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Abstract: Analytical solution for the simply supported composite laminated plates subjected to two different 

temperature variations through thickness based on higher order theory is presented. Analytical model presented herein 

includes the effect of transverse shear deformation which eliminates the need of shear correction factor to rectify the 

unrealistic variation of shear stress through thickness. Primary displacement field is expanded in the thickness 

direction using eleven degrees of freedom. Equilibrium equations in the present higher order shear and normal 

deformation theory (HOSNT11) are obtained using principle of virtual work. The Navier solutions for simply 

supported laminated composite plate subjected to varying thermal load through the thickness have been developed. 

Numerical results obtained are compared with semi-analytical model available in literature 
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I. INTRODUCTION 

Composite materials are widely used in many industries 

because of their special properties like high thermal 

resistance, high strength to weight ratio, long fatigue life 

etc. In the industries like aerospace, nuclear reactors and 

chemical plants composite laminates are often subjected to 

high temperature environment. The temperature stresses 

become governing factor for design of such structures 

therefore the accurate thermal stress analysis of laminated 

composite plates has constantly been an important area of 

research. 

The classical plate theory (CPT) by Timoshenko and 

Woinowsky-Krieger [1] is inadequate for analysis of 

laminated composite plates as it neglects the effect of 

transverse normal and shear deformation. First order shear 

deformation theory (FSDT) by Reissner and Mindlin 

accounts for transverse shear stress and shear correction 

factors are needed to rectify the unrealistic variation of 

shear stress through thickness. To overcome the limitations 

of FSDT, higher order shear deformation theories (HSDT) 

were developed. Nelson and Lorch [2], Librescu [3] 

represented higher order displacement based shear 

deformation theories for the analysis of laminated plates. 

Reddy et al. [4] presented finite element formulation of 

laminates subjected to thermal loading based on FOST. 

Third-order shear deformation theory is developed by 

Reddy [5] for the mechanical and thermal analysis of 

laminated composite plates. Khdeir and Reddy [6] proposed 

refined plate theories using stress-space approach to study 

the thermal stresses and deformations of cross-ply 

rectangular laminates. Murakami [7] studied 

thermomechanical response of layered plates using various 

plate theories. Argyris and Tenek [8] used linear thermal 

variation across the thickness of the laminates to formulate 

FE model based on the first order shear deformation theory. 

A simple Co iso-parametric finite element model for the 

analysis of symmetric and unsymmetric laminates subjected 

to thermal gradient is presented by Kant and Khare [9]. 3D 

elasticity solution for temperature distribution and thermal 

stresses in simply supported rectangular laminates is 

derived by Tungikar and Rao [10]. Savoia and Reddy [11] 

presented transient heat conduction equation for exact 

temperature distribution across the thickness of laminates 

for 3D stress analysis of symmetric four-layered square 

laminate subjected to uniform temperature change. Bhaskar 

et al. [12] developed 3D elasticity solution for laminates 

under cylindrical and bi-directional bending by assuming 

linear variation of thermal profile through the thickness of 

the symmetric laminate. A displacement based higher order 

shear deformation theory for the thermal flexure analysis of 

symmetric laminated composite plates is developed by Ali, 

Bhaskar et al. [13]. Rohwer et al. [14] used higher order 

plate theories to predict the thermal stresses in layered 

plates. Third order zig-zag theory for composite laminates 

subjected various thermal profiles across the thickness is 

investigated by Kapuria and Achary [15]. A global higher 

order theory based on power series for prediction of inter-

laminar stresses subjected to thermal loading is presented 

by Matsunaga [16]. Zhen and Wanji [17] developed finite 

element model based on global-local higher order theory to 

study the bending response of laminated composite plates 

subjected to thermal loading. Kant et al. [18] derived semi-

analytical solution for constant and linear temperature 

variation through the thickness of a laminated composite 

and sandwich plates. Zhen et al. [19] used a refined global-
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local higher order theory to analyze angle-ply laminated 

composite plates subjected to thermomechanical loading. 

