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ABSTRACT - Most of the studies on system reliability are based on failure rate models and assumes that components 

of the system are independent of one another. During the design phase of a product or System, reliability and cost 

become two important factors in reliability engineering. In this present paper an attempt has been made to optimize the 

reliability of a transport system where time-to-failure of each component follows the weibull distribution. So comparing 

the transport system with a series-parallel system, a multi-objective optimization model of maximizing the reliability 

and minimizing the total initial and maintenance cost of a public transport system has been formulated here. The 

number of components in the system and an initial budget are the constraints of the model. The formulated problem 

has been solved here using multi objective genetic algorithm (MOGA) and multi objective particle swarm optimization 

(MOPSO). Also LP norm strategy has been used to choose the best non-dominated solution from pareto optimal front. 

Finally a comparison has been given between the optimal designs of the transport system for different cases of shape 

parameters of weibull distribution. 

Keywords: Reliability, Series-Parallel System, Weibull Distribution, Multi-Objective Genetic Algorithm (MOGA), 

Multi-Objective Particle Swarm Optimization (MOPSO). 

I. INTRODUCTION 

From the very inception of history, human sensitivity has 

revealed an urge for mobility leading to a measure of 

society’s progress. For a country to develop with right 

momentum, modern and efficient transport system is a 

basic need.  

Transportation system is a network system that is 

composed of roadways, railways, waterways and airways. 

Among these, roadways play a vital role. Basically road 

transport is essential for the economic development, trade 

and social integration. It facilitates smooth conveyance of 

both people and goods. Due to easy accessibility and 

flexibility of operations, road transport has earned an 

increasingly higher share of passenger and freight traffic 

than other modes of transportation. So for continuing the 

economic progress, road transport reliability maintenance 

is necessary. 

Recently more and more reliability professionals have 

focused on the analysis 

and optimization of transport system reliability. 

Chunguang et al. [20] analyzed the reliability of urban 

transport system (road, street, bridge).  The performance 

reliability of road networks under non-recurrent congestion 

had been assessed by Yin [13]. In [12], Chae studied the 

system reliability using binomial failure rate. Chow [10] 

presented a linear mathematical framework for modeling 

and optimization of road transport facility operations and 

reliability maintenance. 

In general reliability optimization has received significant 

attention over the past few decades. The main aim of 

reliability engineering is to increase the system reliability. 

There are two ways to increase system reliability: 1) 

increase the reliability of components 2) uses of redundant 

components within subsystems. A majority of the work is 

devoted to solve redundancy allocation problems (RAP). 

Reliability-redundancy allocation problem (RRAP) is an 

optimization technique that seeks to maximize system 

reliability through redundancy allocation. To optimize 

RRAP, component reliabilities are denoted as continuous 

values that lie between zero and one, whereas redundancy 

levels are integer values. Thus RRAP is a mixed non-

linear integer programming problem with the goal of 

maximizing system reliability under different constraints. 

Series-parallel arrangement is one of the essential 

arrangements which have key role in many real world 

applications such as telecommunication systems, power 

systems, transport systems, satellite systems etc. In a series 

parallel arrangement, there are few subsystems operating 

in series and each subsystem consists of several 

components in parallel. Such an arrangement is called a 

series-parallel arrangement. Mishra in [1, 2] optimized the 

reliability of series-parallel system using Lagrange 

multiplier approach and maximum principle approach. Sun 
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et al. [3] proposed an efficient algorithm for nonlinear 

integer programming problems arising in series–parallel 

reliability systems. In this paper, transport system is 

compared with a series-parallel system. 

During the period of network design, a cost-benefit 

analysis should be performed to make some trade-off 

between the reliability improvement and the cost 

investment. So, researchers have not only focused on 

reliability maximization but also focused on cost 

minimization. Amara [11] suggested a cost optimization 

problem for series-parallel petroleum transportation pape-

lines under reliability constraints. In [4], Dogahe et al. 

proposed a new bi-objective model to optimize integrated 

redundancy allocation and reliability-centered 

maintenance problems in repairable system. A selective 

maintenance policy and redundancy allocation for series 

system is formulated by Gupta [5]. Safari [6] developed 

NSGA-II algorithm for multi-Objective reliability 

optimization of series parallel system with a choice of 

redundancy strategies. Also, in [8] Ardakan et al. proposed 

a GA approach for reliability optimization of series-

parallel systems with mixed redundancy strategy in 

subsystems. Huang [7] optimized reliability redundancy 

allocation problems with the help of particle-based 

simplified swarm optimization. Garg [9] also optimized a 

bi-objective optimization model of the reliability-

redundancy allocation problem for series parallel system 

using genetic algorithm and particle swarm optimization. 

