

Increasing Minimal g-open Sets of Type1

G.Venkateswarlu, Research scholar, Dravidian University, Kuppam, Chittore (District),

A.P., India, gvrjkcmaths @gmail.com

V.Amarendra Babu, Department of Mathematics, Acharya Nagarjuna University, Nagarjuna

Nagar, Guntur(District), Andhra Pradesh, India, amarendravelisela@ymail.com

Abstract The definition of minimal open sets of Type1, minimal g-open sets of Type1 was introduced by [12]. In this article we instigate increasing-minimal open sets Type1, increasing-g-open sets of Type1, decreasing-minimal open sets of Type1, balanced-minimal g-open sets of Type1 and also we have proved that the class of i α -open sets (resp. d α -open sets, b α -open sets,) properly contains in the class of i-minimal g-open sets of Type1 and also we investigate some there fundamental properties with several counter examples.:

 $Keywords - i - m_i O(Z, T1), i - m_i gO(Z, T1), d - m_i O(Z, T1), d - m_i gO(Z, T1), b - m_i O(Z, T1), b - m_i gO(Z, T1)$

I. INTRODUCTION

L. Nachbin[6] Topology and order, D.Van Nostrand Inc., Princeton, New Jersy studied increasing [resp. decreasing, balanced] open sets in 1965. K. Bhagya Lakshmi, V. Amarendra Babu, M.K.R.S. Veera kumar [11] studied gaiclosed sets, gαd-closed sets, and gαb-closed sets in topological ordered spaces in 2015.

G.Venkareswarlu, V.Amarendra Babu, and M.K.R.S Veera kumar [12] introduced and studied minimal open sets of Type1 sets, minimal g-open sets of Type1 sets in 2016.

In this paper we introduce increasing-minimal open sets of Type1, Increasing-minimal g-open sets of Type1 (resp. d-minimal g-open sets of Type1) bets and also We have proved that the class of ia-open sets (resp. da-open sets, ba-open sets,) properly contains in the class of i-minimal g-open sets of Type1 and also we investigate some there fundamental properties with several counter examples.

II. PRELIMINARIES

DEFINITION 2.1: A subset A of a topological space (X, T) is called

- 1. a generalized closed set (brifly g-closed [3]) if cl(A)
 ⊆ U whenever A⊆ U and U is open in (X, T). The complement of a g-closed is called g-open set.
- 2. a Ψ -close set [13] if scl(A) whenever A⊆ U and U is sg-open in (X, α). The complement of a Ψ-closed is called Ψ-open set.
- 3. α -open set [7] if A \subseteq int(cl(int(A))) and α -closed if cl(int(cl(A))) \subseteq A.
- 4. B-open set [14] if $A \subseteq cl(int(cl(A)))$ and β -closed if $int(cl(intA))) \subseteq A$.

DEFINITION 2.2: [12] In a topological space (X, T), an open sub set U of X is called a minimal open sets

of Type! If \exists at least one non-empty closed set F such that $F \subseteq U$ or $U = \Phi$.

DEFINITION 2.2: [12] In a topological space (X, T), an open sub set U of X is called a minimal g- open sets

of Type! If \exists at least one non-empty g- closed set F such that $F \subseteq U$ or $U = \Phi$.

DEFINITION 2.3: [11] A sub set A of a topological space (X, T, \leq) is called an ia (brifly da- and ba-open

set) if A is both α -open and increasing (resp. decreasing and balanced) set.

III. 3. MAIN RESULT

Now we state and prove our first main result.

Before that we first introduce an increasing, decreasing and ballenced open sets in minimal g-open set of Type 1 sets and some notations.

DEFINITION 3.1: A subset A of a topological ordered space (Z, T, \leq) is called increasing minimal open sets

of Type1 (brifly i-m_iO(Z, T1)) if A is both increasing and minimal open sets of Type1.

DEFINITION 3.2 A subset A of a topological ordered space (Z, T, \leq) is called increasing minimal g- open sets of **Type1** (brifly i-m_igO(Z, T1)) if A is both increasing and minimal g- open sets of Type1.

DEFINITION 3.3: A subset A of a topological ordered space (Z, T, \leq) is called decreasing minimal g- open sets of Type1 (brifly d-m_igO(Z, T1)) if A is both decreasing and minimal g- open sets of Type1.

DEFINITION 3.4: A subset A of a topological ordered space (Z, T, \leq) is called balanced minimal g- open

sets of Type1 (brifly $b-m_iO(Z, T1)$) if A is both balanced and minimal g- open set of Type1.

Note.3.5:

The collections of all increasing minimal open sets of Type1, increasing minimal g-open sets

Type1, (resp. decreasing and balanced) set in topological ordered space is denoted by $i-m_iO(Z, T1)$, i-

 $\label{eq:migO} \begin{array}{l} m_igO(Z,\,T1) \ (resp. \ d-m_iO(Z,\,T1), \ d-m_igO(Z,\,T1), \ b-m_iO(Z,\,T1), \ b-m_iO(Z,\,T1), \ b-m_igO(Z,\,T1). \end{array}$

THEOREM3.6: In a topological ordered space (Z, T, \leq), every i-m_iO(Z, T1) is an i-open set.

Proof. As for the fact, every i- $m_iO(Z\ ,\ T1)$ is $m_iO(Z,\ T1)$ and that every $m_iO(Z,\ T1)$ is i-open set.

REMARK 3.7: The converse of theorem 3.6 need not be true.

EXAMPLE 3.8: Let Z={ i_1 , i_2 , i_3 } and T= { Φ , Z, { i_1 }, { i_1 , i_2 }, { i_1 , i_3 } } $\leq_7 = \{(i_1, i_1), (i_2, i_2), (i_3, i_3), (i_2, i_1)$ }

 $m_iO(Z,\,T1)\;sets = \{\;\Phi,\!Z,\;\{i_1,\;\,i_2\},\!\{i_1,\;\,i_3\}\;\}$

 $i-m_iO(Z, T1)$ sets = { Φ,Z , { i_1, i_2 }, { i_1, i_3 } }

open sets = { Φ , Z, { i_1 }, { i_1 , i_2 }, { i_1 , i_3 } }

i- open sets = { Φ , Z, { i_1 }, { i_1 , i_2 }, { i_1 , i_3 } }. Then A = { i_1 } is i-open set but not i-m_iO(Z, T1).

