

$f - \gamma - PSg - Closed$ sets in Fine Topological **Spaces**

¹P.L. Powar, ²K. Rajak, ³R. Kushwaha

¹Professor, Department of Mathematics and Computer Science, Rani Durgawati University,

Jabalpur, India.

²Assistant Professor, Department of Mathematics, St. Aloysius College (Auto.), Jabalpur, India.

³Department of Mathematics and Computer Science, Rani Durgawati University, Jabalpur, India.

Abstract: In this paper, we have defined a new class of sets called $f\gamma - P_s$ – generalized closed sets using $f\gamma$ – P_S –open set and $f\gamma - P_S$ –closure of a set in a fine topological space. Also, we have defined some new functions namely $f\gamma - P_S - g$ -continuous, $f\gamma - P_S - g$ -closed and $f\gamma - P_S - g$ -open. Some properties of these functions are explored.

AMS Subject Classification: 54XX, 54CXX.

Key Words: Fine-open sets, $f\gamma - P_s$ -open set, $f\gamma - P_s$ -closed set, $f\gamma - P_s - g$ -continuous function.

I. **INTRODUCTION**

Kasahara [8] defined the concept of α –closed graphs of an operation on the topology τ defined over X. Later, Ogata [11] renamed the operation α as γ operation on τ . He defined γ – open sets and introduced the notion of τ_{γ} which is the class of all γ –open sets in a topological space (X, τ) . Further study by Krishnan and Balachandran ([9],[10]) defined two types of sets called γ – preopen and γ -semiopen sets. The notion of $\alpha - \gamma$ -open sets have been defined by Kalaivani and Krishnan[7]. Meanwhile, Basu, Afsan and Ghosh [5] defined $\gamma - \beta$ –open sets by using the operation γ on τ . Carpintero, Rajesh and Rosas [6] introduced another notion of γ – open set called $\gamma - b$ – open sets of a topological space (X, τ). Asaad, Ahmad and Omar [4] defined the notion of γ -regular-open sets which lies strictly between the classes of γ –open set and γ -clopen set. They introduced a new class of sets called $\gamma - P_S$ – open sets, and also defined γ – P_s –operations and their properties. They also introduced a new class of sets called $\gamma - P_s$ – generalized closed set using $\gamma - P_S$ -open set and $\tau_{\gamma} - P_S$ -closure of a set and then investigate some of its properties.

Powar P.L. and Rajak K.[12] have introduced finetopological space which is a special case of generalized topological space. This new class of fine-open sets contains all α – open sets, β – open sets, semi-open sets, pre-open sets, regular open sets etc. and fine-irresolute mapping include pre-continuous function, semicontinuous function, α – continuous function, β – continuous function, α – irresolute and β – irresolute function.

In this paper, we have defined a new class of sets called $f\gamma - P_S$ -generalized closed sets using $f\gamma - P_S$ -open set and $f\gamma - P_S$ -closure of a set in a fine topological space. Also, we have defined some new functions namely $f\gamma - P_S - g - continuous$, $f\gamma - P_S - g - closed$ and f $f\gamma - P_S - g - open$. Some properties of these functions have been investigated.

Π. **PRELIMINARIES**

Throughout this paper, spaces (X, τ) and (Y, σ) always mean topological spaces

on which no separation axioms assumed unless explicitly defined.

Definition 2.1. An operation γ on the topology τ on X is a mapping $\gamma: \tau \to P(X)$ such that $U \subseteq \gamma(U)$ for each $U \in \tau$, where P(X) is the power set of X and $\gamma(U)$ denotes the value of y at U.

Definition 2.2. Let (X, τ) be a topological space and γ be an operation on τ . A subset A of X is said to be:

- 1. γ open set if for each $x \in A$ there exist an open set U such that $x \in U$ and $\gamma(U) \subseteq A$. τ_{γ} denotes the set of all γ –open sets in (X, τ). The complement of γ –open set is called a γ –closed set.
- 2. γ -regular-open if A = τ_{γ} int(τ_{γ} cl(A)) [4].
- 3. γ -preopen if $A \subseteq \tau_{\gamma} int(\tau_{\gamma} cl(A))[9]$.

4. γ -semiopen if A $\subseteq \tau_{\gamma} - cl(\tau_{\gamma} - int(A))$ [10].

5. $\alpha - \gamma - \text{ open if } A \subseteq \tau_{\gamma} - \text{int}(\tau_{\gamma} - \gamma)$ $cl(\tau_v$ int(A))) [7].

6.
$$\gamma - b - \text{open if}$$

 $A \subseteq \tau_{\gamma} - cl(\tau_{\gamma} - \text{int}(A)) \cup \tau_{\gamma} - int(\tau_{\gamma} - cl(A))$
[6].

ſ

7. $\gamma - \beta$ open if $A \subseteq \tau_{\gamma} - cl(\tau_{\gamma} - int(\tau_{\gamma} - cl(A)))$ [5].

8. γ -clopen if it is both γ -open and γ -closed.

9. γ -dense if τ_{γ} - cl(A) = X.

Definition 2.3. [7] The complement of γ –regular-open, γ –preopen, γ –semiopen $\alpha - \gamma$ –open, $\gamma - b$ –open and $\gamma - \beta$ – open set is said to be γ – regular-closed, γ – preclosed, γ – semiclosed, $\alpha - \gamma$ – closed, γ – b –closed and $\gamma - \beta$ –closed, respectively.

Definition 2.4. [1] A γ – preopen subset A of a topological space (X, τ) is called γ – P_S –open if for each $x \in A$, there exists γ –semiclosed set F such that $x \in F \subseteq A$. The complement of a γ – P_S –open set is called a γ – P_S –closed.

The class of all $\gamma - P_S - open$ and $\gamma - P_S - closed$ subsets of a topological space (X, τ) are denoted by $\tau_{\gamma} - P_SO(X)$ and $\tau_{\gamma} - P_SC(X)$, respectively.

Definition 2.5. [1] Let A be any subset of a topological space (X, τ) and γ be an peration on τ . Then:

1. The $\tau_{\gamma} - P_S$ – interior of A is defined as the union of all $\gamma - P_S$ –open sets of X contained in A and it is denoted by $\tau_{\gamma} - P_S$ int(A).

2. The $\tau_{\gamma} - P_S$ -closure of A is defined as the intersection of all $\gamma - P_S$ -closed sets of X contained A and it is denoted by $\tau_{\gamma} - P_S$ cl(A).

3. τ_{γ} –preclosure and $\tau_{\alpha-\gamma}$ –closure of A is defined as the intersection of all γ –preclosed and $\alpha - \gamma$ –closed sets of X containing A and it is denoted by τ_{γ} – pcl(A) and $\tau_{\alpha-\gamma}$ – cl(A), respectively.

