

Fixed Point Theorems For Compatible type α ,β and K in Fuzzy 2 - Metric Space

¹A.Muraliraj, ²S.Sumithiradevi

^{1,2}PG and Research Department of Mathematics, Urumu Dhanalakshmi College, Bharathidasan

University Tiruchirappalli, Tamilnadu, India.

¹karguzali@gmail.com, ²sumithradevi999@gmail.com

Abstract - In this paper, we give some common fixed point results related to compatible type α,β and K and prove

fixed point theorems for compatible mapping types in fuzzy 2-metric space.

Keywords - Fuzzy Set, Fuzzy Metric Space, Compatible α, Compatible β, Compatible K, Fuzzy 2-Metric Space.

I. INTRODUCTION

In 1965, the notion of fuzzy set was introduced by Zadeh [14] in fuzzy mathematics. A . George, P.veeramani [3] give another path, the concept of fuzzy metric space introduced by Kramosil and Michalek [6]. The concept of common fixed point theorem for commuting mapping was given by jungck and commutability more generalized is called compatibility.G. Jungck [7]discussed the compatible. Jain Singh [5], Junck et.al [8] proved a fixed point theorem for compatible mapping type in fuzzy metric space. Sharma and Iseki[12] gave the contraction type mapping in 2-metric space. The concept of 2-metric space has investigate by S.Gahler[1,2].The study of fuzzy-2 metric space and fuzzy -3 metric space have been active and interesting field of research world.

In this paper, we show the fixed point theorems in compatible type with self maps in fuzzy 2- metric space with illustrative examples.

II. PRELIMINARIES

Definition:2.1[14]

A fuzzy set A in X is a function with domain X and values in [0,1]

Definition:2.2[11]

A binary operation *: $[0,1] \times [0,1] \times [0,1] \rightarrow [0,1]$ is a continuous t-norm if $\{[0,1],*\}$ is an abelian topological monoid with unit 1 such that $a_1 * b_1 * c_1 \le a_2 * b_2 * c_2$ whenever $a_1 \le a_2$, $b_1 \le b_2$, $c_1 \le c_2$, for all $a_1, b_1, c_1, a_2, b_2, c_2 \in [0,1]$.

Definition2.3 [13]

The triple (X,M, *) is a fuzzy 2-metric space if X is an arbitrary set, * is a continuous t-norm, M is a fuzzy set in

 $X^3 \times [0,\infty)$ satisfying the following condition for all x,y,z,, $u \in X$ and $t_1, t_2, t_3 > 0$.

(i)
$$M(x,y,z,0) = 0$$

(ii) M(x,y,z,t) = 1, $\forall t > 0$ if and only if x=y

(iii) M(x,y,z,t) = M(x,z,y,t) = M(y,z,x,t),(Symmetric about three variables)

(iv)
$$M(x,y,u,t_1) * M(x,u,z,t_2) *M(u,y,z,t_3) \le M(x,y,z,t_1 + t_2 + t_3)$$

(This corresponds to tetrahedron inequality in 2-metric space)

 $(v)M(x,y,z,.): [0,1) \rightarrow [0,1]$ is left continuous.

(vi)
$$\lim_{t\to\infty} M(x, y, t) = 1, \forall x, y \in X.$$

Definition2.4 [5]

Two mappings A and B on a fuzzy 2-metric space X are said to be compatible type (α) if

$$\begin{split} \lim_{n \to \infty} M \left(ABx_n, BBx_n, z, t \right) &= 1 , \\ \lim_{n \to \infty} M \left(BAx_n, AAx_n, z, t \right) &= 1 \end{split}$$

for all t>0, whenever $\{x_n\}$ is a sequence such that $\lim_{n\to\infty} Ax_n = \lim_{n\to\infty} Bx_n = x$ for some $x \in X$.

Definition2.5[10]

Two mappings A and B on a fuzzy 2-metric space X are said to be compatible type (β) if

$$\lim_{n\to\infty} M(A^2x_n, B^2x_n, z, t) = 1$$

for all t>0, whenever $\{x_n\}$ is a sequence such that $\lim_{n\to\infty} Ax_n = \lim_{n\to\infty} Bx_n = x$ for some $x \in X$.

