e i,j)=0 i = 2m+1,2m+2,...4m
j=1,2,3,...3n+1

Hles (0) —es (D=0 01001
This shows that the graph P(3n+1,4m)has a prime cordial labeling for n=2,3,7,8,12,13 ... and for
m #5,6,10,11,15,16, ...

Example 3.3
Prime cordial labeling of P(22,8)

— ™ — w o~ o
- o, ™o T SR g ngmﬁ ® o o 3
2B % d « w o = @ o = o o o @
F =¥ O B BH T R 5 FEERER S
“ mw;nm X @ = ™ n —
5 9 7 @ N~ o0 o 2 & oA 2 =N 9 g 8 un
@ & o m‘é}@ S o = = ™ ‘—4.—4-4_<::H _:.“ .
— ~ o = ~ — =
$m$3m$$w$$§ r B B s 3L S -
] 22 938 & X =335 - 5 Y5 a8 3 ge = X
= - —
+ v ® © o = S 9 =+ w0 S o~
~ ¥ S 9 3 AR 8N d &g . o0 ¥ -
b
N o 2 @ N F 9o o S o o
Bh v 3 88 FR T 2R g e =
o o o + o
2 o8 ¥ £ o gg§c=3~SSEESNN
8 & = o T 3 8 - =% 4 - @ = O oo =
-
= o © o + v o 2 o ®
2N IR gFFEEITIELEEFTEE BB 8 3F 8%
A T T R B R R - - s - o2 -
e (0)=88, e (1)=88

Case 3

Graph P (3n+1,4m) has prime cordial labeling for n=5, 10, 15... and for all m=1, 2, 3...
Define f: V (G) [ {1, 2... 12mn+2} as follows:

[J (Up) =6n (2m-1) + 2

[J (Vo) =6n (2m-1) + 3

7 (uij)=6n(i-1)+2j-1

251 | IJREAMV0411046053 DOI : 10.18231/2454-9150.2018.1315 © 2019, IJIREAM All Rights Reserved.



International Journal for Research in Engineering Application & Management (IJREAM)
ISSN : 2454-9150 Mol-04, Issue-10, Jan 2019

i=12..2m1
j=1,2..3n

) (Uam ;) =60 (2M-1)+2 -1 for j=1,34,5 ... 3n
O (Uvaz) =12nm+1

U (u

i )=6n(| -2m-1)+2 j
i =2m+1, 2m+2 ... 4m-1
j=1,2...3n

U (Ugmy1) = 12nm+2
O (Usm, j)= 6n(2M-1)+2

j =2,3...3n
Clearly, [ is one- one. It is clear that,
L *ei;)=1 i =12,..2m
j =1,2,3,... 3n+1
U *(e i,j) =0 i =2m+1,2m+2,... 4m
j =1,2,3,... 3n+1
Hles (0)—eq (D=0
This shows that the graph P(3n+1,4m)has a prime cordial labeling for n= 5,10,15,... and m=1,23, ...
Example 3.4

Prime cordial labeling of P (16, 8)
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