Remark 2.1. [2] Let (X, τ) be a topological space and γ be an operation on τ . For any subset A of a space X. The following statements hold:

1. A is $\gamma - P_S$ -closed if and only if $\tau_{\gamma} - P_S cl(A) = A$.

2. A is $\gamma - P_S$ -open if and only if $\tau_{\gamma} - P_S$ int(A) = A.

 $\begin{array}{ll} 3 \quad \tau_{\gamma} - P_{S}cl(X \backslash A) = X \backslash (\tau_{\gamma} - P_{S}int(A)) \quad \mbox{ and } \quad \tau_{\gamma} - P_{S}int(X \backslash A) = X \backslash (\tau_{\gamma} - P_{S}cl(A)). \end{array}$

Definition 2.6.[2] Let (X, τ) be a topological space and γ be an operation on τ . A subset A of X is called:

1. γ – pre-generalized closed (γ – pre g-closed) if τ_{γ} – pcl(A) \subseteq G whenever A \subseteq Gand G is a γ –preopen set in X.

2. $\alpha - \gamma$ - generalized closed ($\alpha - \gamma - g - closed$) if $\tau_{\alpha-\gamma} - cl(A) \subseteq G$ whenever $A \subseteq G$ and G is a $\alpha - \gamma$ -open set in X.

Definition 2.7. [2] Let (X, τ) and (Y, σ) be two topological spaces and γ be an operation on τ . A functiof: $(X, \tau) \rightarrow$

 (Y, σ) is calle $\gamma - P_S$ – continuous if the pre-image of every closed set in Y is $\gamma - P_S$ –closed set in X.

Definition 2.8.[2] Let A be any subset of a topological space (X, τ) with an operation γ on τ is called $\gamma - P_S - generalized$ closed $(\gamma - P_S - g - closed)$ if $\tau_{\gamma} - P_S cl(A) \subseteq G$ whenever $A \subseteq G$ and G is a $\gamma - P_S$ -open set in X.

The class of all $\gamma - P_S - g$ -closed sets of X is denoted by $\tau_{\gamma} - P_S GC(X)$ and the class of all $\gamma - P_S - g$ -open sets of X is denoted by $\tau_{\gamma} - P_S GO(X)$.

A set A is said to be $\gamma - P_S$ -generalized open ($\gamma - P_S - g - open$) if its complement $\gamma - P_S - g$ -closed. Or equivalently, a set A is $\gamma - P_S - g$ -open if $F \subseteq \tau_{\gamma} - P_S int(A)$ whenever $F \subseteq A$ and F is a $\gamma - P_S$ -closed set in X.

Definition 2.9. [2] Let (X, τ) and (Y, σ) be two topology spaces and γ be an operation on τ . A function $f : (X, \tau) \rightarrow (Y, \sigma)$ is called $\gamma - P_S - g$ -continuous if the pre-image of every closed set in Y is $\gamma - P_S - g$ -closed set in X.

Definition 2.10. [12] Let (X, τ) be a topological space we define $\tau(A_{\alpha}) = \tau_{\alpha}$ (say) = { $G_{\alpha}(\neq X) : G_{\alpha} \cap A_{\alpha} \neq \varphi$, for $A_{\alpha} \in \tau$ and $A_{\alpha} \neq \varphi$, X, for some $\alpha \in J$, where J is the index set. } Now, define $\tau_{f} = \{\varphi, X\} \cup_{\alpha} \{\tau_{\alpha}\}$. The above collection τ_{f} of subsets of X is called the fine collection of subsets of X and (X, τ, τ_{f}) is said to be the fine space X generated by the topology τ on X.

Definition 2.11.[12] A subset U of a fine space X is said to be a fine-open set of X, if U belongs to the collection τ_f and the complement of every fine-open set of X is called the fine-closed set of X and we denote the collection by F_f .

Remark 2.2. Let (X, τ, τ_f) be a fine space the arbitrary union of fine open set in X is fine open in X.

Remark 2.3. The intersection of two fine-open sets need not be a fine-open set.

Definition 2.12. [12] A fine-open set S of a space (X, τ, τ_f) is called:

1. fa –open if S is a –open subset of a topological space (X, τ).

2. fs – open if S is a semi open subset of a topological space (X, τ) .

3. fp –open if S is a pre-open subset of a topological space (X, τ) .

4. f β –open if S is a β –open subset of a topological space (X, τ).

5. fr –open if S is a regular-open subset of a topological space $(X,\tau).$

6. f –clopen (fine-clopen) if S is both fine-open and fine-closed subset of a topological space (X, τ) .

Definition 2.13. Let A be the subset of a fine space X, the fine interior of A is defined as the union of all fine-open sets contained in the set A i.e. the largest fine-open set contained in the set A and is denoted by $f_{int}(A)$.

Definition 2. 14. Let A be the subset of a fine space X, the fine closure of A is defined as the intersection of all fineclosed sets containing the set A i.e. the smallest fine-closed set containing the set A and is denoted by $f_{cl}(A)$.

Definition 2.15. A function $f : (X, \tau, \tau_f) \rightarrow (Y, \tau', \tau'_f)$ is called fine-irresolute if $f^{-1}(V)$ is fine-open in X for every fine-open set V of Y.

Definition 2.16. A function $f: (X, \tau, \tau_f) \rightarrow (Y, \tau', \tau'_f)$ is called fine-irresolute (f –irresolute) homeomorphism if

(1) f is one-one and onto.

(2) Both the function f and inverse function $f^{-1}: (Y, \tau', \tau'_f) \to (X, \tau, \tau_f)$ are f-irresolute.

III. $f\gamma - P_s$ –GENERALIZED CLOSED SETS

In this section, we define a new class of sets called $f\gamma - P_S$ –generalized closed sets using $f\gamma - P_S$ –open set and $f\gamma - P_S$ –closure of set. We also study some of the basic properties of there sets.

Definition 3.1. Let (X, τ, τ_f) be a fine topological space, an operation γ on the fine topology τ_f is a mapping from τ_f on to the power set P(X) of X such that $U \subseteq \gamma(U)$ for each $U \in \tau_f$, where $\gamma(U)$ denotes the value of γ at U.

Example 3.1. Let $X = \{a, b, c\}$ with the topology $\tau = \{\phi, \{b\}, X\}$ and $\tau_f = \{\phi, \{b\}, \{b, c\}, \{a, b\}, X\}$. Define an operation $\gamma: \tau_f \to P(X)$ by $\gamma(A) = cl(A)$ for all $A \in \tau_f$. Then $A \subseteq \gamma(A)$ for all $A \in \tau_f$.

Definition 3.2. Let (X, τ, τ_f) be a fine topological space and γ be an operation on τ_f . A subset A of X is said to be $f\gamma$ – open set if for each $x \in A$ there exist an fine-open set U such that $x \in U$ and $\gamma(U) \subseteq A$. $f\tau_{\gamma}$ denotes the set of all $f\gamma$ –open sets in (X, τ, τ_f) . Complement of $f\gamma$ –open set is $f\gamma$ – closed set and the collection is denoted by $F\tau_{\gamma}$.

Example 3.2. Let $X = \{a, b, c\}$ with the topology $\tau = \{\phi, \{b\}, X\}$ and $\tau_f = \{\phi, \{b\}, \{b, c\}, \{a, b\}, X\}$. Define an operation $\gamma: \tau_f \to P(X)$ by $\gamma(A) = A$ for all $A \in \tau_f$. f $\tau_f = \{\phi, \{b\}, \{b, c\}, \{a, b\}, X\}$, $F\tau_{\gamma} = \{\phi, \{a, c\}, \{a\}, \{c\}, X\}$.

