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Abstract - In the present paper an expansion formulae for a basic analogue Aleph () -function have been derived by

the applications of the ( -Leibniz rule for the type ( -derivatives of a product of two functions. Expansion formulae

involving a basic analogue of Fox’s H -function, Meijer’s G -function and MacRobert’s E -function have been derived

as special cases of the main results.
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. INTRODUCTION

“Yadav and Purohit [10]” introduced a new (] -extension of the lebniz rule for the derivatives of a product of two basic
functions in terms of a finite (| -series involving Weyl type ( -derivatives of the functions in the following manner:

a (—1)rqr(r+1)/2 q—a;q
,D7, {U(Z)V(z)}:Z (q_q)( ),

Where U (z) and V (2) are two functions and the fractional g -differential operator , DY  (.) of Weyl type is given by

DEHU@Y, DV (9}
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Where Re(a) <0and
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The basic integration cf. “Gasper and Rehman [2]”, is defined as:

[fdEta)=20-a)> a*f(za™). (1.4)
z k=1
In view of the relation (1.4), operator (1.2) can be expressed as:

qa(lfa)IZ Zfa (1_ q)
Iy (-a)

Dl {f(@)}=

Where Re(a) <0.

iqak (1_qk+l)_a_l f (an—k) , (15)
k=0

In particular, for f(z)=2z"", the equation (1.5) yields to

Dz {27} =Tt
Iy (p)

Where Re(a) <0.

We shall make use of the following notations and definitions in the sequel:

For real or complex @and | g |<1, the q -shifted factorial is defined as:

—ap+a(l—a)/22—p—a ’ (16)
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if n=0
(a q) {(1 a)(1-aq)...(1-aq"1),if neN @.7)

In terms of the g -gamma function, (1.7) can be expressed as

(a;0), = i (a;n();:)l—q)” n>0 (1.8)

Where the g -gamma function cf. Gasper and Rahman, is given by

(9;0)
T (a)= = , .
.(a) ( a_q)w o (1.9)

Where a = 0,-1,-2,....

The X - function introduced by Suland et.al. [8] defined and represented in the following form:

|: | (aj’aj )1,n'[Ti (aji'aji)]nJrl,pi }

N[z] =N} [2] =N =L_|'0(s)zsds

Py QT P 0y, B L7 (00 Bidlpng, | 2701 (1.10)
Where 0 = —1;
ﬁl‘(bj _,3].5)11[1“(1—aj +a;8)
o(s) - - i (1.11)
ZT{HF(]‘ b +ﬂJIS)HF(a"_a S}

We shall use the following notation:
A —( ) [z ( jin® )]n+1,pi B = (bj’ﬁj )l,m [z (bjifﬂji )]m+1,qi
The basic analogue of the X -function in terms of Mellin-Barnes type basic contour integral is in the following manner:

| C R E

J' — = ds (1.12)
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Where
0 -1 1
G a — 1_ a+n — ( . )
(@) {H( q )} —(qa;q)w 1.13

And 0<m<q,0<n<p;a; and fB;areall positive integers. The contour C is a line parallel to Re(ws) =0, with

indentations, if necessary, in such a manner that all the poles of G (qu e ) ,1< j <m, are to the right, and those of
G (ql e S) 1< j<ntothe left of C. The integral converges if Re[slog(z)—logsin zs] < Ofor large values of | S |

on the contour C . That s, if | {arg(z) —w,w;* log | z |} |< 7z where | q <1 log q = —w = —(w, +iw,), W, W, W, are
definite quantities. W, and W, being real.

For 7, =1 r =1, the (X) -function reduces to Fox’s H -function and eq. (1.12) reduces to the ( -analogue of the Fox’s H -

function due to Saxena et. al. [6], namely
ﬁG (qu—/i’js )ﬁG (ql—aj -a;s )7Z'ZS
Ho [z; q Eﬁ,j%] 1 I ' . ds, (1.14)

H G( oA )HG(qa*‘”)smﬁs

j=m+1 j=n+1
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Where 0<m<q,0<n< pand Re[slog(z) —logsinzs]<O0.
For o= ,Bj =1, j=1,...,q the definition (1.14) reduces to the ( -analogue of the Meijer’s G -function due to Saxena et. al.
[6], namely

el )f1e( )
2mle I1 G(ql’b"’s) I1 G(qaﬁs)sin 7

j=m+1 j=n+1

ds (1.15)

H;””q“[z q

(a) m,n
(bl)] G, [

Where 0<m<q,0<n< pand Re[alog(z)—logsinzs]<O0.
Further, if we set N=0and M = (] in the equation (1.15), we get the basic analogue of MacRobert’s E -function due to
Agarwal [1], namely

Where Re[slog(z) —logsin zs] < 0.

1. MAIN RESULTS

In this section, the author will establish certain results associated with the basic analogue of (3X) -function by assigning

suitable values to the function U (z),V (z) and « inthe q -Leibniz rule (1.1). The main results to be established are as under:

( 1)RqR(R+1)/2+/1R (qu;q)R (qz;q)y

)7
Nm.':lv”.+ Tl |:p Zq# A*+(/l i *j| -
pi+L.0;+L7; ( ) (/l 4,k),B RZ:O (q;q)R
N | (20 5l | @)

Where 0<m<g,,0<n< p,Re[slog(z) —logsin zs] <0,k > 0and p being any complex quantity.

b ( 1)R R(R+1)/2+AR (qf,/;q) (qz;q)
)A* R
} é (0;9)5

1 . ~ | @-R,—k), A*
NI;.EIWLT. [ (qu) g (B*,(l,—k)) }
(2.2)

Where 0<m<gq,,0<n< p,Re[slog(z) —logsin zs] <0,k <0and p being any complex quantity.

