
International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-05, Issue-01, April 2019

745 | IJREAMV05I0149249 DOI : 10.18231/2454-9150.2019.0389 © 2019, IJREAM All Rights Reserved.

Compiler And Its Phases

Ms. Mayuri Dangare, Assistant Professor, Sinhgad College of Science, Pune & India,

dangare.mayuri@gmail.com

Mr. Amit Kasar, Assistant Professor, International Institute of Information Technology, Pune,

India. amitk@isquareit.edu.in

Abstract: What is a compiler? How the compiler works? This paper tells us everything about compiler. We know that

machine understands only low level language i.e. language in terms of 0’s and 1’s. All the software which is running on

the computer system is written in some kind of language. The input to the computer system is in High Level Language

and necessary to transit into the machine language. The software that translates the high level language into machine

level or low level language is called as Compiler and the process of conversion is called as Compilation. This paper

describes the process of compilation, the phases of compilation and how the translation occurs in short.

Keywords — Low level language, High level language, Translation, Compiler, source code, object code

I. INTRODUCTION

 The first implemented compiler was written by American

scientist Grace Hopper in 1952, for A-0 language. The

FORTRAN team led by John W. Backus at IBM introduced

the primary commercially out there compiler, in 1957,

which took 18 person-years to create. The first ALGOL

fifty eight(58) compiler was completed by the top of 1958

by Friedrich L. Bauer, Hermann Bottenbruch, Heinz

Rutishauser, and Klaus Samelson for the Z22 computer. By

1960, associate degree extended Fortran compiler, ALTAC,

was available on the Philco 2000.

 A compiler converts the source code into binary

instructions for architecture of processor. A cross compiler

is a compiler capable of creating executable code for a

platform other than the one on which the compiler is

running. For example, a compiler that runs on a Windows 7

PC but generates code that runs on Android smart phone is

a cross compiler for e.g. a microcontroller of an embedded

system. These systems contain no operating system. It

perform different types of operations like semantic analysis,

pre-processing, parsing, lexical analysis, conversion of

input programs to an intermediate representation, code

optimization and code generation.

II. COMPILER TYPES

For the conversion of the source code into machine

language code, the compiler has types as described below:

i) NATIVE CODE: The compiler used to compile a source

code for same type of platform only.

ii) ONE PASS COMPILER: It is a compiler which

compiles the whole process in one pass only.

iii) SOURCE TO SOURCE COMPILER: The compiler

that takes high-level language code as input and output

source code of another high level language only.

iv) INCREMENTAL COMPILER: The compiler which

compiles only changed lines from source code and update

object code.

v) CROSS COMPILER: The compiler used to compile a

source code for different kinds of platforms.

vi) THREADED CODE COMPILER: The compiler which

simply replaces string by appropriate binary code.

vii) SOURCE COMPILER: The compiler which converts

source code high level language in assembly language only.

Fig 1. Working of Compiler

A compiler could be a program that interprets the ASCII

text file for an additional program from a artificial language

into executable code. The ASCII text file is often during a

high- level artificial language (e. g. Pascal, C, C++, Java,

Perl, C#, etc.). The possible code is also a sequence of

machine directions which will be dead by the processor

directly, or it's going to be associate degree intermediate

illustration that's taken by a virtual machine. (e. g. Java byte

code).

https://en.wikipedia.org/wiki/Grace_Hopper
https://en.wikipedia.org/wiki/FORTRAN
https://en.wikipedia.org/wiki/John_W._Backus
https://en.wikipedia.org/wiki/IBM
https://en.wikipedia.org/wiki/ALGOL_58
https://en.wikipedia.org/wiki/ALGOL_58
https://en.wikipedia.org/wiki/Friedrich_L._Bauer
https://en.wikipedia.org/wiki/Heinz_Rutishauser
https://en.wikipedia.org/wiki/Heinz_Rutishauser
https://en.wikipedia.org/wiki/Klaus_Samelson
https://en.wikipedia.org/wiki/Z22_(computer)
https://en.wikipedia.org/wiki/Philco
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Executable
https://en.wikipedia.org/wiki/Platform_(computing)
https://en.wikipedia.org/wiki/Windows_7
https://en.wikipedia.org/wiki/Personal_computer
https://en.wikipedia.org/wiki/Android_(operating_system)
https://en.wikipedia.org/wiki/Smartphone
https://en.wikipedia.org/wiki/Microcontroller
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Embedded_system

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-05, Issue-01, April 2019

746 | IJREAMV05I0149249 DOI : 10.18231/2454-9150.2019.0389 © 2019, IJREAM All Rights Reserved.