Definition 3.3. Let (X, τ, τ_f) be a fine topological space and γ be an operation on τ_f . Then, $f\tau_f$ – interior of A is defined as the union of all $f\gamma$ –open sets contained in A and it is denoted $f\tau_{\gamma}$ – int(A). That is $f\tau_{\gamma}$ – int(A) =U {U: U is a $f\gamma$ –open set and U \subseteq A}.

Definition 3.4. Let (X, τ, τ_f) be a fine topological space and γ be an operation on τ_f . Then, $f\tau_f$ – closure of A is defined as the intersection of all $f\gamma$ –closed sets containing A and it is denoted $f\tau_{\gamma} - cl(A)$. That is $f\tau_{\gamma} - cl(A) = \cap$ {F: F is a fy -closed set and $A \subseteq F$ }.

Example 3.3. Let $X = \{a, b, c\}$ with the topology $\tau = \{\varphi, \{b\}, X\}$ and $\tau_f = \{\varphi, \{b\}, \{b, c\}, \{a, b\}, X\}$. Define an operation $\gamma: \tau_f \to P(X)$ by $\gamma(A) = A$ for all $A \in \tau_f$. $f\tau_f = \{\varphi, \{b\}, \{b, c\}, \{a, b\}, X\}$, $F\tau_{\gamma} = \{\varphi, \{a, c\}, \{a\}, \{c\}, X\}$. If $S = \{b, c\} \subseteq X$, then $f\tau_{\gamma} - int(S) = \{b\}$ and $f\tau_{\gamma} - cl(S) = X$.

Definition 3.5. Let (X, τ, τ_f) be a fine topological space and γ be an operation on τ_f . A subset A of X is said to be:

1. $f\gamma$ -regular-open if $A = f\tau_{\gamma} - int(f\tau_{\gamma} - cl(A))$.

- 2. $f\gamma$ -preopen if $A \subseteq f\tau_{\gamma} int(f\tau_{\gamma} cl(A))$.
- 3. $f\gamma$ semiopen if $A \subseteq f\tau_{\gamma} cl(f\tau_{\gamma} int(A))$.

4.
$$f\alpha - \gamma - open \quad \text{if} \qquad A \subseteq f\tau_{\gamma} - int(f\tau_{\gamma} - cl(f\tau_{\gamma} - int(A))).$$

5
$$f\gamma - b - open$$
 if
 $A \subseteq f\tau_{\gamma} - cl(f\tau_{\gamma} - int(A)) \cup f\tau_{\gamma} - int(f\tau_{\gamma} - cl(A)).$

6.
$$f\gamma - \beta - open$$
 if $f\tau_{\gamma} - cl(f\tau_{\gamma} - int(f\tau_{\gamma} - cl(A)))$.

7. $f\gamma - clopen$ if it is both $f\gamma - open$ and $f\gamma - closed$.

8.
$$f\gamma$$
 –dense if $f\tau_{\gamma}$ – cl(A) = X.

 $A \subseteq$

Example 3.4. Let $X = \{a, b, c\}$, with topology $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and

$$\label{eq:tau} \begin{split} \tau_f = \left\{\varphi, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, c\}\right\} \text{ define an operation } \\ \gamma \text{ on } \tau_f \text{ such that } \end{split}$$

$$\gamma(A) = \begin{cases} A & \text{if } A = \{a\}\\ A \cup \{c\} & \text{if } A \neq \{a\} \end{cases}$$

for every $A \in \tau_f$. Set of all $f\gamma$ – open sets $f\tau_{\gamma} = \{\varphi, X, \{a\}, \{b, c\}, \{a, c\}\}$ and set of all $f\gamma$ – closed sets $F\tau_{\gamma} = \{\varphi, X, \{b, c\}, \{a\}, \{b\}\}$. If $A = \{a, b\}$ then $f\tau_{\gamma} - int(f\tau_{\gamma} - cl(A)) = X \Rightarrow A \subseteq f\tau_{\gamma} - int(f\tau_{\gamma} - cl(A))$

hence, A is $f\gamma$ – preopen and also $f\gamma - \beta$ – open and $f\gamma$ – dense set. If A = {a} or {b, c} both are $f\gamma$ – clopen because they are both $f\gamma$ – open and $f\gamma$ – closed.

Remark 3.1. Every γ – open, γ – regular open, γ – preopen is $f\gamma$ – open, $f\gamma$ – regular open, $f\gamma$ – preopen respectively, but converse is not necessarily true.

$$\gamma(A) = \begin{cases} A & \text{if } A = \{a\} \\ A \cup \{c\} & \text{if } A \neq \{a\} \end{cases}$$

for every $A \in \tau_{f.}$ Set of all $f\gamma$ – open sets $f\tau_{\gamma} = \{\phi, X, \{a\}, \{b, c\}, \{a, c\}\}$ and set of all $f\gamma$ – closed sets $F\tau_{\gamma} = \{\phi, X, \{b, c\}, \{a\}, \{b\}\}$. Set of all fine γ – preopen sets $f\tau_{\gamma} - PO(X) = \{\phi, X, \{a\}, \{b, c\}, \{a, c\}, \{c\}, \{a, b\}\}$ and $f\tau_{\gamma} - RO(X) = \{\phi, X, \{a\}, \{b, c\}\}$.

- Set of all γ open sets $\tau_{\gamma} = \{\varphi, X, \{a\}\}$ then, every γ –open sets are $f\gamma$ –open but, converse is not true.
- Set of all γ preopen sets $\tau_{\gamma} - PO(X) = \{\phi, X, \{a\}, \{a, c\}, \{a, b\}\}$ then, every γ –preopen sets are f γ –preopen but, converse is not true.
- Set of all γ -regular open sets $\tau_{\gamma} RO(X) = \{\varphi, X\}$ then, every γ -regular open sets are $f\gamma$ -regular open, but converse is not true.

Definition 3.6. The complement of $f\gamma$ – regular-open, $f\gamma$ – preopen, $f\gamma$ – semiopen, $f\alpha - \gamma$ – open, $f\gamma$ – b – open and $f\gamma - \beta$ – open set is said to be $f\gamma$ – regular-closed, $f\gamma$ – preclosed, $f\gamma$ – semiclosed, $f\alpha - \gamma$ – closed, $f\gamma$ – b –closed and $f\gamma - \beta$ –closed, respectively.

Definition 3.7. A $f\gamma$ – preopen subset A of a fine topological space (X, τ, τ_f) is called $f\gamma - P_S$ –open if for each $x \in A$, there exists $f\gamma$ – semiclosed set F such that $x \in F \subseteq A$. The complement of a $f\gamma - P_S$ –open set is called a $f\gamma - P_S$ –closed.

The class of all $f\gamma - P_S - open$ and $f\gamma - P_S - closed$ subsets of a fine topological space (X, τ, τ_f) are denoted by $f\tau_\gamma - P_SO(X)$ and $f\tau_\gamma - P_SC(X)$, respectively.