THEOREM 3.9: In a topological ordered space (Z, T, \leq) , every d-m_iO(Z, T1) is an d-open set.

Proof: As for the fact, every $d-m_iO(Z, T1)$ is $m_iO(Z, T1)$ and that every $m_iO(Z, T1)$ is d-open set.

REMARK 3.10: The converse of theorem 3.9 need not be true.

EXAMPLE 3.11: Let $Z = \{ i_1, i_2, i_3 \}$ and $T = \{ \Phi, Z, \{i_1\}, \{i_2\}, \{i_1, i_2\} \}$

 $\leq_1 = \{(i_1, i_1), (i_2, i_2), (i_3, i_3), (i_1, i_2), (i_1, i_3), (i_2, i_3) \}.$

 $m_iO(Z,\,T1)=\{\Phi,\,Z\}$

 $d-m_iO(Z, T1) = \{\Phi, Z\}$

open sets = { Φ , Z, { i_1 }, { i_2 }, { i_1 , i₂} }.

d- open sets = { Φ , Z, { i_1 }, { i_2 }, { i_1 , i_2 } }. Then B = { i_1 } is d-open set but not d-m_iO(Z, T1).

THEOREM 3.12: In a topological ordered space (Z, T, \leq) , every b-m_iO(Z, T1) is an b-open set.

Proof: As for the fact, every $b-m_iO(Z, T1)$ is $m_iO(Z, T1)$ and that every $m_iO(Z, T1)$ is b-open set.

REMARK 3.13: The converse of theorem 3.12 need not be true.

EXAMPLE 3.14: Let Z={ i_1 , i_2 , i_3 } and T= { Φ , Z, { i_1 }, { i_2 }, { i_1 , { i_1 , { i_2 }, { i_1 , i_2 } } $\leq_7 = \{(i_1, i_1), (i_2, i_2), (i_3, i_3), (i_2, i_1) \}$.

 $m_iO(Z, T1) = \{\Phi, Z\}$

 $b-m_iO(Z, T1) = \{\Phi, Z\}$

open set = { Φ , Z, { i_1 }, { i_2 }, { i_1 , i_2 } }

b-open sets = { $\Phi,Z,$ {i_1, i_2} }. Then C = {i_1, i_2} is b-open set but not b-m_iO(Z, T1)

The theorems of this sketch are given above.

1.i-m_igO(Z, T1) \Leftrightarrow i-m_iO(Z, T1) \Rightarrow i-open set. 2.d-m_igO(Z, T1) \Leftrightarrow d-m_iO(Z, T1) \Rightarrow d-open set. 3.b-m_igO(Z, T1) \Leftrightarrow b-m_iO(Z, T1) \Rightarrow b-open set.

Diagram3.1

THEOREM 3.15: In a topological ordered space (Z , T, \leq), Arbitary union of i-m_iO(Z, T1) is also i-m_iO(Z, T1).

Proof: $\{\mathcal{A}\}_{i\in\mathcal{I}}$ be a class of $i-m_iO(Z, T1) \Longrightarrow \mathcal{A}_i$ is a $i-m_iO(Z, T1)$ for each $i\in\mathcal{I}$ clearly $\bigcup_{i\in I}A_i$ is an open

set. If $\bigcup_{i \in I} A_i = \Phi$ then there is nothing to prove. Suppose $\bigcup_{i \in I} A_i \neq \Phi$. Then there exist some $j \in \mathcal{I}$ such

that \mathcal{A}_j is a i- $\frac{m_iO(Z, T1)}{m_iO(Z, T1)}$

⇒∃ a non-empty open set \mathcal{B} such that $\mathcal{B}\subseteq A_j \Rightarrow \mathcal{B}\subseteq \bigcup_{i\in I}A_i$. There for $\bigcup_{i\in I}\mathcal{A}_i$ is also a i-m_iO(Z, T1).

THEOREM 3.16: In a topological ordered space (Z, T, \leq) , Arbitary union of i-m_igO(Z, T1) is also i-m_igO(Z, T1).

Proof: follows from the theorem 3.15

THEOREM 3.17: In a topological ordered space (Z, T, \leq), Arbitary union of d-m_igO(Z, T1) is also d-m_igO(Z, T1).

Proof: follows from the theorem3.15

THEOREM 3.18: Arbitary union of $b-m_igO(Z, T1)$ is also $b-m_igO(Z, T1)$.

Proof: follows from the theorem3.15

THEOREM3.19: In a topological ordered space (Z, T, \leq), Finite Intersection of i-m_iO(Z, T1) is also a i-m_iO(Z, T1).

Proof: Let Z={ i_1 , i_2 , i_3 } and T= { Φ , Z, { i_1 }, { i_2 , i_3 }},

 $\leq_1 = \{(i_1, i_1), (i_2, i_2), (i_3, i_3), (i_1, i_2), (i_1, i_3), (i_2, i_3) \}.$

 $m_iO(Z, T1)$ sets = { $\Phi, Z, \{i_1\}, \{i_2, i_3\}$ }

 $i-m_iO(Z, T1)$ sets = { $\Phi, Z, \{i_2, i_3\}$ }

finite intersection of $i-m_iO(Z, T1) = \Phi \in i-m_iO(Z, T1)$.

THEOREM 3.20: In a topological ordered space (Z, T, \leq), Finite Intersection of d-m_igO(Z, T1) is also a d-m_igO(Z, T1).

Proof: Let Z={ i_1 , i_2 , i_3 } and T= { Φ , Z, { i_1 }, { i_2 }, { i_1 , { i_2 }, { i_1 , { i_2 }, { i_2 , i_3 },

 $\leq_3 = \{ (i_1, i_1), (i_2, i_2), (i_3, i_3), (i_1, i_2), (i_1, i_3) \}.$ $m_i gO(Z, T1) \text{ sets} = \{ \Phi, Z, \{i_1\}, \{i_1, i_2\}, \{i_2, i_3\} \}$

 $d\text{-}m_igO(Z,\,T1) \;\; \text{sets} = \; \{\; \Phi,\,Z,\,\{i_1\},\,\{i_1,\;i_2\}\;\}.$

finite intersection of d-m_igO(Z, T1) = $\Phi \in d$ -m_igO(Z, T1).