The hazard function (also known as failure rate) is the 

frequency rate at which a system or component fails per 

unit time. In real life, there are different types of 

components whose failure rate are increasing, decreasing 

or constant in nature with respect to time. The weibull 

distribution has an ability to model the hazard functions 

that are increasing, decreasing or constant. So in this 

paper, based on a real life transport network, a multi-

objective optimization model is formulated where time to 

failure of each component follows weibull distribution. 

Two objective functions (reliability and cost) are 

considered here which are to be optimized. Cost function 

comprises of initial purchase cost and system maintenance 

cost. Here an initial budget is considered as a constraint. 

The problem has been solved using two different meta-

heuristic approaches (MOGA and MOPSO). As this is a 

multi-objective optimization problem, so it gives pareto 

front as a solution. Although pareto front is an interesting 

result, decision makers are fascinated to find a unique 

solution. So here a LP norm technique has been used to 

obtain a unique solution from all non-dominated solutions 

of pareto optimal front. No such work has been done so far 

using these approaches considering the transport system as 

a series-parallel network. 

This paper is organized in 7 sections. Section I starts with 

the introduction. Some preliminaries are defined in section 

II. Section III describes the formulation of a multi-

objective optimization problem. Genetic Algorithm (GA) 

and particle swarm optimization (PSO) are discussed in 

section IV. In section V these concepts are implemented 

for a real life transport system. Finally discussion and 

conclusions are provided in sections VI and VII 

respectively. 

Notations:                                                                                                                                                                                         

In this paper, the following notations have been used. 

m= number of subsystems. 

  =     subsystem. 

  = failure rate of      component. 

  = reliability of      subsystem. 

  = number of component in      subsystem. 

  = cost of      component. 

      = minimum number of component in      

subsystem. 

      = maximum number of component in      

subsystem. 

      = minimum reliability of a system 

 

II. PRELIMINARIES 

A. Basic Definitions: 

Definition 1: Reliability: Let the random variable X be the 

lifetime or the time to failure of a component. The 

probability that the component survives until a specified 

period of time t is called the reliability R(t) of the 

component: 

R (t) = P (X > t) = 1-F (t) 

Where, F is the distribution function of the component 

lifetime X. 

 For series system, the total system reliability: 

   (t) =   ( )  ( )      ( ) 

For parallel system, the system reliability is: 

R (t) = 1- [1-   ( )]. [1-  ( )]…………[1-   ( )] 

Where   (t) = reliability of the     component. 

Definition 2: Weibull distribution: The Weibull 

distribution describes the failure times of components 

when their failure rate either increases or decreases with 

time. 

The failure time density function of Weibull distribution is  

     f (t)= 
     

  
  (

 

 
) 

   , t ≥ 0,         

Where   is the scale parameter and   is the shape 

parameter of the distribution. 

Then the reliability function is  

                     R (t) =   (
 

 
) 

    , t ≥ 0 
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Definition 3: Non-dominated Pareto Optimal [18]: A 

vector      X is a pareto optimal if there does not exist 

another point xϵ X such that   (x)    ( 
 ) for all t =1, 

2,…., b (number of objectives) and   (x)    ( 
 ) for at 

least one s. Such solution is called non-dominated pareto 

optimal solution. 

Defintion 4: Pareto Set [18]: A set of non-dominated 

pareto optimal solutions {  |        } is said to be a 

pareto set. 

Definition 5: Pareto Front [18]: The set of vectors in the 

objective space that are images of elements of a pareto set 

i.e, {f (  )|        }. 

B. Reliability of a Series-Parallel network: 

A system is a set of components working together as parts 

of a mechanism or an interconnecting network. The 

components may be connected in series or parallel or both 

series & parallel. 