Definition 3.8. Let A be a subset of a fine space X, we say that a point $x \in X$ is a $f\gamma - P_S$ –limit point of A if every $f\gamma - P_S$ –open set of X containing x must contains at least one point of A other than x.

Example

Let in Engi

 $X = \{a, b, c\}, \ \tau = \left\{\varphi, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}\right\} \quad \text{and} \quad \text{fine} \\ \text{space}$

3.6.

$$\label{eq:tau} \begin{split} \tau_f &= \left\{\varphi, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{c, a\}\right\} \quad \text{define} \qquad \text{an} \\ \text{operation } \gamma \text{ on } \tau_f \text{ such that} \end{split}$$

$$\gamma(A) = \begin{cases} A & \text{if } a \in A \\ cl(A) & \text{if } a & \text{not in } A \end{cases}$$

 $\label{eq:relation} \begin{array}{ll} {\rm for} & {\rm every} & A \in \tau_f. \ f\tau_\gamma = f\tau_\gamma - PO(X) = f\tau_\gamma - P_SO(X) = \\ P(X). \end{array}$

$$\gamma(A) = \begin{cases} A & \text{if } A = \{a\} \\ A \cup \{c\} & \text{if } A \neq \{a\} \end{cases}$$

$$\begin{split} &\text{for every } A \in \tau_f \text{. Set of all } f\gamma \text{-open sets } f\tau_\gamma = \\ &\left\{\varphi, X, \{a\}, \{b, c\}, \{a, c\}\right\} \text{ and set of all } f\gamma \text{-closed sets } \\ &F\tau_\gamma = \left\{\varphi, X, \{b, c\}, \{a\}, \{b\}\right\}. \end{split}$$

Set of all fine γ – preopen sets $f\tau_{\gamma} - PO(X) = \{\phi, X, \{a\}, \{b, c\}, \{a, c\}, \{c\}, \{a, b\}\}$. Set of all fine γ – semiopen sets $f\tau_{\gamma} - SO(X) = \{\phi, X, \{a\}, \{b, c\}, \{a, c\}\}$ and $f\tau_{\gamma} - SC(X) = \{\phi, X, \{b, c\}, \{a\}, \{b\}\}$. Then the class of all $f\gamma - P_S$ – open sets $f\tau_{\gamma} - P_SO(X) = \{\phi, X, \{a\}, \{b, c\}\}$ and the class of $f\gamma - P_S$ – closed sets $f\tau_{\gamma} - P_SC(X) = \{\phi, X, \{a\}, \{b, c\}\}$.

Definition 3.9. Let A be any subset of a fine topological space (X, τ, τ_f) and γ be an peration on τ_f . Then:

1. The $f\tau_{\gamma} - P_S$ – interior of A is defined as the union of all $f\gamma - P_S$ – open sets of X contained in A and it is denoted by $f\tau_{\gamma} - P_S$ int(A).

2. The $f\tau_{\gamma} - P_S$ – closure of A is defined as the intersection of all $f\gamma - P_S$ –closed sets of X contained A and it is denoted by $f\tau_{\gamma} - P_S$ cl(A).

3. $f\tau_{\gamma}$ – preclosure and $f\tau_{\alpha-\gamma}$ –closure of A is defined as the intersection of all f γ – preclosed and $f\alpha - \gamma$ – closed sets of X containing A and it is denoted by $f\tau_{\gamma}$ – pcl(A) and $f\tau_{\alpha-\gamma}$ – cl(A), respectively.

Theorem 3.1. Let (X, τ, τ_f) be a fine topological space and γ be an operation on τ_f . For any subset A of a space X. The following statements hold:

1. A is $f\gamma - P_S$ -closed if and only if $f\tau_{\gamma} - P_S cl(A) = A$.

2. A is $f\gamma - P_S$ —open if and only if $f\tau_{\gamma} - P_Sint(A) = A$.

3. $f\tau_{\gamma} - P_{S}cl(X \setminus A) = X \setminus (f\tau_{\gamma} - P_{S}int(A))$ and $f\tau_{\gamma} - P_{S}int(X \setminus A) = X \setminus (f\tau_{\gamma} - P_{S}cl(A)).$

Proof:

1. Let A be a $f\gamma - P_S$ -closed and $x \in A$) $\Rightarrow x \in f\tau_{\gamma} - P_S cl(A) \Rightarrow A \subseteq f\tau_{\gamma} - P_S cl(A)$. If $x \in f\tau_{\gamma} - P_S cl(A)$ such that x is $f\gamma - P_S - limit$ point, since A is $f\gamma - P_S - closed$ set then $x \in A \Rightarrow f\tau_{\gamma} - P_S cl(A) \subseteq A$. Hence $f\tau_{\gamma} - P_S cl(A) = A$.

Conversely, if $f\tau_{\gamma} - P_{S}cl(A) = A$ then obviously A is $f\gamma - P_{S}$ -closed.

2. Let A be a $f\gamma - P_S$ -open and $f\tau_{\gamma} - P_Sint(A)$ is defined as the union of all $f\gamma - P_S -$ open subsets. Therefore $A \subseteq f\tau_{\gamma} - P_Sint(A)$ and $f\tau_{\gamma} - P_Sint(A) \subseteq A$ obvious. Hence $f\tau_{\gamma}P_Sint(A) = A$.

Conversely, if $f\tau_{\gamma} - P_{S}int(A) = A$ then obviously A is $f\gamma - P_{S}$ -open set.

3. Since $f\tau_{\gamma} - P_{S}int(A) \subseteq A$ and let $x \in X \setminus (f\tau_{\gamma} - P_{S}int(A)) \Rightarrow x$ not belongs in $f\tau_{\gamma} - P_{S}int(A) \Rightarrow x \in f\tau_{\gamma} - P_{S}cl(X \setminus A) \Rightarrow X \setminus f\tau_{\gamma} - P_{S}int(A) \subseteq f\tau_{\gamma} - P_{S}cl(X \setminus A)$. If $x \in f\tau_{\gamma} - P_{S}cl(X \setminus A) \Rightarrow x$ not belongs in $f\tau_{\gamma} - P_{S}int(A) \Rightarrow x \in X \setminus (f\tau_{\gamma} - P_{S}int(A)) \Rightarrow f\tau_{\gamma} - P_{S}cl(X \setminus A) \subseteq X \setminus (f\tau_{\gamma} - P_{S}int(A))$. Hence $f\tau_{\gamma} - P_{S}cl(X \setminus A) \subseteq X \setminus (f\tau_{\gamma} - P_{S}int(A))$. To prove $f\tau_{\gamma} - P_{S}int(X \setminus A) = X \setminus (f\tau_{\gamma} - P_{S}int(A))$. If $B = X \setminus A$. Then $X \setminus (f\tau_{\gamma} - P_{S}int(B)) = f\tau_{\gamma} - P_{S}cl(X \setminus B)$ $\Rightarrow X \setminus (f\tau_{\gamma} - P_{S}int(X \setminus A) = f\tau_{\gamma} - P_{S}cl(X \setminus A)) =$

.

 $f\tau_{\gamma} - P_{S}cl(A)$. Hence $f\tau_{\gamma} - P_{S}int(X \setminus A) = X \setminus (f\tau_{\gamma} - P_{S}cl(A))$.

