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Abstract Titanium superalloy belongs to advanced category of material which finds wide place in many important 

industries such as aerospace, automobile, missiles etc. due to its elevated mechanical, physical and chemical properties. 

The advanced machining processes (AMPs) have been developed to machine such kinds of newer materials. Electrical 

discharge machining (EDM) is such an AMP which is extensively used now-a-days for machining of Titanium alloy. In 

the present research the EDM experimentation on Ti-6Al-4V alloy by considering peak current, pulse-on time and 

pulse-off time as process input variables have been conducted. The material removal rate and tool wear rate have been 

considered as process output parameters. The response surface model (RSM) has been developed for both the quality 

parameters and finally single objective optimization of both the quality parameters has been done by applying hybrid 

RSM- teaching-learning-based optimization (TLBO) algorithm and RSM- particle swarm optimization (PSO) 

approach. It has been observed that TLBO gives better results than PSO. 
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I. INTRODUCTION 

Superalloys such as Hastelloy, Inconel, Rene alloys, 

Waspaloy Incoloy etc. are very popular engineering 

materials now-a-days due to their extraordinary mechanical, 

physical and chemical properties. Ti-6Al-4V is such a 

superalloy which is most widely used in aviation and 

automobile industries. Due to its superior mechanical 

properties, this material is quite difficult to machine by 

conventional machining methods. Advanced machining 

processes (AMPs) are extensively used to machine such 

materials. Many AMPs have been developed in past to 

process these materials. The most popular AMPs today are 

electrical discharge machining (EDM), electrochemical 

machining, laser beam machining, plasma arc machining, 

abrasive jet machining, ultrasonic machining etc. EDM is a 

thermal energy based AMP which utilizes the thermal 

energy of the spark generated between the tool and the 

workpiece. The removal of the material takes place due to 

melting and or vaporization of workpiece due to localized 

intense heat [1-2].  

Ample work has been reported in the literature for 

EDM/wire EDM (WEDM) of Titanium alloys. Yadav et al. 

[3] machined holes in Titanium alloy using EDM process. 

They developed new mechanism to hold and rotate the tool. 

Peak current, pulse-on time, duty factor and electrode 

rotation speed were selected as process input variables to 

evaluate different process output parameters. They found 

that electrode rotation is most significant input variable 

affecting process output parameters. Santos et al. [4] studies 

the effect of polarity, peak current, pulse-on time and duty 

cycle on the material removal rate (MRR), surface 

roughness (SR) and recast layer thickness (RCL). They 

observed that polarity is the most contributing factor for 

MRR & SR and on other hand pulse-on time has most 

significant affect on RCL. Kuriakose and Shunmugam [5] 

performed WEDM on Titanium alloy by varying electrical 

parameters and servo speed, wire speed & wire tension. SR 

and cutting speed were considered as output parameters. 

They developed response surface model (RSM) for both the 

output parameters and did multi-objective optimization 

using non-dominated sorting genetic algorithm (GA). Sarkar 

et al. [6] also developed second order regression model for 

SR, cutting speed and dimensional deviation during WEDM 

of Titanium alloy. In another research Sarkar et al. [7] 

developed artificial neural network model (ANN) during 

machining of γ Titanium aluminide to predict cutting speed, 

SR and wire offset. They found developed ANN models to 

be quite accurate to predict process behavior. 

Rangajanardhaa et al. [8] performed EDM on Titanium 

alloy and three other materials by varing current, voltage 

and machining time to evaluate MRR, hardness and SR. 

they devolved ANN for all the output parameters and also 

did single objective optimization for SR using hybrid 

approach of ANN and GA. Khan et al. [9] also developed 

ANN model for different output parameters during EDM of 
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Titanium alloy.  Liu et al. [10] used finite element analysis 

approach to develop 3D thermodynamic model for MRR 

and tool wear rate (TWR) during EDM of Titanium 

superalloy. Using birth and death element method, the 

volume of material removed from both workpiece and tool 

were calculated. They found simulation models to be 

accurate and reliable. Pramanik et al. [11] tried to improve 

the efficiency of WEDM process by reducing the wire 

rupture during cutting of Ti-6Al-4V superalloy. Flushing 

pressure, wire tension and pulse-on time were considered as 

input control factors. They discussed various mode of wire 

fracture and also suggested that to reduce wire fracture, less 

tension, lower pulse-on time and higher flushing pressure 

should be used. Mustufa et al. [12] performed mirco-EDM 

on Ni-Ti memory shape alloy by using different electrode 

materials and by varying capacitance and discharge voltage. 