Definition2.6 [6]

Two mappings A and B on a fuzzy 2-metric space X are said to be compatible type (K) if

 $\lim_{n \to \infty} M(AAx_n, Bx, z, t) = 1$ $\lim_{n \to \infty} M(BBx_n, Ax, z, t) = 1$

for all t>0, whenever $\{x_n\}$ is a sequence such that $\lim_{n\to\infty} Ax_n = \lim_{n\to\infty} Bx_n = x$ for some $x \in X$.

Definition2.7[13]

A sequence $\{x_n\}$ in a fuzzy 2-metric space (X,M, *) is called Cauchy if $\lim_{n\to\infty} M(x_{n+p}, x_n, a, t) = 1$ for all a in X and t>0, p > 0.

Definition2.8 [13]

A sequence $\{x_n\}$ in a fuzzy 2- metric space (X,M, *) is said to be Convergent to $x \in X$ $\lim_{n\to\infty} M(x_n, x, a, t) = 1$ for all a in X and t > 0.

Definition:2.9 [13]

A fuzzy 2- metric space (X,M, *) is said to be complete if every Cauchy sequence in X converges in X.

Definition:2.10 [13]

A function M is continuous in fuzzy 2- metric space if and only if whenever $x_n \rightarrow x$, $y_n \rightarrow y$ then $\lim_{n\to\infty} M(x_n, y_n, a, t) = M(x, y, a, t)$ for all a in X and t>0.

Lemma:2.11 [4]

Let M(x,y,z,.) is non-decreasing for all x,y,z \in X

Lemma:2.12[4]

Let M(X,M,*) be a fuzzy 2- metric space. If there exist $k \in (0,1)$ such that $M(x,y,z,kt) \ge M(x,y,z,t)$ for all $x,y,z \in X$ with $z \neq x$, $z\neq y$ and t>0 then x=y.

Example:2.13[13]

Let (X,d) be a 2- metric space and $a^*b = ab$, for every $a,b \in [0,1]$, Let M_d be a fuzzy set in $X^2 \ge [0,\infty)$, given by $M_d(x,y,z,t) = \frac{t}{t+d(x,y,z)}$ if t>0 and $M_d(x,y,z,0) = 0$. Then (X, M_d ,*) is a fuzzy 2-metric space and M_d is called the standard fuzzy 2- metric space induced by 2-metric d. Thus every 2-metric d induces a fuzzy 2-metric M_d on X.

Example:2.14

Let (X,M,*) be a fuzzy metric space, where X=[0,2], t-norm is defined by $a*b = \min \{a,b\}$ for all $a,b \in [0,1]$ and $M(x,y,z,t) = \frac{t}{t+d(x,y,z)}$ for all $x,y \in X$ and all t>0.Define selfmaps A, B. and Z on X as follows:

$$Ax = \begin{cases} 3 - 2x & if \ x \in [0,1) \\ 2 & if \ x \in [1,2] \end{cases}$$
$$Bx = \begin{cases} x & if \ x \in [0,1) \\ 2 & if \ x \in [1,2] \end{cases}$$

$$z = 1$$
 $z \in X$

Take $x_n = 1 - \frac{1}{n}$, then $x_n \rightarrow 1$, $x_n < 1$, $3 - 2x_n > 1$ for all n.

Also $Ax_n, Bx_n, Zx_n \rightarrow 1$ and $n \rightarrow \infty$.

$$AAx_n = 2$$
, $BBx_n = x_n$, $ABx_n = 3 - 2x_n$, $BAx_n = 2$

Now, we show A & B are compatible type (α)

$$M(ABx_n, BBx_n, z, t) = \frac{t}{t + d(ABx_n, BBx_n, z)} = 1$$

 $M(BAx_n, AAx_n, z, t) = \frac{t}{t+d(BAx_n, AAx_n, z)} = 1$

as $n \rightarrow \infty$. So A ,B are compatible type (α)

Next, we show that A & B are compatible type (β)

$$M(AAx_n, BBx_n, z, t) = \frac{t}{t + d(ABx_n, BBx_n, z)} = 1$$

as $n \rightarrow \infty$. So A ,B are compatible type (β).