THEOREM 3.21: In a topological ordered space (Z, T, \leq), Finite Intersection of b-m_igO(Z, T1) is also a b-m_igO(Z, T1).

Proof: Let Z={ i_1 , i_2 , i_3 } and T= { Φ , Z, { i_1 , i_2 } }, $\leq_7 = \{(i_1, i_1), (i_2, i_2), (i_3, i_3), (i_2, i_1) \}.$

 $m_i gO(Z, T1)$ sets = { Φ, Z }

 $b\text{-}m_igO(Z,\,T1) \;\; sets = \; \{\; \Phi, Z\; \}$

finite intersection of $b-m_igO(Z, T1) = \Phi \in b-m_igO(Z, T1)$

THEOREM 3.22: In a topological ordered space (Z, T, \leq) , every i-m_igO(Z, T1) is an i α -open set.

Proof: As for the fact, every $i-m_igO(Z, T1)$ is $i-m_iO(Z, T1)$ and that every $i-m_iO(Z, T1)$ is i α -open set.

REMARK 3.23: The converse of theorem 3.22 need not be true.

EXAMPLE 3.24: Let $Z = \{i_1, i_2, i_3\}$ and $T = \{\Phi, Z, \{i_1\}, \{i_2\}, \{i_1, i_2\}\}$

 $\leq_2 = \{ (i_1, i_1), (i_2, i_2), (i_3, i_3), (i_1, i_2), (i_3, i_2) \}.$

 $m_i gO(Z, T1) \ sets = \ \{ \ \Phi, \ Z \ \}$

 $i-m_igO(Z, T1)$ sets = { Φ , Z }

 α -open sets = { Φ , Z, { i_1 }, { i_2 }, { i_1 , i_2 }

ia- open serts = { Φ , Z, { i_2 }, { i_1 , i_2 }. Then D = { i_1 , i_2 } is ia-open set but not i-m_igO(Z, T1)

THEOREM 3.25: In a topological ordered space (Z, T, \leq), every b-m_igO(Z, T1) is an b α -open set.

Proof: As for the fact, every $b-m_igO(Z, T1)$ is $b-m_iO(Z, T1)$ and that every $b-m_iO(Z, T1)$ is ba-open set.

REMARK 3.26: The converse of theorem 3.25 need not be true.

EXAMPLE 3.27: Let $Z = \{ i_1, i_2, i_3 \}$ and $T = \{ \Phi, Z, \{i_1\}, \{i_1, i_3\}, \leq_7 = \{ (i_1, i_1), (i_2, i_2), (i_3, i_3), (i_2, i_1) \}$.

 $m_i gO(Z, T1)$ sets = { Φ , Z }.

 $b-m_igO(Z, T1)$ sets = { Φ , Z }.

 $\alpha \text{-open sets} = \ \{ \ \Phi, \ Z, \ \{ \ i_1 \}, \ \{ i_1, \ i_2 \}, \ \{ i_1, \ i_3 \ \} \ \}.$

ba-open sets = { Φ , Z, { i_1 , i_2 } }. Then the set E = { i_1 , i_2 } is ba-open set but not b-m_igO(Z, T1).

THEOREM 3.28: In a topological ordered space (Z, T, \leq) , every d-m_igO(Z, T1) is an d α -open set.

Proof: As for the fact, every $d-m_igO(Z, T1)$ is $d-m_iO(Z, T1)$ and that every $d-m_iO(Z, T1)$ is d α -open set.

REMARK 3.29: The converse of theorem 3.28 need not be true.

EXAMPLE 3.30: Let $Z = \{ i_1, i_2, i_3 \}$ and $T = \{ \Phi, Z, \{i_1\}, \{i_1, i_3\}, \}$

 $\leq_2 \ = \ \{ \ (i_1, i_1), \ (i_2, \ i_2), \ (\ i_3, \ i_3), \ (i_1, \ i_2), \ (\ i_3, \ i_2) \ \}.$

 $m_i gO(Z, T1)$ sets = { Φ , Z }.

d-m_igO(Z, T1) sets = { Φ , Z }.

 $\alpha \text{-open sets} = \ \{ \ \Phi, \ Z, \ \{ \ i_1 \}, \ \{ i_1, \ i_2 \}, \ \{ i_1, \ i_3 \ \} \ \}.$

THEOREM 3.31: In a topological ordered space (Z, T, \leq) , every i-m_igO(Z, T1) is an d α -open set.

Proof: As for the fact, every $i-m_i gO(Z, T1)$ is $d-m_iO(Z, T1)$ and that every $d-m_iO(Z, T1)$ is $d\alpha$ -open set.

REMARK 3.32: The converse of theorem 3.31 need not be true.

EXAMPLE 3.33: Let $Z = \{ i_1, i_2, i_3 \}$ and $T = \{ \Phi, Z, \{i_1\}, \{i_1, i_3\}, \}$

 $\leq_1 = \{ (i_1, i_1), (i_2, i_2), (i_3, i_3), (i_1, i_2), (i_1, i_3), (i_2, i_3) \}.$

 $m_i gO(Z, T1)$ sets = { Φ, Z }

 $i-m_i gO(Z, T1)$ sets = { Φ , Z }.

 α -open sets = { Φ , Z, { i_1 }, { i_1 , i_2 }, { i_1 , i_3 } }.

 $d\alpha$ -open sets = { Φ , Z, { i_1 , i_2 } }. Then the set G = { i_1 , i_2 } is $d\alpha$ -open set but not i-m_igO(Z, T1).

THEOREM 3.34: In a topological ordered space (Z, T, \leq) , every $i-m_igO(Z, T1)$ is an b α -open set.

Proof: As for the fact, every $i-m_igO(Z, T1)$ is $b-m_iO(Z, T1)$ and that every $b-m_iO(Z, T1)$ is ba-open set.

REMARK 3.35: The converse of theorem 3.34 need not be true.

EXAMPLE 3.36: Let $Z = \{i_1, i_2, i_3\}$ and $T = \{\Phi, Z, \{i_1\}, \{i_1, i_3\}, \leq_7 = \{(i_1, i_1), (i_2, i_2), (i_3, i_3), (i_2, i_1)\}$.