Series-Parallel System: The System consists of different 

components connected in series and each component 

contains different number of subcomponents which are 

connected in parallel. The general principle used is to 

reduce sequentially the complicated configuration by 

combining appropriate series and parallel branches of the 

reliability model until a single equivalent element is 

formed. The reliability of this equivalent element will 

represent the reliability of the original configuration. 

Let us consider a series-parallel system where two 

subsystems are connected in series and each subsystem is 

configured by different number of components which are 

connected in parallel. Let subsystem 1 and 2 be configured 

by          number of components respectively. 

  Subsystem 1                                       Subsystem 2 

Figure 1: Series Parallel System 

Let us consider, 

Reliability of a component of subsystem 1     ( ) 

So, reliability of the    parallel components = [1- *  

  ( )+
  ]  

Reliability of a component of subsystem 2    ( ) 

Similarly, reliability of the    parallel components = [1- 

*    ( )+
  ]  

Reliability of the total system: 

   (t)=[1-*    ( )+
  ] [1- *    ( )+

  ] 

            = 1- *    ( )+
   - *    ( )+

   +*    ( )+
   

*    ( )+
   

If all the component of subsystems follow Weibull 

distribution, 

   (t) = 1- *   
 (

 

  
) 
+   - *   

 (
 

  
) 

+   +*  

 
 (

 

  
) 
+   *   

 (
 

  
) 

+   

Where,          are the scale parameters of subsystem 1 

and subsystem 2 respectively. 

When      Weibull distribution reduces to an 

exponential distribution and total system reliability 

becomes, 

   (t)=1-{   
 .

 

  
/
}

   

–{   
 .

 

  
/
}

  

 +{  

 
 .

 

  
/
}

  

 {   
 .

 

  
/
}

  

 

C. LP-norm Strategy for best non-dominated solution 

[19]: 

Generally multi-objective optimization problems create 

non-dominated solutions and pareto optimal front. But it is 

tough for decision maker to choose a unique solution. So 

for finding the best non-dominated solution, the most 

appreciated method is LP-norm strategy. Here the 

normalized distance of pareto set and an ideal solution 

(Utopia point) is minimized using the formula: 

        Minimize(∑ (
  ( )   

   

  
      

   )
  

   )   ,   

  p= 1, 2, …………..,   

Where   
   = minimum value of ith objective in the pareto 

optimal set. 

  
   = maximum value of i

th
 objective in the pareto 

optimal set. 

Here all objective functions must be considered in 

minimization form. 

III. FORMULATION OF THE MULTI-

OBJECTIVE OPTIMIZATION PROBLEM 

To obtain the optimal design policy of a system, reliability 

is one of the important attributes of performance because it 

directly influences the system’s performance. Consider a 

series-parallel system containing m subsystems    (i = 1, 

2…,m) in series arrangement as presented in figure 1. In 

real world problems however, many systems have 

components with increasing or decreasing failure rates. 

This indicates that as time passes by, the failure rates of 

the system components increase or decrease in comparison 
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to their initial failure rates. So in this paper every 

subsystem    contains a different number of components 

connected in parallel and time to failure of components are 

weibull distributed. Components are characterized 

according to their types and cost.  

Total cost of the system    could be divided into two 

parts: initial costs and secondary costs. Initial costs 

(  ) include purchasing costs of the components which is a 

fixed cost while secondary costs refer to inspection and 

maintenance costs (  ) of the components.  

So, the total cost is:      =   +    

Initial Cost: Initial cost is calculated based on the 

purchase cost and number of the components implemented 

in subsystem at the beginning of running the system. 

If we consider the purchase cost of different types of 

components as   , 

Then total initial cost of the system is    = ∑     
 
    

Secondary Cost: As mentioned before, secondary cost is 

the maintenance and inspection costs of the components. 

The maintenance cost for the system is defined as 

                  = ∑   
  

   [       (   )] 

Where,     (   ) is the additional cost spent due to the 

interconnection between parallel components. 

And   
 
 is considered as [2]: 

                               
 
= a exp [

 

    
]  

a, b and   are the parameters of the cost function. 

Constraints: Total number of components of subsystems 

and an initial budget (  ) for purchasing components are 

considered as constraints of this proposed model. 