u-R

Np e | £(207) 08

Proof :To prove the result (2.1) and (2.2), we begin with U (z) = 2 *and
Koy | A%
V@) =8 p2a)d]

In equation (1.1.) to obtain

*]} _ i (_1)RqR(R+l)/2 (qu;q)R
B*

Py (a;9)%

a R
D° {Np. D B}} (2.3)
N view of the definition (1.12), the left hand side of equation (2.3) becomes

Dz dzwnn [ p2ali])

D2z [ 2t
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1 [To(e ) TT6(d ) =
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B 2 i J. r i1 PiJ=l ZD:;’q {Z_(l_kS)}dS ' (24)
Za Z{ H G(ql—bji+ﬂn8) H G(qaj'_ajis)G(ql—S)Sinﬂs}
i=1 | j=m+l j=n+1

On making use of fractional ( -derivative formula (1.6) in the above equation (2.4), we obtain following interesting
transformation for the Nq (.) function after certain simplifications:

. Al Rl DI )
é*:|} = (l_q)/l Z~<'pl.:]£|i,qi+1:rlil' |:,0(Zq/l)k q;‘él-’#(i’:))ﬂ*} ) (25)

- m,n k.
z D:;vq {Z iNPwQHTuT |:pz ’q

Where k >0.

Again, if we take Kk <O, we obtain the following fractional ¢ -derivative formula for the Nq (.) function, namely
A* Z_/1_#(:I_MJr#(l_m/2 m,n+1 k

b= N g [p(zq“) o
B :|} (1_ CI)” p; +1,0; +Lzr

We now substitute and replace by R and then z by Zq“"R respectively, in equation (2.5) to obtain the following

-1 , k. 1-pu-A,-k),A*
sz-f,q{Z N e | P25 Rl IeX)

transformation for the N (.) function:

R(R+1)

m,n - k * ZiR 2 ) m+1,n ] *
z Do':q {N p,v,q,:r,:r |:p(2ql R) q Q*jl} = S_Wbapﬁll’,qiﬂ:ri:r [p(qu )k ; Q‘?Rﬁ?gl] : (2.7)

Further, in view of the result (1.6), one can easily obtain the following relation
DR {Z%} _ Fq(l_"/u_ R)
z ,q
I',(4)
On substituting the values of various expressions involved in the equation (2.3), from equations (2.5), (2.7) and (2.8), we arrive
at the main result (2.1).

The proof of the result (2.2) follows similarly when K < Qand by the usages of the transformation formula (2.6) and the
relation (2.8).

(u-R)A=u-R-22)/2 5 ~2-p+R (2.8)

1. SPECIAL CASES

In this section, we shall consider some special cases of the main results and deduce certain expansion formulae involving the
basic analogue of Fox’s H -function , basic analogue of Meijer’s G -function and basic analogue of MacRobert’s E -
function.

If we set I =1=7,, in the main result (2.1), we obtain the following expansion formula involving Fox’s H -function, namely

- RR+D o ,
_ 2 —p. .
Hm+l,n [p(zq”)kq (aj,aj)l‘pv(ﬂ.,k) :|: H ( 1) q (q ’q)R (q 1q)y7R
p+1,g+1 P (e 2.K) (b5, B g e (q’ q)R
m+1,n <y | @)1, (0.K)
H p+1l,q+1 |:,0(Zq#)k 2A| (R0 )1 J ) (3.1)

Where 0<m<(,0<n< p,Re[slog(z) —logsin zs] <0,k >0and p being any complex quantity.
Similarly, for r =1=7,and k =—1, the main result (2.1) reduces to yet another expansion formula associated with the basic

analogue of Fox’s H -function, namely
R(R+1)

R
(@p-2,-K), (a2 )1 p } _ Z”: (-Dfq 2 (A 9)q @*; q)#—R
R=0 (CHe)R

(@-R~K),(3;,;)1p
(b, B q.(L—K) !

Hia| Paa")5q

(b1, 8 h,q-(1=2,-K)

(3.2)

Hoo [p(zq“)k g

Where 0<m<q,0<n< p,Re[slogz—logsinzs] <0,k <0and p being any complex quantity.
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If we set =4 =1j=1..,p;i=1...,qand K =1, in (3.1), we obtain the following expansion formula involving

Meijer’s G, (.) function, namely

R(R+) o
(3 D p () }_ L (D% 2 (@ 9):(9%9), ¢
(DB Dhg R-0 (a;9)x

(aj.1),5,(01)
(R, 1) g |’

Gyitaa| P2aia

Gyitaa P2a"; 63
Where 0<m<¢,0<n< p,Re[slogz—logsinzs] <0and p being any complex quantity.
Similarly, for & =4 =1j=1..p;i=1..,gand K=—1, the result (3.2) reduces to yet another expansion formula

associated with the basic analogue of Meijer’s G (.) function, namely
Ry g R N

Q-u-21),(a ,1)} _ Z”: (-D"q (a“;a)x(q 1Q)/,_R

(1) q.(1-22) | .

ke = (00

(@R Dy
(CEVICEVRR

Gpitan [p/ (29");q

G;‘;T;il[p/ (z9“);q

Where 0<m<(,0<n< p,Re[slogz—logsinzs] <0and p being any complex quantity.

(3.4

Finally, if we set N=0and m = the result (3.3), yields to an expansion formula involving MacRobert’s E, (.) function,

namely
. RRHD , .o . i
u _1 2 —U . .
Ela+Lb;, u+A:p+La;,A:pzq“]= SN (470 (a7:9),, «
R (9:9)x
E,[a+Lb;,R:p+la;,0:pzq"], (3.5)

Where Re[slogz—logsinzs]<0and p being any complex quantity.
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