 $m_i gO(Z, T1)$ sets = { Φ , Z }.

 $i-m_i gO(Z, T1)$ sets = { Φ , Z }.

 α -open sets = { Φ , Z, { i_1 }, { i_1 , i_2 }, { i_1 , i_3 } }.

ba- open sets = { Φ , Z, { i_1 , i_2 } }. Then the set H = { i_1 , i_2 } is ba-open set but not i-m_igO(Z, T1).

THEOREM 3.37: In a topological ordered space (Z, T, \leq) , every b-m_igO(Z, T1) is an d α -open set.

Proof: As for the fact, every $b-m_igO(Z, T1)$ is $b-m_iO(Z, T1)$ and that every $b-m_iO(Z, T1)$ is d α -open set.

REMARK 3.38: The converse of theorem 3.37 need not be true.

EXAMPLE 3.39: Let $Z = \{ i_1, i_2, i_3 \}$ and $T = \{ \Phi, Z, \{i_1\}, \{i_1, i_2\}, \{i_1, i_3\} \}$,

 $\leq_6 = \{ (i_1, i_1), (i_2, i_2), (i_3, i_3), (i_2, i_1), (i_1, i_3), (i_2, i_3) \}.$

 $m_i gO(Z, T1) \text{ sets} = \{ \Phi, Z, \{i_1, i_2\}, \{i_1, i_3\} \}$

 $b\text{-}m_igO(Z, T1) \text{ sets} = \{ \Phi, Z \}.$

 $\alpha \text{-open sets} = \{ \ \Phi, \ Z, \ \{ \ i_1 \}, \ \{i_1, \ i_2 \}, \ \{i_1, \ i_3 \ \} \ \}$

 $d\alpha$ - open sets = { Φ , Z, { i_1 , i_2 } }. Then the set I= { i_1 , i_2 } is $d\alpha$ -open set but not b-m_igO(Z, T1).

THEOREM 3.40: In a topological ordered space (Z, T, \leq) , every b-m_igO(Z, T1) is an i α -open set.

Proof: As for the fact, every $b-m_igO(Z, T1)$ is $b-m_iO(Z, T1)$ and that every $b-m_iO(Z, T1)$ is i α -open set.

REMARK 3.41: The converse of theorem 3.40 need not be true.

EXAMPLE 3.42: Let $Z = \{ i_1, i_2, i_3 \}$ and $T = \{ \Phi, Z, \{i_1\}, \{ i_2, i_3 \} \}$,

 $\leq_2 = \{ (i_1, i_1), (i_2, i_2), (i_3, i_3), (i_1, i_2), (i_3, i_2) \}.$

 $m_i gO(Z, T1) \text{ sets} = \{ \Phi, Z, \{i_1\}, \{ i_2, i_3\} \}$

 $b-m_igO(Z, T1)$ sets = { Φ , Z }.

 $\alpha \text{-open sers} = \ \{ \ \Phi, \ Z, \ \{i_1\}, \ \{ \ i_2, \ \ i_3\} \ \}$

ia- open sets = { Φ , Z, { i_2 , i_3 } }. Then the set J = { i_2 , i_3 } is ia-open set but not b-m_igO(Z, T1).

THEOREM 3.43: In a topological ordered space (Z, T, \leq),

every d-m_igO(Z, T1) is an i α -open set.

Proof: As for the fact, every $d-m_igO(Z, T1)$ is $d-m_iO(Z, T1)$ and that every $d-m_iO(Z, T1)$ is ia-open set.

REMARK 3.44: The converse of theorem 3.43 need not be true.

Exi₁mple 3.45 Let $Z = \{ i_1, i_2, i_3 \}$ and $T = \{ \Phi, Z, \{i_1\}, \{i_1, i_2\}, \{i_1, i_3\} \},\$

 $\leq_7 = \{ (i_1, i_1), (i_2, i_2), (i_3, i_3), (i_2, i_1) \} \}$

 $m_i gO(Z, T1)$ sets = { $\Phi, Z, \{i_1, i_2\}, \{i_1, i_3\}$

d-m_igO(Z, T1) sets = { Φ , Z, { i_1 , i_2 } }.

open sets = { Φ , Z, { i_1 }, { i_1 , i_2 }, { i_1 , i_3 } }

 $i\alpha$ -open sets = { Φ , Z, { i_1 }, { i_1 , i_2 }, { i_1 , i_3 } }. Then the set K = { i_1 } is i α -open set but not d-m_igO(Z, T1).

THEOREM 3.46: In a topological ordered space (Z, T, \leq), every d-m_igO(Z, T1) is an b α -open set.

Proof: As for the fact, every $d-m_igO(Z, T1)$ is $d-m_iO(Z, T1)$ and that every $d-m_iO(Z, T1)$ is ba-open set.

REMARK 3.47: The converse of theorem 3.46 need not be true.

EXAMPLE 3.48: Let $Z = \{ i_1, i_2, i_3 \}$ and $T = \{ \Phi, Z, \{i_1, i_2\} \}, \leq_7 = \{ (i_1, i_1), (i_2, i_2), (i_3, i_3), (i_2, i_1) \} \}$

 $m_i gO(Z, T1)$ sets = { Φ , Z }.

d-m_igO(Z, T1) sets = { Φ , Z }.

open sets = { Φ , Z, { i_1 , i_2 } }

THEOREM 3.48: In a topological ordered space (Z, T, \leq) , every i-m_igO(Z, T1) is an i β -open set.

Proof: As for the fact, every $i-m_igO(Z, T1)$ is $i-m_iO(Z, T1)$ and that every $i-m_iO(Z, T1)$ is $i\beta$ -open set.

REMARK 3.49: The converse of theorem 3.48 need not be true.

EXAMPLE 3.50: Let $Z = \{ i_1, i_2, i_3 \}$ and $T = \{ \Phi, Z, \{i_1\}, \{i_2\}, \{i_1, i_2\} \}$

$$\leq_{5} = \{ (i_{1}, i_{1}), (i_{2}, i_{2}), (i_{3}, i_{3}), (i_{1}, i_{3}), (i_{2}, i_{3}) \} \}$$

m_igO(Z, T1) sets = { Φ , Z }

 $i-m_i gO(Z, T1)$ sets = { Φ , Z }

 $\begin{array}{l} \text{Parch in Engi β-open serts} = \{\Phi, Z, \{\{i_1\}, \{i_2\}, \{i_1, i_2\}, \{i_2, i_3\}, \{i_1, i_3\}\} \}. \end{array}$

 $i\beta$ -open sets = { Φ , Z, { i_3 }, { i_2 , i_3 }, { i_1 , i_3 } Then D = { i_1 , i_3 } is $i\beta$ -open set but not i-m_igO(Z, T1)

THEOREM 3.51: In a topological ordered space (Z, T, \leq), every i-m_igO(Z, T1) is an d β -open set.