Definition 3. 10. Let (X, τ, τ_f) be a fine topological space and γ be an operation on τ_f . A subset *A* of *X* is called:

1. $f\gamma$ – pre-generalized closed ($f\gamma$ – pre g -closed) if $f\tau_{\gamma} - pcl(A) \subseteq G$ whenever $A \subseteq G$ and G is a $f\gamma$ – preopen set in X.

2. $f\alpha - \gamma$ - generalized closed $(f\alpha - \gamma - g - \text{closed})$ if $f\tau_{\alpha-\gamma} - cl(A) \subseteq G$ whenever $A \subseteq G$ and G is a $f\alpha - \gamma$ - open set in X.

Example 3.8. Let $X = \{a, b, c\}$ with the topology $\tau = \{\phi, \{b\}, X\}$ and $\tau_f = \{\phi, \{b\}, \{b, c\}, \{a, b\}, X\}$. Define an operation $\gamma: \tau_f \to P(X)$ by $\gamma(A) = A$ for all $A \in \tau_f$. $f\tau_f = \{\phi, \{b\}, \{b, c\}, \{a, b\}, X\}$,

 $F\tau_{\gamma} = \{\phi, \{a, c\}, \{a\}, \{c\}, X\} \text{ and } f\tau_{f} - PO(X) = \{\phi, \{a\}, \{a, c\}, \{a, b\}, X\}, f\tau_{f} - P_{S}O(X) = \{\phi, X\}, f\tau_{f} - P_{S}C(X) = \{\phi, X\} \text{ and } f\tau_{f} - P_{S}GC(X) = \text{all subsets of } X.$

Theorem 3.2. Given a topological space (X, τ) , consider a fine space (X, τ, τ_f) generated by τ . Then following hold:

1. Every $f\gamma$ -preclosed set is $f\gamma$ - pre - g -closed. 2. Every $f\alpha - \gamma$ -closed set is $f\alpha - \gamma$ - g -closed.

Proof:

1. Given A be any $f\gamma$ -preclosed set in a fine space X and $A \subseteq G$ where G is a $f\gamma$ -preopen set in X.

claim: Set *A* is a $f\gamma$ –pre–g –closed set.

Since by the definition, set A is said $f\gamma$ -pre-generalized closed $(f\gamma$ -preg-closed) if $f\tau_{\gamma} - pcl(A) \subseteq G$ whenever $A \subseteq G$ and G is a $f\gamma$ - preopen set in X. Then $f\tau_{\gamma} - pcl(A) \subseteq G$ since A is $f\gamma$ -preclosed set. Therefore, A is $f\gamma$ -pre-g -closed.

2. Given A be any $f\alpha - \gamma$ -closed set in a fine space X and $A \subseteq G$ where G is a $f\alpha - \gamma$ -open set in X.

claim: Set *A* is a $f\alpha - \gamma - g$ -closed set.

Since by the definition, set *A* is said $f\alpha - \gamma$ -generalized closed ($f\alpha - \gamma - g - \text{closed}$) if $f\tau_{\alpha-\gamma} - cl(A) \subseteq G$ whenever $A \subseteq G$ and *G* is a $f\alpha - \gamma$ -open set in *X*. Then $f\tau_{\alpha-\gamma} - cl(A) \subseteq G$ since *A* is $f\alpha - \gamma - \text{closed}$ set. Therefore, *A* is $f\alpha - \gamma - g$ -closed.

Theorem 3.3. Given a topological space (X, τ) , consider a fine space (X, τ, τ_f) generated by τ . Then following hold:

- 1. Every γ –open set is fine-open set.
- 2. Every γ –pre–open set is fine-open set.
- 3. Every γ –semi–open set is fine-open set.
- 4. Every $\alpha \gamma$ open set is fine-open set.
- 5. Every γ –regular–open set is fine-open set.
- 6. Every $f\gamma$ –open set is fine-open set.
- 7. Every $f\gamma$ –regular–open set is fine-open set.
- 8. Every $f\gamma$ –semi–open set is fine-open set.

Proof:

Let (X, τ, τ_f) be the fine space with respect to the topological space (X, τ). Consider A be a non-empty γ -open set then, for each x ∈ A there exists an open set U such that x ∈ U, and γ(U) ⊆ A. Since each x ∈ A belong

in U_{α} , so $A \subseteq U_{\alpha}$ for all $\alpha \in J$. Since U is an open set and $A \cap U \neq \phi$ for $U \in \tau$ and $A \neq \phi \Rightarrow A \in \tau_{\alpha} = \{A: A \cap U_{\alpha} \neq \phi$ for $U_{\alpha} \in \tau$ and $A \neq \phi\} \Rightarrow \tau_{f} = \{\phi, X\} \cup \tau_{\alpha} \Rightarrow A \in \tau_{f}$.

 Let A be a non-empty subset of X and A ∉ τ_f.
 Claim: A is not γ -pre-open set in X. Since, it is given that A ∉ τ_f ⇒ G_α ∩ A = φ ∀ α ∈
 J ⇒ A ⊆ X - G_α ⇒ τ_γ - cl(A) ⊆ X - G_α. Since G_α ∩ X - G_α = φ and τ_γ - cl(A) ⊆ X - G_α ⇒
 G_α ∩ τ_γ - cl(A) = φ ⇒ τ_γ - int(τ_γ - cl(A) = φ ⇒ A is not subset of τ_γ - int(τ_γ - cl(A). Hence A is not γ - pre- open set.
 Let A be a non-empty subset of X and A ∉ τ_f. Claim: A is not γ - semi-open set in X.

Claim: A is not γ -semi-open set in X. Since, it is given that $A \notin \tau_f \Rightarrow G_\alpha \cap A = \phi \ \forall \alpha \in J \Rightarrow \tau_\gamma - int(A) = \phi \Rightarrow \tau_\gamma - cl(\tau_\gamma - int(A)) = \phi \Rightarrow A$ is not subset of $\tau_\gamma - cl(\tau_\gamma - int(A))$. Hence A is not γ -semi-open set.

4. Let *A* be a non-empty subset of *X* and $A \notin \tau_f$. **Claim:** *A* is $\alpha - \gamma$ -open set in *X*. Since, it is given that $A \notin \tau_f \Rightarrow G_\alpha \cap A = \phi \forall \alpha \in J \Rightarrow \tau_\gamma - int(A) = \phi \Rightarrow \tau_\gamma - cl(\tau_\gamma - int(A))) = \phi \Rightarrow \tau_\gamma - int(\tau_\gamma - cl(\tau_\gamma - int(A))) = \phi \Rightarrow A$ is not subset of $\tau_\gamma - int(\tau_\gamma - cl(\tau_\gamma - int(A)))$. Hence *A* is not $\alpha - \gamma$ -semi -open set.

5. Let *A* be a non-empty subset of *X* and $A \notin \tau_f$.

Claim: A is not γ –regular–open set in X.