III. PHASES OF COMPILER

The process of compilation is partitioned into six phases as

shown in figure. Each phase can interact with symbol table

and error handling mechanism.

Let us understand the process with the help of example

Total= a + b * 60 as follows.

1. Lexical Analysis: It is also called as scanner. It is the

first phase of compiler. It scans the source code as stream

of characters. Lexical analysis means to separate words

from the statements from the source code and using rules

and regulations i.e. pattern it converts words into tokens.

These words are called as lexical units or lexeme.

It generates the tokens with the help of lexemes as

<token_name, attribute_value> where token name is

abstract symbol used during syntax analysis and attribute

value points to entry in symbol table for this token.

For the above example lexical analyzer is written as

<id,1> <=><id,2><+><id,3><*><60>.

i) Token <id,1> : Here total is a lexeme, id is symbol

standing for identifier and 1 points to symbol table entry.

ii) Token <=> : It is a lexeme mapped into token with no

attribute value.

iii) Token <id,2> : a is a lexeme mapped into token <id,2>,

where 2 points to symbol table entry.

iv) Token <+> : Plus is a lexeme mapped into token <+>.

v) Token <id,3> : b is a lexeme mapped into token <id,3>,

where 3 points to symbol table entry.

vi) Token <*> : Multiplication is a lexeme mapped into

token <*>

vii) Token <60> : 60 is a lexeme mapped into token <60>.

The tokens in programming language include:

Keyword such as do, if, for, while...etc.

Identifiers such as x, y, z....etc.

Operator symbol such as <, >, +, -, /, =.

Punctuation symbols such as (,), {, }, parenthesis or

commas.

Some more functions of Lexical analyzer:

1) It identifies delimiters

2) Removes comments from program.

3) It removes extra blank lines and blank spaces from

Source code

4) It builds tables like symbol table, literal table etc

The output of Lexical Analyzer is passed to the next

phase i.e. Syntax analysis.

2. Syntax Analysis: It is also known as parsing. It accepts

tokens generated by lexical analysis.

Syntax analysis means to check the syntax of input

statements with the help of stream of tokens from lexical

analysis .The output of syntax analysis is parse tree.

The parser should know following things:

1) Format and structure of the language

2) Grammar of each and every statement

3) Syntax of all statements of language

4) How to store grammar in memory and how to use

them

The syntax tree or parse tree for above example is as

follows:

Fig 2. Syntax Tree

3. Semantic Analysis: The input of semantic analysis is

parse tree. It checks the semantic (meaning) of the source

text i.e. it checks the validity of argument types for the

specific operation. It checks whether the parse tree to be

constructed follows the rules of languages or not. Type

information is saved in symbol table.

For e.g. It checks the identifiers are declared before its use.

Fig 3. Semantic analysis form

4. Intermediate Code Generator: At the end of semantic

analysis, compiler generates intermediate code. This

intermediate code is easier to convert into machine code. It

is easier to produce this code.

One of the intermediate codes used in many compilers is

three address code. This code has at most three operands

and it consist of sequence of instruction

The above example can be represented in three address

code as follows.

t1=inttofloat(60)

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-05, Issue-01, April 2019

747 | IJREAMV05I0149249 DOI : 10.18231/2454-9150.2019.0389 © 2019, IJREAM All Rights Reserved.

t2=id3*t1

t3=id2+t2

id1=t3

5. Code optimization: It converts the intermediate code

into faster executing code. There are different code

optimization techniques.

a) Compile time evaluation: Some statements are there

which can be executed at compile time to reduce the

execution time. For e.g. constant folding, in which

value of constant or operation can be replaced at the

time of compilation.