III. MAIN RESULTS

Theorem:3.1

Let (X,M,*) be a complete fuzzy 2-metric space. Let S and T be continuous mappings of X in X, then S and T have common fixed point in X if there exist a continuous mapping A of X into S(X) and B of X into T(X) satisfying

(A,S) and (B,T) are compatible type α ,

$$\begin{split} M(Ax,By,a,qt) &\geq \phi ~[min~\{M(Ax,Sx,a,t)~,~M(Ax,Ty,a,t)~,~M(Ty,By,a,t)\}] \end{split}$$

For all x,y,z \in X, t>0 and 0<q<1 where φ : [0,1] \rightarrow [0,1] is a continuous function such that φ (t) >t and φ (t) = 1 Then S,T,A and B have a unique fixed point.

Proof:

Take a point $x_0 \in X$, there is a point $x_1 \in X$ in $A(X) \subseteq T(X)$ such that $A(x_0) = T(x_1)$.

For this point x_1 and there exist a point $x_2 \in X$ in $B(X) \subseteq S(X)$ such that $B(x_1) = S(x_2)$ and so on continuing this step we build a sequence $\{y_n\}$ in X such that

$$y_{2n} = Ax_{2n} = Tx_{2n+1}$$
$$y_{2n+1} = Bx_{2n+1} = Sx_{2n+2}$$

Using the inequality

 $\begin{array}{l} M(Ax_{2n} \ , \ Bx_{2n+1} \ , a,qt) \ \geq \ \phi[\ \min \ \{M(Ax_{2n} \ , \ Sx_{2n} \ , a,t) \ , \\ M(Ax_{2n} \ , \ Tx_{2n+1} \ , a,t) \ , \ M(Tx_{2n+1} \ , \ Bx_{2n+1} a,t)\}] \end{array}$

 $M(y_{2n}\ ,\ y_{2n+1}\ ,\ a,qt)\geq \phi\ [min\ \{M(y_{2n}\ ,\ y_{2n-1}\ ,\ a,t)\ ,$ $M(y_{2n}\ ,\ y_{2n}\ ,a,t),M(y_{2n}\ ,\ y_{2n+1}\ ,\ a,t)\}]$

$$\begin{array}{rcl} M(y_{2n} & , & y_{2n+1} & , & a,qt) \ \geq \ \phi \ \left[M(y_{2n} & , & y_{2n-1} & , & a,t) \right] \\ & & > M(y_{2n} \, , \, y_{2n-1} \, , \, a,t) \end{array}$$

Thus {M(y_{2n}, y_{2n+1}, t), $n \ge 0$ } is an increasing sequences of real number in [0,1] and therefore tends to a limit $L \le$ 1. Claim that L = 1 if not L < 1 which on letting $n \to \infty$ L>L which is contradiction. Finally thereby L = 1 therefore for every $n \in N$ with the above assertion one can show that{M(y_{2n+1}, y_{2n+2}, t), $n \ge 0$ } is a sequence of real number

in [0,1] which limit =1 tends to L and $M(y_n, y_{n+1}, t)$ $M(y_{n-1}, y_n, t)$ > $\lim_{n\to\infty} M(y_n, y_{n+1}, t) = 1$

Now.

 $M(y_n, y_{n+p}, t) \ge M(y_n, y_{n+1}, t/p)$ *.....* $M(y_{n+p-1}, y_{n+p}, t/p)$

where p is a positive integer

Since $\lim_{n\to\infty} M(y_n, y_{n+1}, t) = 1$ for t > 0 it follows that $\lim_{n\to\infty} M(y_n, y_{n+p}, t) \ge 1 * \dots * 1 = 1$ which shows that $\{y_n\}$ is a Cauchy sequence in X.

Since X is complete, there is a point $u \in X$ such that

 $y_n \rightarrow z$, implying the sequence $\{Ax_{2n}\}$ and $\{Bx_{2n+1}\}$ converges to z, as such the subsequences $\{Sx_{2n+1}\}$ and $\{Tx_{2n+2}\}$ also converges to z.