Since, it is given that $A \notin \tau_f \Rightarrow G_\alpha \cap A = \phi \ \forall \alpha \in J \Rightarrow A \subseteq X - G_\alpha \Rightarrow \tau_\gamma - cl(A) \subseteq X - G_\alpha$. Since $G_\alpha \cap X - G_\alpha = \phi$ and $\tau_\gamma - cl(A) \subseteq X - G_\alpha \Rightarrow G_\alpha \cap \tau_\gamma - cl(A) = \phi \Rightarrow \tau_\gamma - int(\tau_\gamma - cl(A) = \phi \Rightarrow A \neq \tau_\gamma - int(\tau_\gamma - cl(A)$. Hence A is not γ - regular- open set.

6. Let (X, τ, τ_f) be the fine space with respect to the topological space (X, τ) . Consider A be a non-empty

 $f\gamma$ -open set then, for each $x \in A$ there exists an f -open set U such that $x \in U$, and $\gamma(U) \subseteq A$. Since each $x \in A$ belong in U_{α} , so $A \subseteq U_{\alpha}$ for all $\alpha \in J$. Since

 $U \text{ is an } f - \text{ open set and } A \cap U \neq \phi \text{ for } U \in \tau_f \text{ and} \\ A \neq \phi \Rightarrow A \in \tau_\alpha = \{A: A \cap U_\alpha \neq \phi \text{ for } U_\alpha \in \tau_f \text{ and} \\ A \neq \phi\} \Rightarrow \tau_f = \{\phi, X\} \cup \tau_\alpha \Rightarrow A \in \tau_f.$

7. Let *A* be a non-empty subset of *X* and $A \notin \tau_f$. **Claim:** *A* is not $f\gamma$ –regular–open set in *X*. Since, it is given that $A \notin \tau_f \Rightarrow G_\alpha \cap A = \phi \forall \alpha \in$ $J \Rightarrow A \subseteq X - G_\alpha \Rightarrow f\tau_\gamma - cl(A) \subseteq X - G_\alpha$. Since $G_\alpha \cap X - G_\alpha = \phi$ and $f\tau_\gamma - cl(A) \subseteq X - G_\alpha \Rightarrow G_\alpha \cap$ $f\tau_\gamma - cl(A) = \phi \Rightarrow f\tau_\gamma - int(f\tau_\gamma - cl(A) = \phi \Rightarrow$

 $A \neq f\tau_{\gamma} - int(f\tau_{\gamma} - cl(A))$. Hence A is not $f\gamma$ – regular – open set.

8. Let *A* be a non-empty subset of *X* and $A \notin \tau_f$. **Claim:** *A* is not $f\gamma$ –semi–open set in *X*. Since, it is given that $A \notin \tau_f \Rightarrow G_\alpha \cap A = \phi \forall \alpha \in J \Rightarrow f\tau_\gamma - int(A) = \phi \Rightarrow f\tau_\gamma - cl(f\tau_\gamma - int(A)) =$

 $\phi \Rightarrow A$ is not subset of $f\tau_{\gamma} - cl(f\tau_{\gamma} - int(A))$. Hence A is not $f\gamma$ -semi -open set.

Definition 3.11. Let (X, τ, τ_f) and (Y, σ, σ_f) be two fine topological spaces and γ be an operation on τ_f . A function $f:(X, \tau, \tau_f) \to (Y, \sigma, \sigma_f)$ is called $f\gamma - P_S$ -continuous if the pre-image of every f -closed set in Y is $f\gamma - P_S$ -closed set in X.

Example 3.9. In example 3.7., we have class of all all $f\gamma - P_S - open$ sets $f\tau_{\gamma} - P_SO(X) = \{\phi, X, \{a\}, \{b, c\}\}$ and the class of $f\gamma - P_S - closed$ sets $f\tau_{\gamma} - P_SC(X) = \{\phi, X, \{a\}, \{b, c\}\}$. Let $Y = \{b, c\}$ and $\sigma = \{\phi, Y, \{c\}\}, \sigma_f = \{\phi, Y, \{c\}\}$ and $F\sigma_f = \{\phi, Y, \{b\}\}$, define a mapping $f: (X, \tau, \tau_f) \rightarrow (Y, \sigma, \sigma_f)$ by f(a) = b, f(b) = c, f(c) = c. It is clear that pre image of each f - closed set in Y is $f\gamma - P_S$ - closed set in X.

Definition 3.12. Let *A* be any subset of a fine topological space (X, τ, τ_f) with an operation γ on τ_f is called $f\gamma - P_S$ – generalized closed $(f\gamma - P_S - g - \text{closed})$ if $f\tau_{\gamma} - P_S cl(A) \subseteq G$ whenever $A \subseteq G$ and *G* is a $f\gamma - P_S$ – open set in *X*.

The class of all $f\gamma - P_S - g$ -closed sets of X is denoted by $f\tau_{\gamma} - P_SGC(X)$ and the class of all $f\gamma - P_S - g$ -open sets of X is denoted by $f\tau_{\gamma} - P_SGO(X)$.

A set A is said to be $f\gamma - P_S$ -generalized open $(f\gamma - P_S - g - \text{open})$ if its complement $f\gamma - P_S - g$ g - closed. Or equivalently, a set A is $f\gamma - P_S - g$ g - open if $F \subseteq f\tau_{\gamma} - P_Sint(A)$ whenever $F \subseteq A$ and F is a $f\gamma - P_S$ -closed set in X.

Example 3.10. Let $X = \{a, b, c\}$ with topology $\tau = \{\phi, X, \{b\}\}$ and fine space $\tau_f = \{\phi, X, \{b\}, \{a, b\}, \{b, c\}\}$ define an operation γ on τ_f such that $\gamma(A) = \{A \ if \ c \in A \ cl(A) \ if \ c \notin A \$ for every $A \in \tau_f$. Set of all fine $-\gamma$ - open sets $f\tau_f = \{\phi, X, \{b, c\}\} = f\tau_f - SO(X)$ and $f\tau_f - P_SO(X) = \{\phi, X\}, f\tau_\gamma - P_SGO(X) = P(X).$

Lemma 3.1. Every $f\gamma - P_S$ -closed set is $f\gamma - P_S - g$ -closed.

Proof : Given *A* be any $f\gamma - P_S$ – closed set in a fine space *X* and $A \subseteq G$ where *G* is a $f\gamma - P_S$ – open set in *X*.

claim: Set *A* is a $f\gamma - P_S - g$ -closed set.

Since by the definition, set A is said $f\gamma - P_S$ -generalized closed $(f\gamma - P_S - g - \text{closed})$ if $f\tau_{\gamma} - P_Scl(A) \subseteq G$ whenever $A \subseteq G$ and G is a $f\gamma - P_S$ -open set in X. Then $f\tau_{\gamma} - P_Scl(A) \subseteq G$ since A is $f\gamma - P_S$ -closed set. Therefore, A is $f\gamma - P_S - g$ -closed.

Theorem 3.4. Let (x, τ, τ_f) be a fine topological space and γ be an operation on τ_f . If a subset *A* of *X* is $f\gamma - P_S - g$ - closed and $f\gamma - P_S$ - open, then *A* is $f\gamma - P_S$ - closed.