b) Common sub expression: The expression is called if its

value is computed previously and it is not changed

since the previous computation. We can avoid

recomputing and use the previously computed value.

c) Frequency reduction: The code written in high frequency

region can be moved to low frequency region to reduce

execution time.

d) Strength reduction: The execution time can be reduced

by replacing high strength operation by low strength

operation. For eg. * (multiplication) replaced by

+(addition)

The optimized code for above example is as follows:

t1=id3*60.0

id1=id2+t1

6. Code Generation: This is the last phase of compiler.

It takes the intermediate code form and translates it into

some machine instructions. These instructions are generally

in assembly language.

LDF R2, id3

MULF R2, R2, #60.0

ADDF R1, R1, R2

STF id2, R1

Fig.4 Phases of Compiler

IV. FEATURES

i) Error Handling: The code cannot be written in single

step. People do mistakes and compiler should be able to

handle those mistakes. Error handling is dealing with each

phase of compiler. Compiler spots errors in program, the

user go back and make the corrections in the source

program listed by the compiler.

ii) Error checking is not perfect: The compiler cannot

identify the logical errors.

iii) Executable file: The o/p of compiler is creation of

executable file. It contains entire machine code running on

CPU once the executable file has been loaded into main

memory.

iv) Code optimization: Compiler translates source code into

machine code through different phases and optimizes the

code so that the code runs faster.

v) Makes source code independent: We know that machine

code is CPU specific. Most programmers produce software

using high level language. Company is paying to the

programmer to produce code for different purposes .

V. ADVANTAGES AND DISADVANTAGES:

The advantages of compilers are as follows:

i) Self-Contained and Efficient: It is the major advantage

that it is self-contained units which are always ready to get

executed due to already compiled into machine language

binaries. User does not require another package to be

installed. Compiled code will execute faster than the

interpreted code as once program is compiled its object file

is created and saved. Such file is not created in interpreter.

ii) Hardware Optimization: The compiling of program can

increase its performance. User send specific options to

compilers regarding details of hardware the program will be

running on. This allows the compiler to create machine

language code which makes the most efficient use of the

specified hardware, as opposed to more generic code. This

allows advanced users to optimize the performance of a

program on their computers.

The disadvantages are as follows:

i) Hardware Specific: A source code is translated into a

required machine language using compiler.

ii) Compile Times: It compiles source code into machine

code. The small program requires less compile time

whereas the larger one will require large compile time.

VI. CONCLUSION

In this article we learn about basics of compiler. It includes

how the source program is converted into target program

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-05, Issue-01, April 2019

748 | IJREAMV05I0149249 DOI : 10.18231/2454-9150.2019.0389 © 2019, IJREAM All Rights Reserved.

through different phases. How errors are handled and how

the machine efficient and faster running code is generated.

VII. REFERENCES

[1] Shamali Kokare, Divya Chauhan, Jyoti Mishra, Aarti

Sakore, Prof. Manisha Singh, “Review Paper on Online

Java Compiler”, International Research Journal of

Engineering and Technology (IRJET), Volume: 04

Issue: 03, Mar -2017.

[2] Ch. Raju1, Thirupathi Marupaka2, Arvind

Tudigani3,"Analysis of Parsing Techniques & Survey

on Compiler Applications", IJCSMC, Vol. 2, Issue. 10,

October 2013,

[3] Charu Arora, Chetna Arora, Monika Jaitwal,

“RESEARCH PAPER ON PHASES OF COMPILER”,

© 2014 IJIRT | Volume 1 Issue 5| ISSN : 2349-6002.

[4] Prof. Rajesh Babu, Prof. Vishal Tiwari, Prof. Jiwan

Dehakar, “Parsing and Compiler design Techniques for

Compiler Applications”, International Journal on

Recent and Innovation Trends in Computing and

Communication ISSN: 2321-8169, Volume: 3 Issue: 2

449– 453.

[5] Muchnick . Advanced Compiler Design and

Implementation.

[6] Robert Morgan. Building an Optimizing compiler.

[7] Y.N. SrikantP. Shankar. The Compiler Design

Handbook: Optimizations