In reliability optimization problems, the main goal is to 

minimize or maximize several objectives subject to several 

constraints. A designer is required to minimize the system 

cost with maximizing the system reliability. Therefore, 

multi objective optimization takes an important role in the 

reliability design of the system. In this paper, we consider 

two subsystems and these two subsystems contain    and 

   number of components respectively. Hence the 

appropriate optimization model considering the reliability 

and cost (Initial Cost + Maintenance Cost) as objectives is: 

            (t)=1-*    ( )+
   - *    ( )+

  +*  

  ( )+
   *    ( )+

   

  = 1- *   
 (

 

  
) 
+   - *   

 (
 

  
) 

+   +*   
 (

 

  
) 
+   

*   
 (

 

  
) 

+   

Minimize  =  +  =∑     
 
   + ∑   

  
   [       (   )] 

Subject to:                    

                       ∑     
 
   ≤    

                             ≤ N;          

                         1 for i=1, 2,… m. 

IV. META-HEURISTIC APPROACH:  

The reliability optimization problem is a nonlinear integer 

programming problem. Due to complexity of such 

problems, meta- heuristic algorithms are used for solving 

these problems. Meta-heuristics are stochastic search 

methods for solving optimization problems. The 

approaches do not guarantee the determination of the exact 

solution, but shows the Pareto optimal front which is very 

close to the optimal solution. There are several solution 

methods for multi-objective optimization like Genetic 

Algorithm (GA), multi objective particle swarm 

optimization (MOPSO), Imperialist Competition 

Algorithm (ICA), Firefly Algorithm etc. 

Genetic Algorithm Approach: 

Genetic Algorithm (GA) is a stochastic global 

optimization technique that attempts to evolve a 

population of candidate solutions by giving preference of 

survival to quality solutions whilst allowing some low 

quality solutions to survive in order to maintain diversity 

in the population. Each candidate solution is coded into a 

string of digits called chromosomes. New offspring are 

obtained from probabilistic genetic operators such as 

selection, crossover, mutation and inversion. A 

comparison of new and old (parent) candidates is done 

based on a given fitness function retaining the best 

performing candidates into the next population. Thus 

characteristics of candidate solutions are passed from 

generation to generation through probabilistic selection, 

crossover, and mutation. The general flow of the GA 

approach is presented in flow chart. 

Overall Multi-Objective GA procedure  

The overall structure of the Multi objective GA for the 

optimization problems are consisting of  initialization, 

selection, evaluation, crossover, mutation, replacement, 

and termination. The pseudo-code of the algorithm is given 

below: 

Algorithm 1: Pseudo code for Multi-Objective GA 

[17]: 

1: randomly generate initial population 

 Repeat 

 2: evaluation of fitness, objective: f(x),      x = (x1, 

x2,…,xh) 

 3: selection strategy 

 4: crossover and mutation 

 5: replacement 



International Journal for Research in Engineering Application & Management (IJREAM) 

ISSN : 2454-9150    Vol-04,  Issue-10,  Jan 2019 

412 | IJREAMV04I1046092                      DOI : 10.18231/2454-9150.2018.1340                      © 2019, IJREAM All Rights Reserved. 

 

 6: advance population; old pop = new pop 

Until (termination criteria is satisfied) 

Particle Swarm Optimization [14]: 

The basic idea behind the algorithm is to use a collection 

of particles to explore the fitness landscape of a particular 

problem. Each particle is a vector that describes a 

candidate solution and can be evaluated (in the multi 

objective case) along several quality dimensions (or, 

equivalently, with several fitness functions). The algorithm 

is iterative, and at each iteration each particle moves 

through the fitness landscape according to its current 

fitness values as well as those of nearby particles. 

Algorithm 2: The basic steps of MOPSO algorithm [16]: 

1. Initialize the swarm and archive. 

2. For each particle in the swarm: 

A. Select leader from the archive. 

B. Update Velocity 

C. Update Position 

3. Update the archive of non-dominated solution. 

4. Repeat 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         

                                                       Flow Chart: Genetic Algorithm 

 

Pseudo Code of MOPSO algorithm [15]: 

1. Randomly initialize population    ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   of size µ. 

2. Initialize the speed    ⃗⃗⃗⃗ ⃗⃗⃗⃗   of each particle. 

For all i ϵ { 1, 2,…….,µ}      ⃗⃗⃗⃗ ⃗⃗⃗⃗  [i]=0. 