The output parameters were MRR, TWR, SR, hope taper, 

circularity and overcut. They concluded that capacitance 

and electrode material are dominant factors affecting 

performance of the process. They also identified the 

optimum control factors to minimize the TWR and SR by 

using MOGA-II. De et al. [13] machined pure sintered 

titanium by using WEDM. Pulse-on time, pulse-off time, 

wire tension and feed were varied to evaluate two of the 

most important output process parameters; kerf width and 

overcut. By using 4 factors- 3 level factorial design, they 

developed RSMs for kerf width and overcut and found 

models to be appropriate to predict the behavior of the 

process. Arikatla et al. [14] carried out WEDM on Ti-6Al-

4V alloy by considering pulse-on time, pulse-off time, servo 

voltage, wire tension and power as input control factors. 

They developed empirical model for kerf width, MRR and 

SR by using RSM. Baroi et al. [15] carried out EDM on 

Titanium Grade 2 alloy to evaluate MRR, TWR and SR by 

using L16 orthogonal array design of experiments. They 

obtained optimum values of all the three quality parameters 

by using Taguchi robust design method.   

The exhaustive literature survey reveals that ample study 

has been done to evaluate the effects of different input 

control factors on various quality parameters. Researchers 

have also developed various conventional and artificial 

intelligence (AI) based models to predict process behavior. 

Also people have tried to optimize the process behavior to 

get best output by conventional optimization techniques. 

But, rarely people have used evolutionary optimization 

technique such as particle swarm optimization (PSO), 

differential evolution, teaching-learning-based optimization 

(TLBO) algorithm, black hole etc. during EDM of Titanium 

alloy. Considering above research gap in the mind, in the 

present research the EDM has been performed on Ti-6Al-

4V by varying peak current, pulse-on time and pulse-off 

time. Two of the most important performance parameters; 

MRR and TWR have been evaluated. The RSM model for 

both the quality parameters has been developed. Further, the 

developed RSM model has been used as objective function 

to perform single objective optimization of MRR and TWR 

using and TLBO and PSO. Finally performance of TLBO 

and PSO has been compared for MRR and TWR.  

II. METHODOLOGY 

2.1.  Response surface model (RSM) 

In response surface methodology, the relation between 

the process performance and process input parameters is 

expresses as: 

 

Where,  are input process 

parameters and  is the process performance or desired 

quality characteristic. By plotting the expected response of 

y, a surface, known as the response surface is obtained. The 

form of  is unknown and may be very complicated. Thus 

RSM aims at approximating  by a suitable lower order 

polynomial in some region of the input process parameters.  

Usually, a second order regression model, which includes 

curvature effect, is utilized in RSM [16]. 

           

                              

    (2)                                        

Where, is constant and all b’s are regression 

coefficients determined by least square method using 

following equation: 

                         =                          

     (3)                                 

Where  is the transpose of matrix  and 

 is the inverse of matrix . 

2.2 Teaching-learning-based optimization algorithm 

(TLBO) 

 TLBO was developed by  R. V. Rao et al. in 2012 

[17] is based on teaching-learning process, which is based 

on the effect of influence of a teacher on the output of 

learners in a class.  

 

Step-1: Initialize the optimization parameters 

(i) Population size )( nM  

(ii) Number of design variables )( nD   

 

Step-2: Initialize the population: generate random 

population according to the population size and 

the number of design variables. For TLBO, 

population size indicates the number of learners 
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and the design variables indicate the variables. 

Generated population is normally distributed in 

the range ][ ijijij UUU  .          
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Step-3: Calculate fitness function for the feasible 

vectors and rank the population according to 

their respective maximum and minimum value 

of fitness function. 

Step-4:   Set generation count 1k . 

Step-5:  Teacher phase:  Calculate the mean of the 

population column wise, which will give the 

mean of the particular generated variables as: 

     ]......,,.........,[ 21, DD mmmM          

        (5) 

Step-6: Based on the value of fitness function, identify 

the best solution vector, which will act as a new 

mean       ( DnewM , ).  
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              (6) 

Step-7: Evaluate difference between the existing and 

the new mean;  

 

),(,_ , DFDnewD MTMrMeanDifference 

   
     (7) 

                where, r - is the random number [0, 1]. 

           TF – Teaching learning factor [1, 2] 

Step-8: Update the Teacher’s knowledge with the help 

of teacher’s knowledge. 

              DDoldDnew MeanDifferenceUU ,_
,,       

      (8) 

Step-9: Learner phase: Learners increase their 

knowledge/value by two means; one through 

input from teacher and other through 

interaction between themselves. Select two 

different learners  iU and jU  such that   

ji  , are to be within specified limit of 

variables. 

