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ABSTRACT:  Dynamics of inviscid compressible flow is governed by the Euler equations. Unsteady Euler equations 

are always hyperbolic. Computation of flows governed by compressible Euler equations around such configurations 

like a wing, aircraft, missile, and launch vehicles are some situations where upwind schemes are extensively used. These 

schemes are not uniformly good for all situations. The main aim of the present work is an attempt to study the relative 

merits and demerits of different upwind schemes by applying them for different flow situations. Different aspects of 

these methods such as accuracy, robustness, etc., are intended to be studied and conclusions are drawn so as to assist 

making decisions on schemes to be used under different flow situations. Keeping this in view, different upwind schemes 

such as Van Leer scheme, Steger and Warming scheme, Advection Upstream Splitting Method (AUSM) are used to 

compute the flow in a shock tube and a quasi-one-dimensional nozzle. Van Leer's scheme is performing well when there 

is a shock also. However, the Steger-Warming scheme is greatly smeared the contact discontinuity. MacCormack's 

scheme is responding very well when there is no contact discontinuity and expansion wave. For mixed subsonic-

supersonic flow (nozzle flow) Steger and Warming scheme is closer to analytical result as compared to other upwind 

schemes. It tells us that Steger and Warming scheme works well when there is no shock and contact discontinuity. 

Keywords — upwind scheme, shock tube, quasi-one-dimensional nozzle, CFL condition, Mach wave, expansion wave.   

I. INTRODUCTION 

In nature, most of the flows are high speed and are 

governed by hyperbolic equations. As the analytical 

solution of these non-linear partial differential equations is 

not possible in most cases, numerical solution is the only 

alternative. Numerical method of one-sided differencing is 

the upwind scheme. Upwind methods take into account the 

wave-like behavior of the hyperbolic systems and they are 

found to be more successful in numerical computation 

compared with central difference methods accompanied by 

artificial viscosity. As upwind schemes are well known for 

their ability to capture shocks and compute flows over a 

wide range of speed and geometry, their popularity is on the 

rise and considerable research is going on to refine 

technique and extend their range of applicability. They are 

extensively used in the aerodynamic design of different 

aerospace configurations. 

For numerical analysis of flow at high Mach numbers 

around objects like missiles, launch vehicles, etc. Euler 

equations are frequently used. The modern development of 

numerical schemes for time-dependent Euler equations is 

found in the pioneering work of Lax and Wendroff [1] and 

[2]. The first explicit upwind scheme was introduced by 

Courant [3].  

The first explicit upwind scheme was introduced by 

Courant [3] and several extensions to second-order 

accuracy and implicit time integrations have been 

developed. In 1960, Lax and Wendroff [1][2] 

 introduced a method for computing flows with shocks that 

was second-order accurate and avoided the excessive 

smearing of the earlier approaches. The MacCormack's [4] 

version of this technique became one of the most widely 

used numerical schemes, however, it is not an upwind 

scheme. Godunov [10] proposed solving multidimensional 

compressible fluid dynamics problems by using a solution 

to a Riemann problem for flux calculations at all faces. Van 

Leer [5] showed how higher-order schemes could be 

constructed using the same idea. The concept of flux 

splitting was also introduced as a technique for treating 

convection-dominated flows. Since the beginning of the 

1980's, upwind schemes have become very popular for the 

sound theoretical basis of characteristic theory for 

hyperbolic systems and thus for their capability of capturing 

discontinuities. Steger and Warming [6] introduced splitting 

where fluxes were determined using an upwind approach. 

Van Leer [5] also proposed a new flux splitting technique to 

improve on the existing methods. The application of flux 

vector splitting scheme with the implicit relaxation 

algorithms became very attractive for their efficiency, 

simplicity and ability to capture the sharp shock waves. Van 

Leer's [5] scheme showed better behavior than Steger and 

Warming [6] scheme for its smooth transition at sonic and 

stagnation points. 
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In view of foregoing discussions, the importance of 

studying the relative merits and demerits of the upwind 

schemes cannot possibly be overemphasized. And this work 

attempts to do in a small measure. It is intended to apply as 

many of these schemes to compute flows of varying 

complexity. Different aspects of these methods are in terms 

of speed, accuracy and robustness are expected to be 

brought out by the present study so that the designer can 

have something to fall back on before deciding upon the 

scheme to be used for the particular design situation. 