We show that u is common fixed point of A,B,S and T.

Case :1

Since (A,S) is compatible type (α)

 $ASx_n = SSx_n$ and $SAx_n = AAx_n$

whenever x_n is a sequence such that $Ax_n = Sx_n = z$

ie) Az = Sz

Now,

 $M(AAx_{2n}, Bx_{2n+1}, a, qt) \ge \varphi \left[\min \left\{M(AAx_{2n}, SAx_{2n}, a, t)\right\}\right]$ $M(AAx_{2n},Tx_{2n+1},a,t), M(Tx_{2n+1},Bx_{2n+1},a,t)]$

Taking limit as $n \rightarrow \infty$, we get

 $M(Az,z,a,qt) \ge \varphi[\min \{M(Az,Sz,a,t), M(Az,z,a,t)\}$ M(z,z,a,t)

$$\geq \phi [M(Az,z,a,t)] > M(Az,z,a,t)$$

which is contracdiction .

Hence z is a fixed point of A

Az = z

ie) Az = z = Sz

Case :2

Since (B,T) is compatible type (α)

 $BTx_n = TTx_n$ and $TBx_n = BBx_n$

whenever x_n is a sequence such that $Bx_n = Tx_n = z$

ie) Bz = Tz

 $M(Az, BBx_{2n+1}, a, qt) \ge \varphi [min \{M(Az, Sz, a, t), d\}$ $M(Az,TBx_{2n+1},a,t), M(TBx_{2n+1},BBx_{2n+1},a,t)]$

Taking limit as $n \rightarrow \infty$, we get

 $M(Az,Bz,a,qt) \ge \varphi[\min \{M(Az,Sz,a,t), M(Az,Tz,a,t),$ M(Tz,Bz,a,t)]

 $M(z,Bz,a,qt) \ge \varphi[\min\{M(z,z,a,t), M(z,Bz,a,t),$ M(Bz,Bz,a,t)

$$\geq \varphi [M(z,Bz,a,t)] > M(z,Bz,a,t)$$

which is contracdiction .

Hence z is a fixed point of B

$$z = Bz$$

ie) Bz=z = Tz

hence z is a common fixed point of A,B,S and T.

Corollary:3.2

Let (X,M,*) be a complete fuzzy 2-metric space.Let A,B,S and T be continuous self mappings of X, satisfying

1.. $A(X) \subseteq T(X)$, $B(X) \subseteq S(X)$, 2. (A,S) is compatible type α and (B,T) is weak- compatible.

 $M(Ax,By,a,qt) \ge \varphi [min \{M(Ax,Sx,a,t), M(Ax,Ty,a,t),$ M(Ty,By,a,t), M(Sx,By,a,t), M(Sx,Ty,a,t)]

For all x,y,z \in X, t>0 and 0<q<1.where φ : [0,1] \rightarrow [0,1] is a continuous function such that $\varphi(t) > t$ and $\varphi(t) = 1$ Then S,T,A and B have a unique fixed point.

Theorem:3.3

Let (X,M,*) be a complete fuzzy 2-metric space.Let S and T be continuous mappings of X in X, then S and T have common fixed point in X if there exist a continuous mapping A of X into $S(X) \cap T(X)$ which commutes with S & T and the pair (A,S) and (A,T) satisfying the compatible

 $M(Az,z,a,qt) \ge \varphi [\min \{M(Az,Az,a,t), M(Az,z,a,t)\}$ $M(z,z,a,t) \ge \min \{M(Ax,Ay,a,qt) \ge \min \{M(Ax,Ty,a,t), M(Ax,Sx,a,t), M(Ax,Sx,a,t), M(Ax,Sx,a,t)\}$ M(Ay,Ty,a,t),M(Ay,Sx,a,t)

> For all x,y,z \in X, t>0 and 0<q<1. Then S,T and A have a unique common fixed point.

