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Abstract- The paper proposes a novel method to control chaos in brush less DC (BLDC) drive.  A BLDC drive is a 

multivariable nonlinear system. A nonlinear system may exhibit chaotic behaviour for some value of system 

parameters. A BLDC drive also exhibits chaotic behaviour when it is subjected to a particular loading condition and 

input voltage.   When the speed of the BLDC drive becomes chaotic for a particular load, the behaviour may not be 

desirable. There may be two options available.   Either the load for which the drive becomes chaotic is removed or the 

drive is controlled to give the desired periodic behaviour.  With direct feedback method, BLDC drive can be stabilized 

at one of the equilibrium points or it can be stabilized at the neighbourhood of its equilibrium point.  In this paper, the 

equilibrium points of the system are obtained. The simulation result is obtained using MATLAB SIMULINK to 

establish the method of control that stabilises the BLDC drive to the desired period-1 stable state. 
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I. INTRODUCTION 

Chaos is a well-known phenomenon of a nonlinear system.  

Such behaviour is characterized by sensitive dependence on 

initial conditions and existence of positive lyapunov 

exponents.   In these days, it has applications on many fields 

like, communication, laser physics etc. L.N. Lorenz [1] 

reported the existence of chaotic behaviour in a nonlinear 

system in 1963.  N. Hemati [2] showed the existence of 

chaotic behaviour in BLDC motor.   Y.Zhihong et al [3] 

investigated the effect of nonlinearity in BLDC motor. In 

1990, Ott, Grebogi and Yorke [4] developed the method, 

abbreviated as OGY method, to control any unstable 

periodic orbits in the chaotic attractor.  G. Chen et al [5] 

offered an overview of the different interpretation and 

approaches for control of chaos for various nonlinear 

dynamical systems. Methods to control chaos have become 

a primary area of research particularly in nonlinear 

engineering and physical systems. Application of adaptive 

sliding mode control to control chaos in a class of system 

has been proposed [6]. An adaptive controller has been 

proposed in [7] to make the chaotic system robust against 

external disturbances. Continuous control of chaos by self 

controlling feedback was proposed by K. Pyragous [8].  

There is very little work available in the literature about 

study of dynamic and control of chaos in BLDC drive. The 

scheme of sliding mode control was used to control of chaos 

in BLDC motor [9]. The approach of adaptive dynamic 

surface based on neural network with minimum weight was 

applied to BLDC motor for control of chaos [10]. P.P. Ray 

et al [11] carried out investigation on control of chaos in 

BLDC motor. The simulation results of the control scheme 

shows that when the BLDC motor system exhibits chaotic 

behaviour, it can be forced to zero state of the system so 

that the speed of the motor becomes zero.  But to drive the 

speed of BLDC motor to zero is not the objective of the 

present work.   Feedback methods are extensively used to 

stabilize the unstable periodic orbits of any chaotic system. 

In this paper, we propose a direct feedback method to 

control the dynamic behaviour of BLDCM system. By using 

such feedback a BLDC drive  system can be stabilized at its  

nominal  periodic-1  orbit. 

II. THE DESCRIPTION OF BLDCM  

The mathematical representation of BLDC drive system [2] 

in normalised form is described as 
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 Where x1, x2, x3 are state variables representing direct axis 

current, quadratic axis current and angular velocity 

respectively.  
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With 1 , 58.5   55.19 and 0v , the BLDC 

drive  shows chaotic behaviour. Now the transformed 

mathematical model of BLDCM without considering 

any external inputs can be expressed as:  
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System (ii) is a typical class of nonlinear system and 

it can be evident from the simulation results shown in 

Fig-1 to Fig-6. 

      

   Fig. 1. Time response of direct axis current. 

 
Fig. 2. Time response   of quadrature    axis current. 

 
Fig. 3. Time response of transformed angular velocity. 

 

Fig. 4. Phase plane plot 3x versus 2x . 

 

 
Fig. 5. Phase plane plot 3x versus 1x . 