Exact solution is developed for thermo-elastic deformations 

in symmetric and antisymmetric cross-ply laminated arches 

by Khdeir [20].  Kant and Shiyekar [21] developed a 

complete analytical model, which incorporates shear 

deformation as well as transverse normal thermal strains is 

assessed for the thermal stress analysis of cross-ply 

laminates subjected to linear or gradient thermal profile 

across thickness of the laminate. A higher order 

computational model for the thermo-elastic analysis of 

laminated composite plates is used by Swaminathan and 

Fernandes [22].  

The objective of this investigation is to present a higher 

order shear and normal deformation theory (HOSNT11) for 

thermal analysis of composite laminated plate.  The 

constant and linear thermal load variation through thickness 

of laminate is considered for analysis. Numerical results of 

displacement and stresses are obtained using the HOSNT11 

for simply supported composite laminated plate and are 

compared with the results available in the literature.  

II. THEORETICAL FORMULATION 

In order to approximate the three-dimensional elasticity 

problem to a two-dimensional plate problem, the 

displacement components u(x, y, z), v(x, y, z) and w(x, y, z) 

at any point in the plate space are expanded in a Taylor’s 

series in terms of the thickness coordinate. The elasticity 

solution indicates that the transverse shear stresses vary 

parabolically through the plate thickness. This requires the 

use of a displacement field in which the in-plane 

displacements are expanded as cubic functions of the 

thickness coordinate. In addition, the transverse normal 

strain may vary nonlinearly through the plate thickness. The 

displacement field which satisfies the above criteria may be 

assumed in the form 
2 * 3 *

0 0

2 * 3 *

0 0

2 *

0 0

( , , ) ( , ) ( , ) ( , ) ( , )
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The expansions of the in-plane displacements u and v 

imply nonlinear cubic variations of these through the 

laminate thickness. Thus, the warping of the transverse 

cross section is automatically incorporated. The expansion 

of transverse displacement w implies a nonvanishing 

transverse normal strain. Thus, the limitations of the usual 

Kirchhoff’s hypothesis as well as the Mindlin -type FOSTs 

are completely eliminated. The parameters u0, v0 are the in-

plane displacements and w0 is the transverse displacement 

of a point (x, y) on the middle plane. The functions θx, θy 

are rotations of the normal to the middle plane about y and 

x axes, respectively. The parameters  u0* , v0* , w0* , θx* , 

θy* are the higher-order terms in Taylor’s series expansion 

and they represent higher-order transverse cross-sectional 

deformation modes.  This model is named HOSNT11 

because it has 11 middle surface parameters. The geometry 

of a composite laminated plate with positive set of 

coordinate axes are shown in Fig.1.0 

 

Fig. 1.0. Geometry composite laminated plate with positive 

set of reference axes and displacement components 

 

III. STRAIN DISPLACEMENT RELATIONSHIP 

The general linear strain-displacement relationships at 

any point within a plate are given as 
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IV. CONSTITUTIVE EQUATIONS 

From linear elasticity theory, the 3D stress strain 

constitutive relationship with stiffness matrix [Cij] for L
th

 

lamina with reference to principal material coordinate 

system 1-2-3 can be written in matrix form as: 
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Where, (σ1, σ2, σ3, τ12, τ23, τ13) are the stresses, (ε1, ε2, ε3, 

γ12, γ23, γ13) are the strains with respect to the lamina 

coordinate (1-2-3) and [Cij] are the elastic constants or 

stiffness matrix of L
th

 lamina. α1, α2, α3 are the thermal 

expansion coefficients with respect to lamina reference axes 

and ΔT is rise in temperature with respect to reference 

temperature. 