Proof: Given A is $f\gamma - P_S - g$ - closed and $f\gamma - P_S$ - open in X, then by Definition 3.12, $f\tau_{\gamma} - P_S cl(A) \subseteq A$ and $A \subseteq f\tau_{\gamma} - P_S cl(A)$ is obvious. Hence A is $f\gamma - P_S$ -closed set.

Theorem 3.5. Let (X, τ, τ_f) be a fine topological space and γ be an operation on τ_f . If a subset *A* of *X* is $f\gamma - P_S - g$ - closed and $f\gamma - P_S$ - open and *F* is $f\gamma - P_S$ - closed, then $A \cap F$ is $f\gamma - P_S$ - closed.

Proof: Let *A* be $f\gamma - P_S - g$ -closed and $f\gamma - P_S$ -open in *X*. Then by Theorem 3.4, if *A* is $f\gamma - P_S - g$ -closed and $f\gamma - P_S$ -open, then *A* is $f\gamma - P_S$ -closed and *F* is also $f\gamma - P_S$ - closed that means *A* and *F* both are $f\gamma - P_S$ -closed, then $A \cap F$ is $f\gamma - P_S$ -closed.

Corollary 3. 1. If $A \subseteq X$ is both $f\gamma - P_S - g$ -closed and $f\gamma - P_S$ - open and F is $f\gamma - P_S$ - closed, then $A \cap F$ is $f\gamma - P_S$ - closed.

Proof: Since every $f\gamma - P_S - \text{closed}$ set is $f\gamma - P_S - g - \text{closed}$. g - closed. F is $f\gamma - P_S - g - \text{closed}$ then F is also $f\gamma - P_S - \text{closed}$ set. That means A and F both are $f\gamma - P_S - \text{closed}$ set, then $A \cap F$ is $f\gamma - P_S - g$ -closed.

Theorem 3.6. Let *A* be a subset of fine topological space (X, τ, τ_f) and γ be an operation on τ_f . Then *A* is $f\gamma - P_S - g$ –closed if and only if $f\gamma - P_S cl(A) \setminus A$ does not contain any non-empty $f\gamma - P_S$ –closed set.

Proof: Let *F* be a non-empty $f\gamma - P_S$ -closed set in fine space *X* such that $F \subseteq f\gamma - P_Scl(A) \setminus A$. Then it is clear that $F \subseteq X \setminus A$ implies $A \subseteq X \setminus F$. Since *F* is $f\gamma - P_S$ -closed set implies $X \setminus F$ is $f\gamma - P_S$ -open set and *A* is $f\gamma - P_S - g$ - closed set, then $f\tau_{\gamma} - P_Scl(A) \subseteq X \setminus F$. That is $F \subseteq X \setminus (f\tau_{\gamma} - P_Scl(A))$. Hence $F \subseteq$ $X \setminus (f\tau_{\gamma} - P_Scl(A)) \cap (f\tau_{\gamma} - P_Scl(A)) \setminus A = \phi$. This implies that $F \subseteq \phi$ and $\phi \subseteq F$ obvious, consequently $F = \phi$. This is contradiction. Therefore, *F* is not subset of $f\gamma - P_Scl(A) \setminus A$.

Conversely, let $A \subseteq G$ and G is $f\gamma - P_S - open$ set in X. So $X \setminus G$ is $f\gamma - P_S - closed$ set in X. Suppose that $f\tau_{\gamma} - P_Scl(A)$ not subset of G, then $f\tau_{\gamma} - P_Scl(A) \cap$ $X \setminus G$ is a non-empty $f\gamma - P_S - closed$ set such that $f\tau_{\gamma} - P_Scl(A) \cap X \setminus G \subseteq f\tau_{\gamma} - P_Scl(A) \setminus A$. Contradiction

of hypothesis. Hence $f\tau_{\gamma} - P_S cl(A) \subseteq G$ and so A is $f\gamma - P_S - g$ -closed set.

IV. $f\gamma - P_s - g$ - CONTINUOUS FUNCTIONS

In this section, we have introduced a new class of functions called $f\gamma - P_S - g$ – continuous by using $f\gamma - P_S - g$ – closed set. Some theorems and properties for this function are studied.

Definition 4.1. Let (X, τ, τ_f) and (Y, σ, σ_f) be two fine topological spaces and γ be an operation on τ_f . A function $f: (X, \tau, \tau_f) \to (Y, \sigma, \sigma_f)$ is called $f\gamma - P_S - g$ -continuous if the pre-image of every f -closed set in Y is $f\gamma - P_S - g$ -closed set in X.

Example 4.1. Let $X = \{a, b, c\}$ with topology $\tau =$ $\{\phi, X, \{b\}\}$ and fine space $\tau_f = \{\phi, X, \{b\}, \{a, b\}, \{b, c\}\}$ define an operation γ on τ_f such that $\gamma(A) =$ A if $c \in A$ for every $A \in \tau_f$. Set of all cl(A) if $c \notin A$ fine $-\gamma$ - open sets $f\tau_f = \{\phi, X, \{b, c\}\} = f\tau_f - SO(X)$ $f\tau_f - P_S O(X) = \{\phi, X\}, f\tau_\gamma - P_S GO(X) = P(X).$ and Suppose that $Y = \{1,2,3\}$ and $\sigma = \{\phi, Y, \{1\}, \{1,3\}\}, \sigma_f =$ $\{\phi, Y, \{1\}, \{1,2\}, \{1,3\}, \{3\}, \{2,3\}\}.$ Let $f:(X,\tau,\tau_f) \rightarrow$ (Y, σ, σ_f) be a function defined by f(a) = 1, f(b) =2, f(c) = 3. Then f if $f\gamma - P_S - g$ - continuous, but f is not $f\gamma - P_S$ - continuous since {2,3,} is f - closed in (Y, σ, σ_f) , but $f^{-1}(\{2,3\}) = \{b, c\}$ is not $f\gamma$ – P_S -closed set in (X, τ, τ_f) .

Theorem 4.1. Every $f\gamma - P_s - \text{continuous}$ function is $f\gamma - P_s - g$ -continuous.s

Proof: Let $f:(X, \tau, \tau_f) \to (Y, \sigma, \sigma_f)$ be any $f\gamma - P_S$ - continuous function. Then pre-image of each f -closed set in Y is $f\gamma - P_S$ -closed set in X. By lemma 3.1, every $f\gamma - P_S$ - closed set is $f\gamma - P_S - g$ - closed. Then pre-image of each f -closed set in Y is $f\gamma - P_S - g$ - closed. Then pre-image of each f -closed set in Y is $f\gamma - P_S - g$ - closed.

Converge of the theorem is not true see Example 4.1, f is $f\gamma - P_S - g$ - continuous but not $f\gamma - P_S$ -continuous.

The following result holds directly:

Theorem 4.2. Let γ be an operation on the finetopological space (X, τ, τ_f) . If the functions $f: (X, \tau, \tau_f) \rightarrow$ (Y, σ, σ_f) is $f\gamma - P_S - g$ -continuous and $g: (Y, \sigma, \sigma_f) \rightarrow$ (Z, ρ, ρ_f) is continuous. Then the composition function $g \circ f: (X, \tau, \tau_f) \rightarrow (Z, \rho, \rho_f)$ is $f\gamma - P_S - g$ -continuous.