Proof: As for the fact, every $i-m_i gO(Z, T1)$ is $d-m_iO(Z, T1)$ and that every $d-m_iO(Z, T1)$ is $d\beta$ -open set.

REMARK 3.52: The converse of theorem 3.51 need not be true.

EXAMPLE 3.53: Let $Z = \{ i_1, i_2, i_3 \}$ and $T = \{ \Phi, Z, \{i_1\}, \{i_1, i_2\},$

 $\leq_2 \ = \ \{ \ (i_1, \, i_1), \, (\ i_2, \ i_2), \, (\ i_3, \ i_3), \, (i_1, \ i_2), \, (\ i_3, \ i_2) \ \}.$

 $m_i gO(Z, T1)$ sets = { Φ, Z }

 $i-m_i gO(Z, T1)$ sets = { Φ , Z }.

 $\beta\text{-open sets} = \{ \ \Phi, \ Z, \ \{ \ i_1 \}, \ \{ i_1, \ i_2 \}, \ \{ i_1, \ i_3 \ \} \ \}.$

 $d\beta$ -open sets = { Φ , Z, { i_1 }, { i_1 , i_3 } }. Then the set G = { i_1 , i_3 } is d β -open set but not i-m_igO(Z, T1).

THEOREM 3.54: In a topological ordered space (Z, T, \leq), every i-m_igO(Z, T1) is an b β -open set.

Proof: As for the fact, every $i-m_igO(Z, T1)$ is $b-m_iO(Z, T1)$ and that every $b-m_iO(Z, T1)$ is $b\beta$ -open set.

REMARK 3.55: The converse of theorem 3.54 need not be true.

EXAMPLE 3.56: Let $Z = \{ i_1, i_2, i_3 \}$ and $T = \{ \Phi, Z, \{i_1\}, \{i_1, i_3\},$

 $\leq_9 = \{(i_1, i_1), (i_2, i_2), (i_3, i_3), (i_1, i_3)\}$

 $m_i gO(Z,\,T1) \;\; \text{sets} = \; \{ \; \Phi, \; Z\{ \;\; i_2\}, \; \{i_1, \;\; i_2\}, \; \{i_1, \;\; i_3 \; \} \; \}.$

 $i-m_igO(Z, T1) \text{ sets} = \{ \Phi, Z, \{ i_2 \} \}.$

 $\beta\text{-open sets} = \ \{ \ \Phi, \ Z, \ \{ \ i_1\}, \{ \ i_2\}, \ \{i_1, \ i_2\}, \ \{i_1, \ i_3 \ \} \ \}.$

b β - open sets = { Φ , Z, { i_2 }, { i_1 , i_3 }. Then the set H = { i_1 , i_3 } is b β -open set but not i-m_igO(Z, T1).

THEOREM 3.57: In a topological ordered space (Z, T, \leq) , every d-m_igO(Z, T1) is an d β -open set.

Proof: As for the fact, every $d-m_igO(Z, T1)$ is $d-m_iO(Z, T1)$ and that every $d-m_iO(Z, T1)$ is $d\beta$ -open set.

REMARK 3.58: The converse of theorem 3.57 need not be true.

Example 3.59 Let $Z = \{i_1, i_2, i_3\}$ and $T = \{\Phi, Z, \{i_1\}, \{i_1, i_3\}, \leq_7 = \{(i_1, i_1), (i_2, i_2), (i_3, i_3), (i_2, i_1)\}$

 $m_i gO(Z, T1)$ sets = { Φ , Z }.

 $d-m_i gO(Z, T1)$ sets = { Φ , Z }.

 β -open sets = { Φ , Z, { i_1 }, { i_1 , i_2 }, { i_1 , i_3 } }.

dβ- open sets = { Φ, Z, { i_1 , i_2 } }. Then the set F = { i_1 , i_1 Engine is dβ-open set but not d-m_igO(Z, T1).

THEOREM 3.60: In a topological ordered space (Z , T, \leq), every d-m_igO(Z, T1) is an i β -open set.

Proof: As for the fact, every $d-m_i gO(Z, T1)$ is $d-m_iO(Z, T1)$ and that every $d-m_iO(Z, T1)$ is $i\beta$ -open set.

REMARK 3.61: The converse of theorem 3.60 need not be true.

EXAMPLE 3.62: Let $Z = \{i_1, i_2, i_3\}$ and $T = \{\Phi, Z, \{i_1\}, \{i_2, i_3\}\}, \leq_3 = \{(i_1, i_1), (i_2, i_2), (i_3, i_3), (i_1, i_2), (i_1, i_3)\}$. m_{ig}O(Z, T1) sets = $\{\Phi, Z, \{i_1\}, \{i_2, i_3\}\}$.

d-m_igO(Z, T1) sets = { Φ , Z, { i_1 }}.

 $\begin{array}{l} \beta\text{-open sets} = \{ \ \Phi, \ Z, \ \{i_1\}, \ \{ \ i_2 \ \}, \ \{i_3\}, \{i_1, \ i_2\}, \{i_2, i_3\}, \ \{i_1, \ i_3\} \}. \ i\beta\text{-open sets} = \{ \ \Phi, \ Z, \ \{ \ i_2 \ \}, \ \{i_3\}, \ \{i_2, i_3\} \ \}. \ Then the set K = \{i_2\} \ is \ i\beta\text{-open set but not } d\text{-}m_igO(Z, \ T1). \end{array}$

THEOREM 3.63: In a topological ordered space (Z, T, \leq), every d-m_igO(Z, T1) is an b β -open set.

Proof: As for the fact, every $d-m_igO(Z, T1)$ is $d-m_iO(Z, T1)$ and that every $d-m_iO(Z, T1)$ is b β -open set.