Keeping this in view, two problems have been taken, one is 

the computation of fluid flow through shock tube and the 

other is quasi-one-dimensional-nozzle. Different upwind 

schemes including Steger-Warming scheme [6], Van Leer 

scheme [5], AUSM [9] and Zha-Bilgen [7] scheme and two-

step predictor-corrector scheme, MacCormack's scheme [4] 

are used.  

II. NUMERICAL PROCEDURE 

The governing equations are quasi-one-dimensional Euler 

equations. 
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where U, F are vectors containing conservative variables 
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Upwind schemes are used to solve two problems one is the 

shock tube problem. Schematic of the shock tube is shown 

in Fig. 1 for which cross-sectional area is constant and the 

equation (1) becomes, 0
U F

t x


 


 
. 

A. The Shock Tube Problem 

 

(a) Shock tube at initial state t = 0  

 

(b) Shock tube at initial state t > 0 

Fig. 1. Schematic of shock tube flow. 

Shock is a physical disturbance in the flow. For moving 

wave all properties depend not only on space but also time. 

This is an unsteady flow and the wave motion is called 

unsteady wave motion.  

An important application of unsteady wave motion is a 

shock tube, where properties change with both space and 

time, and we find steady wave motion in a quasi-one-

dimensional nozzle. The shock tube is a long tube, closed at 

both ends, with the diaphragm separating a region of high-

pressure gas on one side and the low-pressure gas on the 

other side. Velocity is zero everywhere. The pressure 

distribution is shown in Fig. 1. When the diaphragm is 

broken (by electrical current or by mechanical means), a 

shock wave propagates towards R (low-pressure side) and 

expansion wave propagates into section L (high-pressure 

side). The interface between the high-pressure region and 

the low-pressure region is called contact discontinuity, 

which also moves towards the low-pressure side. Changes 

of all thermodynamic properties across all regions are of 

interest. The shock tube problem constitutes a particularly 

interesting and difficult test case. Since it requires a solution 

to the full system of one dimensional Euler equations 

containing simultaneously a shock wave, a contact 

discontinuity, and an expansion fan. 

The particular problem, also called the Riemann problem, 

what is altogether of practical and theoretical interest. It can 

be realized experimentally by the sudden breakdown of a 

diaphragm in a long one-dimensional tube separating two 

initial gas states at different. The above governing equation 

(1) is solved by using different schemes for the Sod [8] 

initial conditions. 

Problem (1): PL = 10
5 
Pa;   ρ = 1 kg/m

3
;   uL = 0 

                   PR = 10
4 
Pa;   ρ = 0.125 kg/m

3
;   uR = 0 

To solve the shock tube problem, the section is divided into 

number of grid points in the x- direction. The spacing 

between the adjacent grid points is Δx. Now assume the 

flow field variables at all grid points as initial conditions at 

time t = 0 and apply the time marching procedure. 

B. The Quasi-one-dimensional nozzle 

The second problem solved is a quasi-1D nozzle and the 

geometry of the nozzle used is shown in Fig. 2. The 

formulations describing the geometry is given by, 

 
2

( ) 1 1.5 1 / 5A x x       for 0 ≤ x ≤ 5 

 

 
2

( ) 1 0.5 1 / 5A x x      for 5 ≤ x ≤ 10 

The following initial conditions were used for the nozzle 

problem: 

Problem (2): Total temperature = 300 K 

                      Total pressure = 1013 K Pa. 

 

Fig. 2. Area distribution of the nozzle. 
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To solve a nozzle problem, the domain is divided into a 

number of grid points in the x-direction and the spacing 

between the adjacent grid points is Δx. Now assume the 

flow field variables at all grid points as initial conditions at 

time t=0. For faster time marching procedure, one has to 

choose the initial conditions very carefully. Generally, 

initial conditions should be closer to final steady-state 

results for faster convergence. The first step in solving the 

nozzle problem is to feed the nozzle shape and initial 

conditions into the program. Calculate all the flow 

properties for the next time step and compare with the 

previous time. Repeat this procedure until steady-state is 

reached. For the subsonic boundary conditions at the 

entrance, the velocity is extrapolated at the inner domain, 

and the other variables are calculated from total pressure 1 

bar and total temperature 300 K. For supersonic exit 

boundary conditions, all of the variables are extrapolated 

from inside of the nozzle. 