In the laminate coordinate (x,y,z) the stress strain relation 

for L
th

 lamina can be written as, 
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Where, (σx, σy, σz, τxy, τyz, τxz) are the stresses, (εx, εy, εz, 

γxy, γyz, γxz) are the strains with respect to laminate 

coordinate system (x-y-z) and [Qij] are transformed elastic 

constants or stiffness matrix of L
th

 lamina with respect to 

laminate axes x,y,z. αx, αy, αz are the thermal expansion 

coefficients with respect to laminate reference axes and are 

defined as,  

αx,= α1 cos
2
θ+ α2 sin

2
θ , αy = α1 sin

2
θ+ α2 cos

2
θ , αz = α3 

Where θ is the angle made by fiber direction to x-axis. 

V. GOVERNING EQUATIONS OF EQUILIBRIUM 

The equations of equilibrium for the stress analysis are 

obtained using the principle of minimum potential energy.  
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To obtain a 2D expression for the potential energy 

functional, stresses are integrated through the plate 

thickness, which yield the definition of the following set of 

stress resultants: 
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VI. ANALYTICAL SOLUTION 

Among all of the analytical methods available, the 

Navier solution technique is very simple and easy to use 

when the plate is of rectangular geometry (side dimensions 

= a and b; thickness = h) with simply supported edge 

conditions. This solution to different Kirchhoff plate 

problems of rectangular geometry is well documented in 

various texts. 

Following are the boundary conditions used for two 

opposite infinite simply supported edges: 

At edges x = 0 and x = a: 

v0 = 0, w0 = 0, θy = 0, θz = 0, Mx = 0,  

v0*  = 0, w0*  = 0, θy* = 0, θz* = 0, Mx* = 0, 

Nx = 0, Nx* = 0. 

At edges y = 0 and y = b: 

u0 = 0, w0 = 0, θx = 0, θz = 0, My = 0,  

u0*  = 0, w0*  = 0, θx* = 0, θz* = 0, My* = 0, 

Ny = 0, Ny* = 0. 

 

The generalized displacement field to satisfy the previous 

boundary conditions is expanded in double Fourier series 

as, 
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The thermal load is expressed as doubly sinusoidal 

loading at top of laminate as, 

1, 1,

(x, y,z) sin sin
mn
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where α = mπ/a, β = nπ/b. 

After following the standard steps for collecting the 

coefficients of the 11 displacement degrees of freedom in a 

11x11 system of simultaneous equations, the Fourier 

amplitudes of the displacements are obtained in the 

following form. 
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Where, [X] is stiffness matrix and {Tr} is temperature 

vector. The coefficients of matrix [X] and matrix {Tr} are 

given in Appendix A and Appendix B respectively. 

VII. NUMERICAL EXAMPLES AND RESULTS 

A homogeneous, orthotropic simply supported plate [18] 

subjected to thermal load has been considered to study the 

effect of the two different temperature variations through 

thickness. 

Following two thermal load cases are considered. 

1. CASE A - Equal temperature rise of the bottom and 

the top surface of the plate with sinusoidal inplane 

variations:   

0T(x, y, h/ 2) T sin sin
x y
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2. CASE B - Equal rise and fall of temperature of the top 

and bottom surface of the plate with sinusoidal inplane 

variations: 
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Rohwers [14] material properties are considered as follows, 
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The following normalization have been used in example 

considered here, 
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 The normalized maximum stresses (  ̅̅ ̅   ̅̅ ̅    ̅̅ ̅̅ ) and 

displacement ( ̅  ̅  ̅) for different aspect ratios are 

presented in Table 1.0 and Table 2.0 for both type of 

thermal variations. Also, the graphical representation of 

results for an aspect ratio of 5 are shown in figures 2.0 to 

7.0, for thermal load case A and case B. Semi analytical 

results of in-plane normal stress (  ̅̅ ̅) and transverse 

displacement ( ̅) by Kant, et. al. [18] are plotted on same 

graph for comparison with the present solution results. This 

comparison clearly indicates that the present results are 

very close to the semi analytical solution. 