REMARK 3.64: The converse of theorem 3.63 need not be true.

EXAMPLE 3.65: Let $Z = \{ i_1, i_2, i_3 \}$ and $T = \{ \Phi, Z, \{i_1\}, \{i_2\}, \{i_1, i_2\}, \{i_1, i_3\} \}$,

 $\leq_{10} = \{ (i_1, i_1), (i_2, i_2), (i_3, i_3), (i_3, i_1), (i_2, i_3), (i_2, i_1) \}$

 $m_igO(Z,\,T1) \;\; sets = \; \{ \; \Phi, \; Z, \; \{ \; i_2 \}, \; \{i_1, \; i_2 \}, \; \{i_1, \; \; i_3 \} \}.$

d-m_igO(Z, T1) sets = { Φ , Z, { i_2 }}.

B-open sets = { Φ , Z, { i_2 }, { i_3 }, { i_1 , i_2 }, { i_1 , i_3 }, { i_2 , i_3 }}.

b β -open sets = { Φ , Z, { i_2 }, { i_2 , i_3 }. Then the set K= { i_2 , i_3 } is b β -open set but not d-m_igO(Z, T1).

THEOREM 3.66: In a topological ordered space (Z, T, \leq) , every b-m_igO(Z, T1) is an b β -open set.

Proof: As for the fact, every $b-m_igO(Z, T1)$ is $b-m_iO(Z, T1)$ and that every $b-m_iO(Z, T1)$ is $b\beta$ -open set.

REMARK 3.67: The converse of theorem 3.66 need not be true.

Example 3.68 Let $Z = \{i_1, i_2, i_3\}$ and $T = \{\Phi, Z, \{i_1, i_2\}, \}$

 $\leq_9 = \{(i_1, i_1), (i_2, i_2), (i_3, i_3), \{i_1, i_3\}\}.$

 $m_i gO(Z, T1)$ sets = { Φ , Z }.

b-m_igO(Z, T1) sets = { Φ , Z }.

 β -open sets = { Φ , Z, { i_1 }, { i_2 }, { i_1 , i_2 }, { i_2 , i_3 }, { i_1 , i_3 }}.

b β -open sets = { Φ , Z, { i_2 }, { i_1 , i_3 } }. Then the set E = { i_1 , i_3 } is b β -open set but not b-m_igO(Z, T1).

THEOREM 3.69: In a topological ordered space (Z, T, \leq) , every b-m_igO(Z, T1) is an d β -open set.

Proof: As for the fact, every $b-m_igO(Z, T1)$ is $b-m_iO(Z, T1)$ and that every $b-m_iO(Z, T1)$ is d β -open set.

REMARK 3.70: The converse of theorem 3.69 need not be true.

Example 3.71 Let Z = { i_1 , i_2 , i_3 } and T = { Φ , Z, { i_3 }, { i_2 , i_3 } },

 $\leq_9 = \{(i_1, i_1), (i_2, i_2), (i_3, i_3), (i_1, i_3)\}$

 $m_i gO(Z, T1)$ sets = { Φ , Z}

 $b-m_igO(Z, T1)$ sets = { Φ , Z }.

 $\beta\text{-open sets} = \{ \ \Phi, \ Z, \ \{ \ i_3 \}, \ \{i_2, \ i_3 \}, \ \{i_1, \ i_3 \ \} \ \}$

 $d\beta$ - open sets = { Φ , Z, { i_1 , i_3 }. Then the set I= { i_1 , i_3 } is d β -open set but not b-m_igO(Z, T1).

THEOREM 3.72: In a topological ordered space (Z, T, \leq) , every b-m_igO(Z, T1) is an i β -open set.

Proof: As for the fact, every $b-m_i gO(Z, T1)$ is $b-m_iO(Z, T1)$ and that every $b-m_iO(Z, T1)$ is $i\beta$ -open set.

REMARK 3.73: The converse of theorem 3.72 need not be true.

EXAMPLE 3.74: Let $Z = \{ i_1, i_2, i_3 \}$ and $T = \{ \Phi, Z, \{i_1\}, \{i_2\}, \{i_1, i_2\}, \{i_2, i_3\} \}$.

 $\leq_1 = \{(i_1, i_1), (i_2, i_2), (i_3, i_3), (i_1, i_2), (i_1, i_3), (i_2, i_3) \}.$

 $m_i gO(Z,\,T1) \;\; sets = \; \{ \; \Phi, \, Z, \; \{i_1\}, \; \{i_1, \; i_2\}, \; \{ \; i_2, \; i_3\} \}.$

 $b-m_i gO(Z, T1) \text{ sets} = \{ \Phi, Z \}.$

 $\beta\text{-open sers} = \; \{ \; \Phi, Z, \; \{i_1\}, \; \{i_2\}, \; \{i_1, \; i_2\}, \; \{ \; i_2, \; \; i_3\} \; \}$

 $i\beta$ - open sets = { Φ , Z, { i_1 , i_2 }, { i_2 , i_3 } }. Then the set J = { i_2 , i_3 } is $i\beta$ -open set but not b-m_igO(Z, T1).

THEOREM 3.75 In a topological ordered space (Z, T, \leq) , every i-m_igO(Z, T1) is an i Ψ -open set.

Proof: As for the fact every $i-m_igO(Z, T1)$ is $i-m_iO(Z, T1)$ and that every $i-m_iO(Z, T1)$ is $i\Psi$ -open set.

REMARK 3.76: The converse of theorem 3.75 need not be true.

EXAMPLE 3.77: Let $Z = \{ i_1, i_2, i_3 \}$ and $T = \{ \Phi, Z, \{i_1, i_2\} \}$

 $\leq_4 = \{(i_1, i_1), (i_2, i_2), (i_3, i_3), (i_1, i_2), (i_3, i_1), \{i_3, i_2\}\}$

 $m_i gO(Z, T1) \text{ sets} = \{ \Phi, Z \}$

 $i-m_igO(Z, T1)$ sets = { Φ , Z }.

 $\Psi\text{- open sets} = \ \{ \ \Phi, \ Z, \ \{i_1\}, \ \{i_2\}, \ \{i_1, \ i_2\} \}.$

 $i\Psi$ -open sets = { Φ , Z, { i_2 }, { i_1 , i_2 } }. Then the set L = { i_1 , i_2 } is $i\Psi$ -open set but not i-m_igO(Z, T1).