III. RESULTS AND DISCUSSIONS 

A. Numeric result for the Shock tube problem 

Effect of Courant, Friedrich, and Lewy (CFL) number on 

the upwind scheme is studied initially. Fig. 3 shows the 

effect of CFL number on Steger and Warming splitting 

scheme for the shock tube problem with initial pressure 

discontinuity of 10. If CFL goes beyond the stability limit 

(0.95), the scheme becomes unstable and large oscillations 

occurred in the shock region. It is clearly seen in Fig. 3 for 

CFL numbers 0.96 and 1.0. At the shock region (circled), 

oscillations observed for CFL=0.96 and were increased 

when CFL=1.0. 

 

 (a) Mach number behavior for CFL = 0.96 

 

 (b) Mach number behavior for CFL = 0.96 (enlarged view) 

 

(c) Mach number behavior for CFL = 1.0 

 

(d) Mach number behavior for CFL = 1.0 (enlarged view) 

Fig. 3. (a)-(d) Effect of CFL number on the upwind scheme. 

 

Fig. 4. Comparison of different schemes for the shock tube problem 

(1) - density variation after time =6.1 msec. 

Comparison of different upwind schemes for shock tube 

problem (1) for density variation is shown in Fig. 4. The 

plot is shown for the important regions of the shock tube, 

namely, contact discontinuity and shock region with a grid 

size of 1000. MacCormack's scheme gives results very 

close to the exact result in the shock region but will give a 

number of oscillations in the contact discontinuity. It shows 

that Van Leer scheme works well in the shock region. 

Steger and Warming scheme also work reasonably well 

compared to other schemes. AUSM and Zha-Bilgen are 

performing equally well at the contact discontinuity, but at 

the shock region, AUSM is performing well. 
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Fig. 5. Effect of the grid on the variation of density for the problem 

(1) with a numerical scheme. 

The effect of grids on the performance of numerical 

schemes is studied. For the coarse grid of 100 points, it 

shows that contact discontinuity is greatly smeared. The 

finer grid (1000) brings great improvement to the results. 

From Fig. 5, it is found that steepness of the shock wave, 

contact discontinuity increased as the mesh is refined from 

100 to 1000. This is because numerically generated 

viscosity decreases with mesh refinement. 

B. Numerical result for quasi-one-dimensional nozzle 

Fig. 6 shows the variation of Mach number as a function of 

distance for the steady subsonic-supersonic isentropic flow 

through a nozzle with different schemes for the problem (2) 

at important throat region. Important conclusions can be 

drawn by studying the variation of Mach number at the 

throat region. It is clearly demonstrated, MacCormack's 

scheme agrees the best with the analytical result at the 

throat region, but with a little jump. This scheme is 

performing extremely well when there is no shock and 

contact discontinuity. Van Leer's scheme also agrees well 

with analytical result throughout, but at the transition 

region, there is a large jump. Steger and Warming scheme 

perform well without any jump at the throat region. But the 

AUSM scheme is giving a small jump at the throat region. 

 

Fig. 6. Comparison of Mach number variation at throat for nozzle 

problem (2) with different upwind schemes. 

IV. CONCLUSIONS 

Different upwind schemes, including Van Leer scheme [5], 

Steger and Warming scheme [6], Zha-Bilgen scheme [7], 

AUSM and a two-step predictor-corrector technique, 

MacCormack's scheme [4] was used to compute the flow 

through shock tube and steady subsonic-supersonic flow 

through a quasi-one-dimensional nozzle. For the shock tube 

problem, the results obtained are compared with the exact 

solution given by Charles Hirsch [11], and for the nozzle 

problem, the results obtained are compared with the 

analytical solution. 

Van Leer's scheme [5] is performing well when there is a 

shock also. The Steger-warming scheme [6] is greatly 

smeared the contact discontinuity. MacCormack scheme [4] 

is responding very well when there is no contact 

discontinuity and expansion wave. Computational time for 

AUSM is more and with Zha-Bilgen scheme [7], results are 

deviating from the analytical results at the outlet.  

Stability condition (CFL) plays very important role in the 

performance of upwind schemes of explicit nature. If it goes 

beyond the stability limit, the scheme becomes unstable and 

large oscillations occurred in the shock region. 

For mixed subsonic-supersonic flow without shocks (as 

in the nozzle), the results obtained with Steger and 

Warming scheme [6] is closer to analytical result as 

compared to other upwind schemes. It tells us that Steger 

and Warming scheme [6] works well when there is no shock 

and contact discontinuity. Van Leer's scheme [5] gives a 

large jump at the transition region. 
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