3. Evaluate each particle in   ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . 

4. Store non-dominated points in the repository   ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . 

5. Generate hyper cubes (cubes in m dimensions, 

where m is the number of objectives) of the 

objective space explored so far. Do this by 

dividing the objective space explored by divisions 

in each dimension of it. 

6. For each particle, determine in which hypercube 

it is positioned. 

7. Initialize the memory       ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ of each particle. 

For all iϵ {1,….., µ}       ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗[i]=    ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , -. 

8. While the maximum number of loops is not 

exceeded, do: compute the speed of each particle 

I (in each direction) while the formula 

   ⃗⃗⃗⃗ ⃗⃗⃗⃗  [i]= w ×    ⃗⃗⃗⃗ ⃗⃗⃗⃗  [i] +    × (      , -⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   

   ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , - ) +     × (   , -⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , -) 

      w is an inertia weight ,      are random 

values between 0 and 1. 

Compute the new position of each particle with  

           ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , -=    ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , -+    ⃗⃗⃗⃗ ⃗⃗⃗⃗  [i] 

make sure each particle stays within the search 

space boundaries. 

Update    ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗,       ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  the hyper cubes and the position of 

each particle within these hyper cubes. 

     Start 

Initialize Population 

Fitness Evaluation 

Selection, Crossover, Mutation 

Fitness Evaluation 

Terminate? 

         End 

No 

Generation 



International Journal for Research in Engineering Application & Management (IJREAM) 

ISSN : 2454-9150    Vol-04,  Issue-10,  Jan 2019 

413 | IJREAMV04I1046092                      DOI : 10.18231/2454-9150.2018.1340                      © 2019, IJREAM All Rights Reserved. 

 

V.  IMPLEMENTATION FOR A PUBLIC 

TRANSPORT ROUTE 

 Comparison of series-parallel system with a transport 

system: 

In practice generally two types of buses (Volvo and non-

ac) are used to transport from one city to another city. 

These are basically two individual transport systems. In 

our consideration, these two individual transport systems 

are connected in series and constitute the subsystems of 

the overall transport system. In turn, each subsystem 

contains different number of buses in parallel. If any one 

of the subsystem fails, then the overall transport system 

fails. 

Implementation: 

West Bengal is one of the developing states of India. 

Therefore, West Bengal government is trying to connect 

all cities of West Bengal by bus transport network. This 

transportation is undertaken by WBSTC (West Bengal 

State Transport Corporation). In transport route, 

government wants to transport, mainly two types of buses:  

1) Non-air condition state bus 2) Volvo bus, depending 

upon the public demand. Government also sanctioned a 

budget for initial purchasing of these buses.  These two 

types of busses have different failure rate & different 

purchasing and maintenance cost. In this problem,  

   = failure rate of Volvo buses, 

   = failure rate of non-air conditioned buses. 

    = number of Volvo bus, 

    = number of non-air conditioned bus.      Here, we 

endeavor to evaluate the total reliability of the transport 

system and then maximize the total system reliability. 

                       
Volvo bus                                            Non-ac bus 

                             Figure 2: Public Road Transport System 

Suppose, West Bengal Government wants to prepare a 

strong and effective transport system. This system is 

composed of two types of buses. The type, number, scale 

parameter and cost of components are given in the table 

below.  If government wants to transport maximum 10 

buses for each type and total 15 buses in the transport 

system then the problem is to determine the number of 

buses for maximizing the system reliability and 

minimizing the system cost.   

Table 1: 

Component                      Type-1                      Type-2 

Type of component                  Volvo Bus                   Non-ac Bus 

Number of component       

Value of Scale Parameter                     = 30                     = 20 

Purchase Cost of each component                    60 lakhs                    30 lakhs 

 

Value of other parameters 

a b      N 

1 0.20 0.25 1000 15 

 

In this paper, time to failure of different components is 

considered as weibull distribution. So, for different values 

of shape parameter, model will be different. 