Step-10:  Update the learners’ knowledge by utilizing the 

knowledge of other learner.  
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Step-11:  Run program incorporating updated 
inewU ,
 . If 

updated inewU ,  maximum and minimize fitness 

function go to next step. Otherwise go to step-

7.  

Step-12: Increase generation count 1 kk . If 
maxkk   

repeat from step-4. Otherwise stop.  

 

2.3 Particle swarm optimization (PSO) 

 PSO is a population-based stochastic optimization 

technique developed by Eberhart and Kennedy in 1995 

[18], inspired by the social behavior of bird flocking or fish 

schooling. Its population is called swarm and each 

individual is called a particle [19]. Each particle flies 

through the solution space to search for global optimal 

solution. The mechanization of the PSO procedure is 

explained in following steps: 

 

Step 1: Determination of initial population: In the 

process, a set of individual is created at random. Each 

particle in the population consists of variables. Generated 

population is uniformly distributed in the range 

 

      (10) 

These solutions satisfy the all boundary conditions. 

 

Step 2: Calculate for each particle obtained in previous step, 

fitness function given by objective functions. Label the 

particle as which gives minimum value of fitness 

function. Also label each particle as its best as  

store corresponding values of fitness function.  

 

Step 3: Velocity initialization: Generate Initial velocity of 

each particle as low random number as follows: 

 

     (11) 
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Each component of   may be generated from 

uniform distribution e.g. between  

. 

 

Step 4: Set generation count . 

 

Step 5: Update the velocity of each individual particle using 

following relation 

 

   (12) 

     

      (13) 

where,  is the maximum number of generation 

supplied and  denotes  number of generation. 
 

and 
 
 denote maximum and minimum values of inertia 

weights. Thus, as iteration increases   varies from 
 

say 2.0 to 
 
say 0.5. 

 
 and 

 
 are acceleration 

constant lies between 1 to 2.  

 

Step 6:   Update the location of each individual particle and 

obtain modified solution as follows.  

               

(14) 

The resulting location of an individual i.e.  may not 

satisfy the boundary constraints. In such situation the 

particle is fly back to previous location [3].  

 

Step 7: This consists of updating the  and . 

The at  iteration is updated as follows: 

 

                   (15) 

where,  is the magnitude of fitness function. 

 is the value of fitness function for previous best 

particle ‘ ’ Very best 
 
is set as group best location 

i.e. .  

 

Step 8:  In such situation the search space is dynamically 

reduced according to following relation: 

        

           (16) 

where,   is known as step size, which is prespecified. In 

fact, magnitude of  will decide how search space is 

reduced. 

 

Step 9:  The PSO algorithm is terminated after a maximum 

numbers of generations have been executed or no 

improvement is found in the fitness function for a specified 

number of generations. 

III. EXPERIMENTAL DETAILS 

CNC Electronica Smart die sinking electrical discharge 

machine as shown in the Fig. 1, was used to perform the 

experimentation. Peak current, pulse-on time and pulse-off 

time were selected as process input parameters. The 

different process input parameters and their levels are given 

in Table 1. 

 
Fig. 1 EDM machine tool 

 

Table 1 Control factors and their levels 

 
The experiments have been performed under straight 

polarity. The Ti-6Al-4V has been selected as workpiece 

material. The experiments have been performed using box-

behnken design of experiments. Each experiment was 

performed for 30 minutes and the response MRR and TWR 

in each experimental run are obtained by calculating the 

difference of mass of the workpiece/tool measured before 

and after the experiment. The precision electronic digital 

weight balance with 0.1 mg resolution was used to measure 

the mass of the samples. 

         The MRR/TWR in mg/min was calculated by 

following formula: 

                                               



International Journal for Research in Engineering Application & Management (IJREAM) 

ISSN : 2454-9150    Vol-05,  Issue-02, May 2019 

281 | IJREAMV05I0250019                          DOI : 10.35291/2454-9150.2019.0047                     © 2019, IJREAM All Rights Reserved. 

 

Where are the initial & final mass of the 

workpiece/tool (after machining); respectively. The 

observed value of quality characteristic has been shown in 

Table 2. 