 
Fig. 6. Phase plane plot 1x versus 2x . 

The time plot of direct axis current, quadrature axis current 

and angular speed (Fig. 1, 2 & 3) shows aperiodic long-term 

behavior of the BLDC drive. This is the signature of the 

chaotic behavior.  Moreover, the phase plot shown in Fig. 4, 

5 and 6 shows that the trajectory does not converge to a 

limit cycle but to a strange attractor which is also a 

signature of chaotic behavior.  
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III. THE  CONTROL OF BLDC DRIVE  SYSTEM 

USING  FEEDBACK METHOD. 

System (ii) has three equilibriums points i.e.  0,0,00 S , 

 31.4,31.4,55.181 S  and  31.4,31.4,55.182 S . 

The BLDC drive system is to be stabilized at equilibrium 

point 1S  and the limit cycle surrounding 1S   respectively. 

For that, the angular speed, 
'

3x  , is selected as feedback 

variable.  This feedback variable is added to the third 

equation of (ii), and then the controlled BLDC drive system 

can be described as: 
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where k is the feedback coefficient of the equation shown. 

 

The value of feedback coefficient is found as follows:  

 

Now Jacobian matrix of system (iii) at 1S  is  
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If   is the eigen value, then the characteristics equation of 

system (iv) is 

032
2

1
3  ccc  ………………………….(v) 

 

Where  

8.1035761.19,3529.782,58.7 321  kckckc  

Now according to Routh –Hurwitz criteria,  when 

 0,0,0 321  ccc   and  0321  ccc  ,the real parts of 

all the eigen-values of equation (iv) are negative, then the 

system (iii) will be stabilized at  31.4,31.4,55.181 S . The 

value of k is obtained as 49k . The feedback variable is 

compared with a reference value. The error so obtained is 

multiplied by the gain “k” of the controller.  

With the chosen value of 50k , the plot of different state 

variables obtained from numerical simulation of system (iii) 

is shown in the fig.7, fig.8,  fig.9 and fig 10.    

When the critical value of k, the gain of the controller, is 

greater than 49 i.e. 50, the behavior of the system expressed 

in (iii) is a limit cycle surrounding . By the same way, the 

BLDC drive can also be stabilized at 0S or 2S or at the 

desired limit cycle surrounding 0S or 2S . From numerical 

solutions, we see that the BLDC drive may exhibit desired 

periodic behavior with the application of direct feedback 

controller and the chaotic behavior of BLDC drive 

disappears when control action is applied. 

 

 
Fig. 7.  Time plot  of 1x versus time. 

 

Fig. 8. Time plot of 2x versus time. 

 

Fig. 9.  Time plot of 3x versus time. 
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Fig. 10. Plot 1x versus 2x . 

 

IV. RESULT 

The equilibrium points of the BLDC drive are obtained. 

The range of value of the feedback coefficient,”K’, for 

stable operation of BLDC drive, is obtained from  the 

nature of values of  eigen values of the characteristic 

equation. It is shown that the proportional controller is 

capable of controlling the BLDC drive at the desired 

equilibrium point. The time plot of  the  direct axis current, 

quadrature  axis current and angular speed obtained from 

simulation with Simulink of MATLAB are  shown in Fig: 7, 

8 and 9 respectively.   These time plots clearly show the 

period-1 response of the BLDC drive after application of 

control action.  Moreover, the phase plot of different state 

variables shown in Fig. 10 confirms the period -1 behavior 

by a single loop in the limit cycle.  

V. CONCLUSION 

The proposed feedback controller is capable of controlling 

the chaotic BLDC drive to any desired equilibrium point. 

The strange attractor of BLDC drive has infinite number of 

unstable periodic orbits.  Any desired unstable periodic 

orbit of the BLDC drive can be stabilized by  the proposed 

feedback controller successfully. The value of feedback 

coefficient (K) can be calculated using Jacobian Matrix and 

characteristic equation.   This method is very simple. The 

proposed method can easily be implemented in hardware. 
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