Proof:

Take a point $x_0 \in X$, there is a point $x_1 \in X$ in $A(X) \subseteq S(X)$ such that $A(x_0) = T(x_1)$. For this point x_1 and there exist a point $x_2 \in X$ in A(X) \subseteq T(X) such that $A(x_1) = S(x_2)$ and so on continuing build this step we get a sequence $\{y_n\}$ in X such that

 $y_{2n} = Ax_{2n} = Tx_{2n+1}$ $y_{2n+1} = Ax_{2n+1} = Sx_{2n+2}$

Using the inequality

 $M(Ax_{2n}, Ax_{2n+1}, a, qt) \ge \min\{M(Ax_{2n}, Tx_{2n+1}, a, t), \}$ $M(Ax_{2n}, Sx_{2n}, a, t), M(Ax_{2n+1}, Tx_{2n+1}, a, t), M(Ax_{2n+1}, Sx_{2n})$, a, t)

$$\begin{split} & M(y_{2n} , y_{2n+1}, a, qt) \geq \min \left\{ M(y_{2n}, y_{2n}, a, t) , \\ & M(y_{2n}, y_{2n-1}, a, t) , M(y_{2n+1}, y_{2n}, a, t) , M(y_{2n+1}, y_{2n-1}, a, t) \right\} \end{split}$$

 $\mathbf{M}(y_{2n}, y_{2n+1}, a, qt) \geq \mathbf{M}(y_{2n-1}, y_{2n}, a, t)$

Thus { $M(y_{2n}, y_{2n+1}, t)$, $n \ge 0$ } is an increasing sequences of real number in [0,1] and therefore tends to a limit $L \le$ 1. Now, clear that L = 1. if not L < 1 which on letting $n \rightarrow \infty L > L$ which is contradiction. Finally thereby L =1 therefore for every $n \in N$. For the above assert one can show that{ $M(y_{2n+1}, y_{2n+2}, t), n \ge 0$ } is a sequence of real number in [0,1] which tends to limit L = 1.

 $M(y_n, y_{n+1}, t) > M(y_{n-1}, y_n, t)$

and $\lim_{n\to\infty} M(y_n, y_{n+1}, t) = 1$

Now, $M(y_n, y_{n+p}, t) \ge M(y_n, y_{n+1}, t/p)$ *.....* $M(y_{n+p-1}, y_{n+p}, t/p)$

where p is a positive integer

Since $\lim_{n\to\infty} M(y_n, y_{n+1}, t) = 1$ for t > 0 it follows that $\lim_{n\to\infty} M(y_n, y_{n+p}, t) \ge 1 * \dots * 1 = 1$ which shows that $\{y_n\}$ is a Cauchy sequence in X.

Since X is complete, there is a point $u \in X$ such that

 $y_n \rightarrow z$, implying the sequence $\{Ax_{2n}\}$ and $\{Ax_{2n+1}\}$ converges to z, as such the subsequences $\{Sx_{2n+1}\}$ and $\{Tx_{2n+2}\}$ also converges to z.

Show that u is common fixed point of A,S and T.

Case :1

Since (A,S) is compatible type (β)

 $A^2 x_n = S^2 x_n$

whenever x_n is a sequence such that $Ax_n = Sx_n = z$

ie) Az = Sz

Now,

$$\begin{split} & \mathsf{M}(A^2 x_{2n}, \mathsf{A} x_{2n+1}, \mathsf{a}, \mathsf{qt}) \geq \varphi \left[\min \left\{ \mathsf{M}(A^2 x_{2n}, \mathsf{T} x_{2n+1}, \mathsf{a}, \mathsf{t}) \right. \right. \\ & \mathsf{M}(A^2 x_{2n}, \mathsf{S} \mathsf{A} x_{2n+1}, \mathsf{a}, \mathsf{t}) , \, \mathsf{M}(\mathsf{A} x_{2n+1} \mathsf{T} x_{2n+1}, \mathsf{a}, \mathsf{t}) \, , \\ & \mathsf{M}(\mathsf{A} x_{2n+1}, \mathsf{S} \mathsf{A} x_{2n}, \mathsf{a}, \mathsf{t}) \} \right] \end{split}$$