THEOREM 3.78: In a topological ordered space (Z,T, \leq) , every d-m_igO(Z, T1) is an d Ψ -open set.

Proof: As for the fact, every d--m_igO(Z, T1) is d-m_iO(Z, T1) and that every d-m_iO(Z, T1) is d Ψ -open set.

REMARK 3.79: The converse of theorem 3.78 need not be true.

EXAMPLE 3.80: Let $Z = \{ i_1, i_2, i_3 \}$ and $T = \{ \Phi, Z, \{i_1, i_2\} \}$

 $\leq_1 = \{ (i_1, i_1), (i_2, i_2), (i_3, i_3), (i_1, i_2), (i_1, i_3), (i_2, i_3) \}$

 $m_i gO(Z, T1) \ sets = \ \{ \ \Phi, \ Z, \ \{i_1, \ i_2\}, \ \{i_1, \ i_3\} \ \}$

 $d\text{-}m_igO(Z,\,T1) \;\; \text{sets} = \; \{ \; \Phi, \; Z, \{i_1, \; i_2\} \; \}.$

 Ψ -open sets = { Φ , Z, { i_1 }, { i_1 , i_2 }, { i_1 , i_3 } }

 $d\Psi$ - open sets = { Φ , Z, { i_1 }, { i_1 , i_2 } }. Then the set M = { i_1 } is $d\Psi$ -open set but not d-m_igO(Z, T1).

THEOREM 3.81: In a topological ordered space (Z, T, \leq) , every b-m_igO(Z, T1) is an b Ψ -open set.

Proof: As for the fact, every $b-m_igO(Z, T1)$ is $b-m_iO(Z, T1)$ and that every $b-m_iO(Z, T1)$ is $b\Psi$ -open set.

REMARK 3.82: The converse of theorem 3.81 need not be true.

EXAMPLE 3.83: Let $Z = \{i_1, i_2, i_3\}$ and $T = \{\Phi, Z, \{i_1, i_2\}\} \le_7 = \{(i_1, i_1), (i_2, i_2), (i_3, i_3), (i_2, i_1)\}$

 $m_i gO(Z, T1)$ sets = { Φ, Z }

b-m_igO(Z, T1) sets = { Φ , Z }

 Ψ - open sets = { Φ , Z, { i_1 }, { i_2 }, { i_1 , i_2 }}.

 $b\Psi\text{-open sets} = \{ \ \Phi, \ Z, \ \{i_1, \ i_2\} \ \}. \ \text{Then the set} \ N = \{ \ i_1, \ i_2 \ \} \text{ is } \ b\Psi\text{-open set but not } b\text{-}m_igO(Z, T1).$

THEOREM 3.84: In a topological ordered space (Z, T, \leq), every i-m_igO(Z, T1) is an b Ψ -open set.

Proof: As for the fact, every i-- m_i gO(Z, T1) is b- m_i O(Z, T1) and that every b- m_i O(Z, T1) is b Ψ -open set.

REMARK 3.85: The converse of theorem 3.84 need not be true.

Example 3.86 Let $Z = \{ i_1, i_2, i_3 \}$ and $T = \{ \Phi, Z, \{ i_1 \}, \{ i_1, i_3 \} \} \leq_7 = \{ (i_1, i_1), (i_2, i_2), (i_3, i_3), (i_2, i_1) \}$

 $m_i gO(Z, T1)$ sets = { Φ, Z }

 $i-m_i gO(Z, T1)$ sets = { Φ, Z }

 Ψ -open sets = { Φ , Z, { i_1 }, { i_1 , i_2 }, { i_1 , i_3 } }

b Ψ -open sets = { Φ , Z, { i_1 , i_2 } }. Then the set P = { i_1 , i_2 } is b Ψ -open set but not i-m_igO(Z, T1).

THEOREM 3.87: In a topological ordered space (Z, T, \leq), every i-m_igO(Z, T1) is an d Ψ -open set.

Proof: As for the fact, every i-- $m_i gO(Z, T1)$ is d- $m_iO(Z, T1)$ and that every d- $m_iO(Z, T1)$ is d Ψ -open set.

REMARK 3.88: The converse of theorem 3.87 need not be true.

EXAMPLE 3.89: Let $Z = \{ i_1, i_2, i_3 \}$ and $T = \{ \Phi, Z, \{ i_1, i_2 \} \}$

 $\leq_1 = \{ (i_1, i_1), (i_2, i_2), (i_3, i_3), (i_1, i_3), (i_2, i_3) \}$

 $m_i gO(Z, T1)$ sets = { Φ , Z }

 $i-m_igO(Z, T1)$ sets = { Φ , Z }

 $\Psi\text{- open sets} = \ \{ \ \Phi, \ Z, \ \{i_1\}, \ \{i_2\}, \ \{i_1, \ i_2\} \}.$

 $d\Psi$ - sets = { Φ , Z, { i_1 }, { i_1 , i_2 } }. Then the set Q = { i_1 } is $d\Psi$ -open set but not i-m_igO(Z, T1).

THEOREM 3.90: In a topological ordered space (Z, T, \leq), every b-m_igO(Z, T1) is an i Ψ -open set.

Proof: As for the fact, every $b-m_igO(Z, T1)$ is $b-m_iO(Z, T1)$ and that every $b-m_iO(Z, T1)$ is $i\Psi$ -open set.

REMARK 3.91: The converse of theorem 3.89 need not be true.

EXAMPLE 3.92: Let Z = { i_1 , i_2, i_3 } and T={ $\Phi, Z, \, \{i_1\}$ }

 $\leq_{10} = \{ (i_1, i_1), (i_2, i_2), (i_3, i_3), (i_3, i_1), (i_2, i_3), (i_2, i_1) \}$

 $m_i gO(Z, T1)$ sets = { Φ , Z }

 $b-m_igO(Z, T1)$ sets = { Φ , Z }

 Ψ -open sets = { Φ , Z, { i_1 }, { i_1 , i_2 }, { i_1 , i_3 } }

 $i\Psi$ -open sets = { Φ , Z, { i_1 }, { i_1 , i_3 } }. Then the set R = { i_1 , i_3 } is $i\Psi$ -open set but not b-m_igO(Z, T1).