VIII. CONCLUSION 

The HOSNT11 theory has been successfully applied for 

the thermal analysis of the simply supported composite 

laminated plates with constant and linear temperature 

variation through thickness. This model considers the effect 

of transverse shear deformation hence eliminates the need 

of shear correction factor. Results of stresses and 

displacements are presented for different aspect ratios. The 

result obtained shows the excellent agreement with the 

semi-analytical model available in literature which 

demonstrates the accuracy of the present HOSNT11 model. 
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Table 1.0 Maximum stresses and the displacement of square homogeneous orthotropic plate under thermal load, CASE A: 
0T(x, y, h/ 2) T sin sin

x y

a b
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analytical 
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Semi-

analytical 
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Semi-

analytical 
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10 -0.1261 -0.1294 [2.64] -0.2092 -0.2083 [-0.41] -0.2233 -0.2230 [-0.15]   0.378  0.3584 [-5.18] -0.1736 -14.0204 

20 -0.0484 -0.0486 [0.41] 0.0538 -0.0537 [-0.11] -0.0547 -0.0547 [-0.05]   0.0236  0.0224 [-5.06] -0.0105 -3.4702 

[ ]% Error = (Present – Semi-analytical) x 100/ Semi-analytical 

 

 

Table 2.0 Maximum stresses and the displacement of square homogeneous orthotropic plate under thermal load, CASE B: 
0T(x, y,h/ 2) T(x, y, h/ 2) T sin sin

x y

a b

 
      

aspect 

ratio 

  ̅̅ ̅ ( 
 

 
, 
 

 
, 

 

 
 ) 

 

  ̅̅ ̅ ( 
 

 
, 
 

 
, 

 

 
 ) 

 

   ̅̅ ̅̅  (0,0, 
 

 
) 

 

  ̅̅ ̅ (
 

 
, 
 

 
, 

 

 
) 

 

 ̅ (0, 
 

 
, 

 

 
) 

 

 ̅ (
 

 
,0,  

 

 
) 

 
Semi-

analytical 

model Present 

Semi-

analytical 

model Present 

Semi-

analytical 

model Present 

Semi-

analytical 

model Present Present Present 

10   0.4845   0.4823[-0.45]  -/+ 0.5638 -/+ 0.5638[-0.01]  -/+0.638 -/+ 0.6363[-0.26]  1.4042 1.3840[-1.44] -1.7001 -2.3508 

20   0.1198   0.1197[-0.11]  -/+ 0.1448 -/+ 0.1448[-0.02]  -/+0.1405 -/+0.1404[-0.08]  0.2916 0.2903[-0.44] -0.4256 -0.4681 

[ ]% Error = (Present – Semi-analytical) x 100/ Semi-analytical 
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        Fig 2.0 (a)  

 
      Fig 2.0 (b)  

Figure 2.0 Variation of in-plane displacement (a) u; (b) v 

along the thickness direction of homogeneous orthotropic 

plate subjected to thermal load, 

0T(x, y, h/ 2) T sin sin
x y

a b

 
    ,  Case A.  

 

       Fig 3.0 (a)  

 
       Fig 3.0 (b)  

 

Figure 3.0 Variation of (a) transverse displacement w; (b) 

in-plane normal stress σx along the thickness direction of  

homogeneous orthotropic plate subjected to thermal load, 

0T(x, y, h/ 2) T sin sin
x y

a b

 
    , Case A.  

 

   Fig 4.0 (a)  

 

 
       Fig 4.0 (b)  

Figure 4.0 Variation of  (a) inplane normal stress σy; (b) in-

plane shear stress τxy along the thickness direction of  

homogeneous orthotropic plate subjected to thermal load, 

0T(x, y, h/ 2) T sin sin
x y

a b

 
    , Case A.  