Taking limit as $n {\rightarrow} \infty$, we get

$$\begin{split} M(Az,z,a,qt) \geq \min \; & \{M(Az,z,a,t)\;, M(Az,Sz,a,t)\;, \\ & M(z,z,a,t)\;,\; M(z,Sz,a,t)\}] \end{split}$$

$$\begin{split} M(Az,z,a,qt) \geq \min \left\{ M(Az,z,a,t) \;,\; M(Az,Az,a,t) \;, \\ M(z,z,a,t) \;,\; M(z,Az,a,t) \right\} \end{split}$$

 $M(Az,z,a,qt) \ge M(Az,z,a,t)$

which is contradiction Az = z

Therefore Az = z = Sz

Case :2

Since (A,T) is compatible type (β)

 $A^2 x_n = T^2 x_n$

whenever x_n is a sequence such that $Ax_n = Tx_n = z$

ie) Az = Tz

$$\begin{split} & \mathsf{M}(\mathsf{Az}, A^2 x_{2n+1}, \mathbf{a}, \mathbf{qt}) \geq \min \left\{ \mathsf{M}(\mathsf{Az}, \mathsf{TA} x_{2n+1}, \mathbf{a}, \mathbf{t}) , \\ & \mathsf{M}(\mathsf{Az}, \mathsf{Sz}, \mathbf{a}, \mathbf{t}) , \mathsf{M}(A^2 x_{2n+1}, \mathsf{TA} x_{2n+1}, \mathbf{a}, \mathbf{t}) , \\ & \mathsf{M}(A^2 x_{2n+1}, \mathsf{Sz}, \mathbf{a}, \mathbf{t}) \right\} \end{split}$$

$$\begin{split} & \mathsf{M}(\mathsf{Az}, T^2 x_{2n+1}, \mathsf{a}, \mathsf{qt}) \geq \min \{\mathsf{M}(\mathsf{Az}, \mathsf{TA} x_{2n+1}, \mathsf{a}, \mathsf{t}), \\ & \mathsf{M}(\mathsf{Az}, \mathsf{Sz}, \mathsf{a}, \mathsf{t}), \mathsf{M}(T^2 x_{2n+1}, \mathsf{TA} x_{2n+1}, \mathsf{a}, \mathsf{t}), \\ & \mathsf{M}(T^2 x_{2n+1}, \mathsf{Sz}, \mathsf{a}, \mathsf{t})\} \end{split}$$

Taking limit as $n \rightarrow \infty$, we get

$$\begin{split} M(Az,Tz,a,qt) &\geq \min \left\{ M(Az,Tz,a,t) \;,\; M(Az,Az,a,t) \;, \\ M(Tz,Tz,a,t) \;,\; M(Tz,Sz,a,t) \right\} \end{split}$$

$$\begin{split} M(z,Tz,a,qt) &\geq \min\{M(z,Tz,a,t) \text{ , } M(z,z,a,t) \text{ , } M(Tz,Tz,a,t) \\ \text{ , } M(Tz,z,a,t)\} \end{split}$$

 \geq [M(z,Tz,a,t)]

which is contracdiction .

Hence z is a fixed point of T

$$z = Tz$$

ie) Az=z = Tz

Hence z is a common fixed point of A,S and T.

Uniqueness:

Suppose there is another fixed point $w \neq z$, then

$$\begin{split} M(Ax,Ay,a,qt) &\geq \min \left\{ M(Ax,Ty,a,t) , M(Ax,Sx,a,t) , \\ M(Ay,Ty,a,t), M(Ay,Sx,a,t) \right\} \end{split}$$

$$\begin{split} M(Az,Aw,a,qt) &\geq \min \left\{ M(Az,Tw,a,t) , M(Az,Sz,a,t) , \\ M(Aw,Tw,a,t), M(Aw,Sz,a,t) \right\} \end{split}$$

$$\begin{split} M(z,\!w,\!a,\!qt) &\geq \min \left\{ M(z,\!w,\!a,\!t) \;,\; M(z,\!z,\!a,\!t) \;,\; M(w,\!w,\!a,\!t) \;, \; M(w,\!z,\!a,\!t) \right\} \end{split}$$

which is a contradiction , which implies w = z.

Hence A,S and T have unique common fixed point.