Model: for the different values of shape parameter    
proposed model is as follows: 

Maximize    (t) = 1- *   
 (

 

  
) 
+   - *   

 (
 

  
) 

+   

+*   
 (

 

  
) 
+   *   

 (
 

  
) 

+   

Minimize Cost   = ∑     
 
   + 

∑       ,
 

   
 (
 
  
) 
-  

   [       (   )]  

Sub to:          +   ≤ 15; 
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                       ∑     
 
    ≤ 1000, 

                    1 ≤   ≤10, 

                   ,    ≥ 1 & are integer. 

VI. RESULTS AND DISCUSSION        

After establishing the optimization model with two 

objective functions, the model was solved in MATLAB by 

MOGA and MOPSO approach as mentioned in previous 

part. For solving the model, the parameters of MOGA and 

MOPSO have been defined. 

During the evolution, the integer variables    are 

considered as real variables, and in calculating the value of 

objective functions, the real values are converted to the 

nearest integer values. The inertia weight, cognitive 

component (  ) and social component (  ) of MOPSO 

algorithm are taken as w=0.5,   =1, and   =2 

respectively. Maximum number of iterations and particles, 

both are considered as 100 which are used in computation. 

The parameter, crossover and migration of MOGA are 0.8 

and 0.2 respectively. Intermediate crossover and 

Tournament selection process are used for reproduction. 

The termination criteria has been set either limited to a 

maximum number of 200 generations or to be the order of 

relative error equal to     which is achieved first. The 

program has been run 200 times and the best values are 

chosen. 

The application of MOGA and MOPSO for solving the 

models, results Pareto optimal solutions. The Pareto 

optimal solutions contain the solutions that were not 

dominated by the other solutions. 

. Pareto Optimality:  

A candidate is Pareto optimal if: 

 It is at least as good as all other 

candidates for all objectives, and 

 It is better than all other candidates for at 

least one objective. 

We would say that this candidate dominates all 

other candidates. 

Set of all Pareto optimal solutions (points in variable 

space) is called Pareto Set. Set of all Pareto objective 

vectors is called Pareto Front. 

For obtaining the Pareto optimal solution of the 

optimization models, MOGA and MOPSO have been used 

with the parameter setting given in section VI. The 

corresponding results for different values of t=10, 20 and 

  = 0.5, 1, 2 are summarized in table 2, 3,4,5,6 and 7 

corresponding to the proposed model. The Pareto optimal 

front for these models, are also shown in different figures 

below. The best non-dominated solutions are shown in 

table 8 using LP-norm strategy (p=2).

Table 2: 

Pareto Optimal solution at t= 10 and  = 0.5 

Genetic Algorithm  Particle Swarm Optimization 

System Structure Reliability Cost  System Structure reliability Cost 

                           

7 8 0.9925 697.6859  3 5 0.8997 367.2545 

1 4 0.6500 214.1571  5 8 0.9821 586.3007 

3 3 0.8009 278.6891  4 7 0.9618 488.3885 

3 5 0.8909 353.6525  5 6 0.9738 537.6624 

2 3 0.7398 241.8568  3 3 0.7992 277.3697 

 

 

  
                                         

                                      Figure 3: Pareto front by MOGA and MOPSO at t=10 and  =0.5 
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Table 3: 
Pareto Optimal solution at t= 10 and  = 1 

Genetic Algorithm  Particle Swarm Optimization 

System Structure Reliability Total Cost  System Structure reliability Total Cost 

                           

7 8 0.9994 699.4014  6 9 0.9994 687.6156 

3 7 0.9868 458.8965  4 6 0.9880 433.6742 

3 3 0.9205 282.3288  4 5 0.9833 405.6311 

2 5 0.9513 336.1573  2 2 0.7838 183.8786 

3 4 0.9671 349.0318  3 5 0.9720 360.3358 

 

  
                                      

                                        Figure 4: Pareto front by MOGA and MOPSO at t=10 and  =1 

 

Table 4: 

Pareto Optimal solution at t= 10 and  = 2 

Genetic Algorithm  Particle Swarm Optimization 

System Structure Reliability Total Cost  System Structure reliability Total Cost 

                           

4 7 0.9998 550.4819  4 6 0.9998 495.3475 

3 7 0.9996 479.9039  3 5 0.9989 405.2508 

6 9 0.9999 754.3615  6 9 0.9999 760.0092 

2 2 0.9634 223.9294  3 3 0.9918 303.6788 

1 2 0.8786 153.8422  2 3 0.9686 227.4587 

 