 
         Fig 5.0 (a)  
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        Fig 5.0 (b)  

 

Figure 5.0 Variation of in-plane displacement (a) u; (b) v 

along the thickness direction of homogeneous orthotropic 

plate subjected to thermal load 

0(x, y,h/ 2) (x, y, h/ 2) sin sin
x y

T T T
a b

 
    

  

, Case B.  

 

         Fig 6.0 (a)  

 
           Fig 6.0 (b)  

 

Figure 6.0 Variation of (a) transverse displacement w; (b) 

in-plane normal stress σx  along the thickness direction of  

homogeneous orthotropic plate subjected to thermal load,  

0(x, y,h/ 2) (x, y, h/ 2) sin sin
x y

T T T
a b

 
    

 

 , Case B.  

 

      Fig 7.0 (a)  

 

 
        Fig 7.0 (b)  

Figure 7.0 Variation of (a) inplane normal stress σy ; (b) in-

plane shear stress τxy along the thickness direction of  

homogeneous orthotropic plate subjected to thermal load,  

0(x, y,h/ 2) (x, y, h/ 2) sin sin
x y

T T T
a b

 
    

 

 , Case B.  

APPENDIX A:  Coefficients of [X] matrix 

X 1,1 =  
                     

      
 

X 1,2 =  
                     

      
 

X 1,3 = 0 

X 1,4 = 0 

X 1,5 = 0 

X 1,6 = 
     

 
 

X 1,7 =  
                     

      
 

X 1,8 =  
                     

      
  

X 1,9   = 0 

X 1,10 = 0 
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X 1,11 = 0 

 

X 2,2 =  
                     

      
 

X 2,3 = 0 

X 2,4 = 0 

X 2,5 = 0 

X 2,6 = 
     

 
 

X 2,7 =  
                     

      
 

X 2,8 =  
                     

      
 

X 2,9   = 0 

X 2,10 = 0 

X 2,11 = 0 

X 3,3 =  
                     

      
 

X 3,4 =  
     

 
 

X 3,5 =  
     

 
 

X 3,6 = 0 

X 3,7 = 0 

X 3,8 = 0 

X 3,9 =  
                     

      
 

X 3,10 =  
      

  
 

X 3,11 =  
      

  
 

X 4,4 =  
                                

      
 

X 4,5 =  
                          

       
 

X 4,6 = 0 

X 4,7 = 0 

X 4,8 = 0 

X 4,9 =  
                           

       
 

X 4,10 =  
                                  

      
 

X 4,11 =  
                        

       
 

X 5,5 = 

 
                                     

       
 

X 5,6 = 0 

X 5,7 = 0 

X 5,8 = 0 

X 5,9 =  
                           

       
 

X 5,10 =  
                        

       
 

X 5,11 = 

 
                                    

       
 

X 6,6 = 
                                 

      
 

X 6,7 = 
                       

      
 

X 6,8 = 
                       

      
 

X 6,9   = 0 

X 6,10 = 0 

X 6,11 = 0 

X 7,7 =  
                                   

       
 

X 7,8 =  
                         

       
 

X 7,9   = 0 

X 7,10 = 0 

X 7,11 = 0 

X 8,8 =  
                                   

       
 

X 8,9   = 0 

X 8,10 = 0 

X 8,11 = 0 

X 9,9 =  
                                   

       
 

X 9,10 =  
                          

       
 

X 9,11 =  
                          

       
 

X 10,10 = 

 
                                      

        
 

X 10,11 =  
                         

        
 

 

X 11,11 = 

 
                                      

        
 

 

APPENDIX B:  Coefficients of [Tr] matrix 

Tr 1,1 = 

                                      

      
 

Tr 2,1 = 

                                      

      
 

Tr 3,1 = 0 

Tr 4,1 = 0 

Tr 5,1 = 0 
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Tr 6,1 

=

  
                                        

      
 

Tr 7,1 

=

 
                                         

       
 

Tr 8,1 

=

 
                                         

       
 

Tr 9,1   = 0 

Tr 10,1 = 0 

Tr 11,1 = 0 
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