Corollary:3.4

Let (X,M,*) be a complete fuzzy 2-metric space.Let A,B,S and T be continuous self mappings of X, satisfying

 $1.A(X) \subseteq PQ(X), B(X) \subseteq ST(X)$

2.(A,S) is compatible type β and (B,T) is compatible.

$$\begin{split} M(Ax,By,a,qt) \geq \min \; & \{M(Ax,STy,a,t) \;, \; M(Ax,PQx,a,t) \;, \\ & M(By,STy,a,t), M(By,PQx,a,t) \} \end{split}$$

For all $x,y,z \in X$, t>0 and 0<q<1. Then S,T,P,Q, A and B have a unique common fixed point.

Theorem:3.5

Let (X,M,*) be a complete fuzzy 2-metric space.Let S and T be continuous mappings of X if there exist a continuous mapping A of X into S(X) and B of X into T(X) satisfying

(A,S) and (B,T) are compatible type (k),

$$\begin{split} M(Ax,By,a,qt) &\geq M(Sx,Ty,a,t)*M(Ax,Sx,a,t)*\\ M(By,Ty,a,t)* \ M(Ax,Ty,a,t) \end{split}$$

For all x,y, $z \in X$, t>0 and 0<q<1. Then S,T,A and B have a unique common fixed point.

Proof:

Take a point $x_0 \in X$, there is a point $x_1 \in X$ in $A(X) \subseteq T(X)$ such that $A(x_0) = T(x_1)$. For this point x_1 and there exist a point $x_2 \in X$ in $B(X) \subseteq S(X)$ such that $B(x_1) = S(x_2)$ and so on continuous this step we build a sequence $\{y_n\}$ in X such that

 $y_{2n} = Ax_{2n} = Tx_{2n+1}$ $y_{2n+1} = Bx_{2n+1} = Sx_{2n+2}$

Using the inequality

$$\begin{split} &M(Ax_{2n}, Bx_{2n+1}, a, qt) \geq M(Sx_{2n}, Tx_{2n+1}, a, t) * \\ &M(Ax_{2n}, Sx_{2n}, a, t) * M(Bx_{2n+1}, Tx_{2n+1}, a, t) * \\ &M(Ax_{2n}, Tx_{2n+1}, a, t) \end{split}$$

$$\begin{split} &M(y_{2n}, y_{2n+1}, a, qt) \geq M(y_{2n-1}, y_{2n}, a, t) * M(y_{2n}, y_{2n-1}, a, t) \\ &* M(y_{2n+1}, y_{2n}, a, t) * M(y_{2n}, y_{2n}, a, t) \end{split}$$

$$\begin{split} & M(y_{2n}, y_{2n+1}, a, qt) \geq M(y_{2n}, y_{2n-1}, a, t) * M(y_{2n+1}, y_{2n}, a, t) \\ & * M(y_{2n}, y_{2n}, a, t) \end{split}$$

 $\geq M(y_{2n}, y_{2n-1}, a, t)$

Thus {M(y_{2n}, y_{2n+1}, t), $n \ge 0$ } is an increasing sequences of real number in [0,1] and therefore tends to a limit L \le 1. Claim that L = 1.If not L < 1 which on letting $n \to \infty$ L> L which is contradiction. Finally thereby L = 1 therefore for every $n \in N$ with the above assert one can show that{M(y_{2n+1}, y_{2n+2}, t), $n \ge 0$ } is a sequence of real number in [0,1] which tends to limit L =1 . M(y_n, y_{n+1}, t) > M(y_{n-1}, y_n, t) and $\lim_{n\to\infty} M(y_n, y_{n+1}, t) = 1$

Now, $M(y_n, y_{n+p}, t) \ge M(y_n, y_{n+1}, t/p)$ *.....* $M(y_{n+p-1}, y_{n+p}, t/p)$

where p is a positive integer

Since $\lim_{n\to\infty} M(y_n, y_{n+1}, t) = 1$ for t > 0 it follows that

 $\lim_{n\to\infty} M(y_n, y_{n+p}, t) \ge 1*....* 1=1$

which shows that $\{y_n\}$ is a Cauchy sequence in X.