  
                                          Figure 5: Pareto front by MOGA and MOPSO at t=10 and  =2 
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Table 5: 
Pareto Optimal solution at t= 20 and  = 0.5 

Genetic Algorithm  Particle Swarm Optimization 

System Structure Reliability Cost  System Structure reliability Cost 

                           

7 8 0.9580 695.6437  5 7 0.9021 531.3518 

6 7 0.9399 637.9085  6 8 0.9408 622.4851 

5 6 0.8762 486.8433  5 6 0.8764 486.4162 

3 6 0.8032 403.2138  3 5 0.7902 387.1680 

3 4 0.7362 346.8626  2 3 0.4579 198.7441 

 

  
  

                                          Figure 6: Pareto front by MOGA and MOPSO at t=20 and  =0.5 

 

Table 6: 
Pareto Optimal solution at t= 20 and  = 1 

Genetic Algorithm  Particle Swarm Optimization 

System Structure Reliability Total Cost  System Structure reliability Total Cost 

                           

6 9 0.9708 678.3747  5 8 0.9394 550.4153 

4 8 0.9380 551.1833  4 7 0.8920 456.8989 

4 6 0.8863 447.2550  4 6 0.8870 449.3349 

3 6 0.8419 399.4245  3 6 0.8540 407.9645 

2 5 0.7052 295.4695  2 5 0.7447 315.2493 

 

  
 

                                      Figure 7: Pareto front by MOGA and MOPSO at t=20 and  =1 
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Table 7: 
Pareto Optimal solution at t= 20 and  = 2 

Genetic Algorithm  Particle Swarm Optimization 

System Structure Reliability Total Cost  System Structure reliability Total Cost 

                           

5 10 0.9838 651.4917  5 10 0.9831 638.5542 

5 6 0.9344 498.1565  4 9 0.9648 535.8841 

5 8 0.9662 553.6624  3 7 0.9272 436.3120 

4 5 0.8724 412.6554  3 5 0.8520 339.3569 

2 6 0.8481 336.3883  2 4 0.7764 284.0008 

 

  
                                          Figure 8: Pareto front by MOGA and MOPSO at t=20 and  =2 

Table 8: 

Best Non-Dominated Solution using LP- norm Strategy( p=2) 

Time Parameter Values MOGA MOPSO 

Reliability Cost Reliability Cost 

 

t=10 

 =0.5 0.8008586 278.6890 0.8044689 285.3582 

 =1 0.9205277 282.3287 0.9242966 275.6779 

 =2 0.9633510 223.9294 0.9699188 228.9282 

 

t=20 

 =0.5 0.7362234 346.8626 0.7272434 338.8045 

 =1 0.7052329 295.4694 0.7065473 288.9816 

 =2 0.8481311 336.3883 0.8516213 338.5793 

 

Thus, from all these tables and figures, it has been shown 

that the results computed by MOGA and MOPSO with 

respect to individual shape parameter are almost similar. 

From table 8, it is also clear that for individual shape 

parameter ( ) of weibull distribution, the optimal 

reliability decreases and total cost increases when time 

increases. This observation justified that the formulated 

model is realistic and practical. Based on these results, the 

system analysts or decision makers may plan the proper 

design for optimal system’s structure. 

VII. CONCLUSION 

In this present paper, initially a multi objective 

optimization problem is formulated on series-parallel 

system where objectives are minimizing the system cost 

and maximizing the system reliability. Finally based on 

this concept a multi-objective optimization model on 

transport system is proposed. Here, for the first time the 

transport reliability optimization problem with weibull 

distributed time-to-failure of each component have been 

solved with some budget constraints. In general, this type 

of problem is not easy to handle in real cases. Hence meta-

heuristic approach has been used to solve such a hard and 

complex problem. Finding non-dominated solutions or 

Pareto optimal front is an attractive alternative for such 

type of problems. So, two well-known meta-heuristic 

techniques have been used for finding the pareto optimal 

front. After obtaining the non-dominated solutions, LP-

norm strategy has been used to choose the best non 

dominated solution. Based on these solutions, we are able 

to prove that this formulation is practical and realistic. It 

also provides flexibility to the decision-makers to obtain 

the best-compromise solution. 
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