THEOREM 3.93: In a topological ordered space (Z , T, \leq), every b-m_igO(Z, T1) is an d Ψ -open set.

Proof: As for the fact, every $b-m_i gO(Z, T1)$ is $b-m_i O(Z, T1)$ and that every $b-m_i O(Z, T1)$ is $d\Psi$ -open set.

REMARK 3.94: The converse of theorem 3.92 need not be true.

EXAMPLE 3.95: Let $Z = \{i_1, i_2, i_3\}$ and $T = \{\Phi, Z, \{i_1\}\}, \leq_8 = \{(i_1, i_1), (i_2, i_2), (i_3, i_3)\}$

 $m_i gO(Z, T1)$ sets = { Φ, Z }

 $b-m_igO(Z, T1)$ sets = { Φ, Z }

 Ψ -open sets = { Φ , Z, { i_1 }, { i_1 , i_2 }, { i_1 , i_3 } }

d Ψ -open sets = { Φ , Z,{ i_1 }, { i_1 , i_2 }, { i_1 , i_3 } }.

Then the set $S = \{i_1, i_2\}$ is d Ψ -open set but not bm_igO(Z, T1).

THEOREM 3.96: In a topological ordered space (Z, T, \leq) , every d-m_igO(Z, T1) is an i Ψ -open set.

Proof: As for the fact, every d--m_igO(Z, T1) is d-m_iO(Z, T1) and that every d-m_iO(Z, T1) is $i\Psi$ -open set.

REMARK 3.97: The converse of theorem 3.95 need not be true.

EXAMPLE 3.98: Let $Z = \{ i_1, i_2, i_3 \}$ and $T = \{ \Phi, Z, \{i_1\}, \{ i_2\}, \{i_1, i_2\} \}, \leq_8 = \{ (i_1, i_1), (i_2, i_2), (i_3, i_3) \}$

 $m_igO(Z,\,T1) \hspace{0.2cm} sets = \hspace{0.2cm} \{ \hspace{0.2cm} \Phi, \hspace{0.2cm} Z \hspace{0.2cm} \}$

d-m_igO(Z, T1) sets = { Φ , Z }

 Ψ -open sets = { Φ , Z, { i_1 }, { i_2 }, { i_1 , i_2 } { i_2 , i_3 }, { i_1 , i_3 }}

 $i\Psi$ - open sets = { Φ , Z, { i_1 }, { i_2 }, { i_1 , i_2 } { i_2 , i_3 }, { i_1 , i_3 }

Then the set $T=\{\ i_1,\ i_2\ \}$ is $i\Psi\text{-open set}\,$ but not $d\text{-}m_igO(Z,\,T1).$

THEOREM 3.99: In a topological ordered space (Z, T, \leq) , every d-m_igO(Z, T1) is an b Ψ -open set.

Proof: As for the fact, every d-- $m_i gO(Z, T1)$ is d- $m_iO(Z, T1)$ and that every d- $m_iO(Z, T1)$ is b Ψ -open set.

REMARK 3.100: The converse of theorem 3.98 need not be true.

EXAMPLE 3.101: Let $Z = \{ i_1, i_2, i_3 \}$ and $T = \{ \Phi, Z, \{i_1\}, \{i_1, i_3\} \}, \leq_9 = \{ (i_1, i_1), (i_2, i_2), (i_3, i_3), \{i_1, i_3\} \}$

 $m_i gO(Z, T1)$ sets = { Φ, Z }

d-m_igO(Z, T1) sets = { Φ , Z }

 Ψ -open sets = { Φ , Z, { i_1 }, { i_1 , i_2 }, { i_1 , i_3 } }

b Ψ - open sets = { Φ , Z, { i_1 , i_3 } }. Then the set W={ i_1 , i_3 } is b Ψ -open set but not d-m_igO(Z, T1).

The above results are shown in following diagram.

REFERENCES

 K. Krishna Rao: some concepts in topological ordered spaces using semi-open sets, pre-open sets; α-open sets and βopen sets, Ph.D Thesis, Archarya Nagarjuna University, October, 2012.

- K. Krishna Rao and R.Chudamani: α-homomorphisms in topological ordered spaces, International Journal of Mathematics, Tcchnology and Humanities, 52 (2012), 541-560.
- [3]. N. Levine: Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19(2)(1970), 89-96.
- [4]. A.S.Mashhour, I.A.Hasanein and S.N.El.Deeb: αcontinuous and α-open mappings, Acta Math. Hung. 41(3-4) (1983), 213-218.
- [5]. H. Maki, R. Devi and K. Balachandran: Generalized αclosed sets in topology, Bull. Fukuoka Univ. Ed. Part III, 42(1993), 13-21.
- [6]. L Nachbin, Topology and order, D.Van Nostrand Inc., Princeton, New Jersy (1965)
- [7]. O. Njastad: On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
- [8]. V.V.S. Ramachnadram, B. Sankara Rao and M.K.R.S. Veera kumar: g-closed type, g*-closed type and sg-closed type sets in topological ordered spaces, Diophantus j. Math., 4(1)(2015), 1-9.
- [9]. M.K.R.S Veera kumar: Homeomorphisms in topological ordered spaces, Acta Ciencia Indica,XXVIII (M)(1)2002, 67-76.
- [10]. M.K.R.S. Veera kumar: Between closed sets and g-closed sets Mem. Fac. Sci.Kochi Univ. Ser.A, Math., 21(2000), 1-19.
- [11]. K. Bhagya Lakshmi, V. Amarendra babu and M.K.R.S. Veera kumar: Generalizwd α-closed type sets in topological ordered spaces, Archimedes J. Maths., 5 stud(1)(2015),1-8.
- [12]. G.venkateswarlu, V. Amarendra babu Veera kumar: International J. Math. And Nature., 2(1)(2016), 1-14.
- [13]. M.K.R.S. Veera kumar: Between semi-closed sets and semipre-closed sets, Rend. Lstit. Mat. Univ. Trieste, XXXII(2000), 25-41.
- [14]. M. E. Abd El-Monsef, S.N El deeb and R.A Mohmoud: βopen sets and β-continous mappings, Bull. Sci. Assiut Univ., 12 (1983), 77-90