Definitio 4.2. A function $f: (X, \tau, \tau_f) \to (Y, \tau', \tau_f')$ is called fine- $\gamma - P_S$ –irresolute $(f\gamma - P_S$ –irresolute) map if $f^{-1}(V)$ is fine- $\gamma - P_S$ – open in X for every fine- $\gamma - P_S$ – open set V of Y.

Example 4.2. Let $X = \{a, b, c\}$, with topology $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $\tau_f = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, c\}\}$ define an operation γ on τ_f such that

$$\gamma(A) = \begin{cases} A & if \ A = \{a\} \\ A \cup \{c\} & if \ A \neq \{a\} \end{cases}$$

for every $A \in \tau_{f}$. Set of all $f\gamma$ – open sets $f\tau_{\gamma} = \{\phi, X, \{a\}, \{b, c\}, \{a, c\}\}$ and the class of all $f\gamma - P_S$ – open sets $f\tau_{\gamma} - P_SO(X) = \{\phi, X, \{a\}, \{b, c\}\}$. Let $Y = \{1, 2, 3\}$, with topology $\tau' = \{\phi, Y, \{1\}, \{2\}, \{1, 2\}\}$ and $\tau_f' = \{\phi, Y, \{1\}, \{2\}, \{1, 2\}, \{2, 3\}, \{1, 3\}\}$ define an operation γ on τ_f' such that

$$\gamma(S) = \begin{cases} S & if \ S = \{1\} \\ S \cup \{3\} & if \ S \neq \{1\} \end{cases}$$

for every $S \in \tau'_f$. Set of all $f\gamma$ – open sets $f\tau_{\gamma}' = \{\phi, Y, \{1\}, \{2,3\}, \{1,3\}\}$ and the class of all $f\gamma - P_S$ – open sets $f\tau'_{\gamma} - P_S O(Y) = \{\phi, Y, \{1\}, \{2,3\}\}$. We define a mapping $f: X \to Y$ such that f(a) = 1, f(b) = 2, f(c) = 3. It may be checked that the pre-image of $f\gamma - P_S$ – open sets of Y viz. $\{1\}, \{2,3\}$ are $\{a\}, \{b, c\}$ respectively, which are $f\gamma - P_S$ – open in X. Therefore f is $f\gamma - P_S$ – irresolute, but it is not continuous.

Definition 4.3. A function $f : (X, \tau, \tau_f) \to (Y, \tau', \tau'_f)$ is called fine- $\gamma - P_S$ – irresolute ($f\gamma - P_S$ – irresolute) homeomorphism if

(1) f is one-one and onto.

(2) Both the function f and inverse function $f^{-1}: (Y, \tau', \tau'_f) \to (X, \tau, \tau_f)$ are $f\gamma - P_s$ -irresolute.

Example 4.3. Let $X = \{a, b, c\}$, with topology $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $\tau_f = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, c\}\}$ define an operation γ on τ_f such that

$$\gamma(A) = \begin{cases} A & \text{if } A = \{a\}\\ A \cup \{c\} & \text{if } A \neq \{a\} \end{cases}$$

for every $A \in \tau_{f}$. Set of all $f\gamma$ – open sets $f\tau_{\gamma} = \{\phi, X, \{a\}, \{b, c\}, \{a, c\}\}$ and the class of all $f\gamma - P_S$ – open sets $f\tau_{\gamma} - P_SO(X) = \{\phi, X, \{a\}, \{b, c\}\}$. Let $Y = \{1, 2, 3\}$, with topology $\tau' = \{\phi, Y, \{1\}, \{2\}, \{1, 2\}\}$ and $\tau_{f}' = \{\phi, Y, \{1\}, \{2\}, \{1, 2\}, \{2, 3\}, \{1, 3\}\}$ define an operation γ on τ_{f}' such that

$$\gamma(S) = \begin{cases} S & if S = \{1\} \\ S \cup \{3\} & if S \neq \{1\} \end{cases}$$

for every $S \in \tau'_f$. Set of all $f\gamma$ – open sets $f\tau_{\gamma'} = \{\phi, Y, \{1\}, \{2,3\}, \{1,3\}\}$ and the class of all $f\gamma - P_S$ – open sets $f\tau'_{\gamma} - P_SO(Y) = \{\phi, Y, \{1\}, \{2,3\}\}$. We define a mapping $f: X \to Y$ such that f(a) = 1, f(b) = 2, f(c) =

3. By construction *f* is one-one and onto. It may be seen that the pre-image of $f\gamma - P_S$ – open sets of *Y* viz. {1}, {2,3} are {*a*}, {*b*, *c*} respectively, which are $f\gamma - P_S$ – open in *X*. Therefore *f* is $f\gamma - P_S$ – irresolute. Similarly, it may be checked that the inverse function $f^{-1}: Y \to X$ is also $f\gamma - P_S$ – irresolute. Thus *f* is $f\gamma - P_S$ – irresolute homeomorphism.

REFERENCES

- [1] Asaad B.A., Ahmad N. and Omar Z., $\gamma P_S -$ function in topological spaces, International Journal of Mathematical Analysis 8 (6), 285-300, 2014.
- [2] Asaad B.A., Ahmad N. and Omar Z., $\gamma P_S -$ generalized closed sets and $\gamma P_S T_{1/2}$ spaces, International Journal of Pure and Applied Mathematics, 93 (2), 243-260, 2014.
- [3] Asaad B.A., Ahmad N. and Omar Z., γP_S –open sets in topological spaces, Proceedings of the 1st Innovation and Analytics Conference and Exhibition,UUM Press, Sintok, 75- 80, 2013.
- [4] Asaad B.A., Ahmad N. and Omar Z., γ Regularopen sets and γ –extremally disconnected spaces, Mathematical Theory and Modeling, 3 (12), 132-141,2013.
- [5] Basu C.K., Afsan B.M.U., and Ghosh M.K., A class of functions and separation axioms with respect to an operation, Hacettepe Journal of Mathematics and Statistics, 38 (2), 103-118, 2009.
- [6] Carpintero C., Rajesh N. and Rosas E., Operation-bopen sets in topological spaces, fasciculi mathematici, 48, 13-21, 2012.
- [7] Kalaivani N. and Krishnan G.S.S., On α γ open in Engineerin sets in topological spaces, Proceedings of ICMCM, 6, 370-376, 2009.
- [8] Kasahara S., Operation compact spaces, Math. Japonica, 24 (1), 97-105, 1979.
- [9] Krishnan G.S.S and Balachandran K., On a class of γ preopen sets in a topological spaces, East Asian Math. J., 22 (2), 131-149,2006.
- [10] Krishnan G.S.S and Balachandran K., On γ semiopen sets in topological a topological space, Bull. Cal. Math., 98 (6), 517-530, 2006.
- [11] Ogata H., Operation on topological spaces and associated dtopology, Math.Japonica, 36 (1), 175-184, 1991.
- [12] Powar P.L. and Rajak K., Fine-irresolute Mappings, Journal of Advanced Studies in Topology, 3 (4) , 125-139, 2012.