Since X is complete, there is a point $u \in X$ such that $y_n \rightarrow z$, implying the sequence $\{Ax_{2n}\}$ and $\{Ax_{2n+1}\}$ converges to z, as such the subsequences $\{Sx_{2n+1}\}$ and $\{Tx_{2n+2}\}$ also converges to z.

We show that u is common fixed point of A,S and T.

Case :1

Since (A,S) is compatible type (k)

$$A^2 x_n = Sz$$
 and $S^2 x_n = Az$

whenever x_n is a sequence such that $Ax_n = Sx_n = z$ Now,

$$\begin{split} \mathsf{M}(A^2 x_{2n}, &\mathsf{B} x_{2n+1}, a, \mathsf{qt}) \geq \mathsf{M}(\mathsf{S} \mathsf{A} x_{2n}, &\mathsf{T} x_{2n+1}, a, \mathsf{t}) * \\ \mathsf{M}(A^2 x_{2n}, &\mathsf{S} \mathsf{A} x_{2n}, a, \mathsf{t}) * \mathsf{M}(\mathsf{B} x_{2n+1}, &\mathsf{T} x_{2n+1}, a, \mathsf{t}) * \\ \mathsf{M}(A^2 x_{2n}, &\mathsf{T} x_{2n+1}, a, \mathsf{t}) \end{split}$$

Taking lim n tends to infinty $M(Sz,z,a,qt) \ge M(Sz,z,a,t) * M(Sz,Sz,a,t) * M(z,z,a,t) *$ M(Sz,z,a,t) $M(Sz,z,a,qt) \ge M(Sz,z,a,t)$ Which is contradiction Sz = zSimilarly Az = zTherefore Az = z = SzCase :2 Since (B,T) is compatible type (k) $B^2 x_n = Tz$ and $T^2 x_n = Bz$ whenever x_n is a sequence such that $Bx_n = Tx_n = z$ $M(Ax_{2n}, B^2x_{2n+1}, a, qt) \ge M(Sx_{2n}, TBx_{2n+1}, a, t) *$ $M(Ax_{2n}, Sx_{2n}, a, t) * M(B^2x_{2n+1}, TBx_{2n+1}, a, t) *$ $M(Ax_{2n}, TBx_{2n+1}, a, t)$ Taking lim n tends to infinty $M(z,Tz,a,qt) \ge M(z,Tz,a,t) * M(z,z,a,t) * M(Tz,Tz,a,t) *$ M(z,Tz,a,t) $M(z,Tz,a,qt) \ge M(z,Tz,a,t)$ which is contradiction. Hence Tz = zSimilarly Bz = zTherefore Bz = z = Tz

Hence Az = Sz = Bz = Tz, z is a common fixed point.

IV. CONCLUSION

In this paper, discussion is three type of compatible in fuzzy metric space then prove fixed point.

REFERENCE

- Jha, V.Popa And K.B.Manandhar, (2014), Common Fixed Points For Compatible Mappings Of Type (K) In Metric Space, Int.J.Math.Sci.Eng.Appl,8,Pp.383-391.
- Metric Space, Incompatible Mappings And Common Fixed Point(2)" Internat.J.Math.Math.Sci.(1988),285-288.
 - [3] I.Kramosil And J.Michalek, Fuzzy Metric And Statistical Metric Spaces, Kybernetika,11(1975),336-344.
 - [4] H.K.Pathak, Y.J. Gho, S.S.Chang, S.M.Kang, 1996, " Compatible mappings of type(P) and fixed point theorems in metric spaces and probabilistic metric spaces, Novisad J.Math, Vol. (26)2, pp. 87-109.
 - [5] Schweizer And A.Sklar, Probablistic Metric Spaces, North Holland, Amsterdam, 1983.
 - [6] .L.Sharma ,B.K.Sharma and K.Iseki, Contractive type mapping on 2- metric spaces,Math.Japonica 21(1976) 67-70.
 - [7] Sushil Sharma , On Fuzzy Metric Space, Southeast Asian Bulletin of Mathematics(2002) 26: 133-145.
 - [8] A.Zadeh, Fuzzy Sets, Infor. and control, 8(1965)