Table 2 Experimental observation  

 

IV. MODELING AND OPTIMIZATION 

1.1. Response surface model (RSM) 

1.1.1. Response surface model for MRR  

Eq. (18) shows the second order regression model for 

MRR. It has been developed by using data of all 15 

experimental runs. The result of ANOVA shows that model 

F-value is 21.59. It implies that quadratic model is statically 

significant. There is negligible chances that a model F-value 

of this much magnitude could occur due to noise. The value 

of coefficient of determination R
2
 and adjusted R

2
 are 

0.9749 and 0.9297, respectively which means a very high 

percent of the variation in the response variable can be 

explained by the explanatory variable. The negligible 

variation can be explained by unknown or inherent 

variability. The S value of the regression analysis is 0.0279, 

which is smaller. The associated p-value for the model is 

0.002 (i.e. α=0.05, or 95% confidence) which indicates that 

the model is considered to be statistically significant.  

The final regression model for MRR (mg/min), 

after removing the non-significant terms is given as follows:  

 
4.1.2 Response surface model for TWR 

Eq. (19) shows the second order regression model for 

TWR. It has been developed by using data of all 15 

experimental runs. The result of ANOVA shows that model 

F-value is 65.77. It implies that quadratic model is statically 

significant. There is negligible chances that a model F-value 

of this much magnitude could occur due to noise. The value 

of coefficient of determination R
2
 and adjusted R

2
 are 

0.9916 and 0.9765, respectively which means a very high 

percent of the variation in the response variable can be 

explained by the explanatory variable. The negligible 

variation can be explained by unknown or inherent 

variability. The S value of the regression analysis is 0.0054, 

which is smaller. The associated p-value for the model as 

well as linear and square term is lower than 0.05 (i.e. 

α=0.05, or 95% confidence) which indicates that the model 

is considered to be statistically significant.  

The final regression model for TWR (mg/min), after 

removing the non-significant terms is given as follows:  

 
4.2 Optimization  

 

The hybrid RSM-TLBO and RSM-PSO approach has been 

applied during modeling and optimization of the process 

In the present case, the objective function of 

optimization problem can be stated as below: 

Find: ,  and   

Maximize: 

 (20) 

And  

 

Minimize: 

             (21) 

With range of process input parameters: 

5≤  ≤ 9  

50≤ ≤100 

25≤ ≤75 

The hybrid RSM-TLBO and RSM-PSO algorithm has 

been implemented using the MATLAB R2017b software 

and run on a PC with Intel (R) Core (T4) i7-8550U CPU @ 

1.80 GHz 8.00 GB RAM.  

 

4.2.1 Maximization of MRR   

Maximum numbers of generations were set equal 

to . Simulation process was ended after  

generations due to convergence of fitness function solution 

under given boundary conditions. Table 3 and Fig. 2 give 

comparison of optimal solutions using TLBO and PSO 

techniques. The optimum value of MRR using TLBO is 

0.4602 mg/min whereas it is 0.4510 using PSO. So it is 

evident that TLBO gives much better global optimal results 

than, PSO techniques.  
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Table 3 Comparison of TLBO algorithm with   PSO 

algorithms for maximization of MRR 

 

Methodolog

y 

 
   

Fitness 

Function 

(MRR) 

TLBO 
8.9992 96.2716 74.8299 0.4602 

PSO 
8.9301 95.2764 74.2460 0.4510 

 

 
Fig. 2 Comparison of TLBO algorithm with PSO 

algorithms for maximization of MRR 

 

4.2.2 Minimization of TWR 

During minimization of TWR, the maximum numbers of 

generations were set equal to 1000.  Simulation process was 

ended after 549 generations due to convergence of fitness 

function solution under given boundary conditions. Table 4 

and Fig. 3 give comparison of optimal solutions using 

TLBO and compared PSO techniques.  The minimum value 

of TWR obtained with TLBO is 0.0515 mg/min, whereas 

value obtained by PSO is 0.0553. So, it is evident that 

TLBO gives much better global optimal results than, PSO 

techniques.  

Table 4 Comparison of TLBO algorithm with   PSO 

algorithms for minimization of TWR 

Methodology 
   

Fitness 

Function 

(  

TLBO 6.0307 50.0002 35.3720 0.0515 

PSO 6.1823 62.2574 30.0127 0.0553 

 

 
Fig. 3 Comparison of TLBO algorithm with PSO 

algorithms for minimization of TWR 

 

V. CONCLUSIONS 

Following conclusions can be drawn from the present 

research: 

1. Electrical discharge machining is a feasible process to 

machine advanced materials such as superalloys. 

2. The response surface model (RSM) is a reliable modeling 

tool to predict such type of machining behavior, as the 

developed models are accurate and reliable. 

3. Hybrid approach of RSM-TLBO and RSM-PSO shows 

the considerable improvement of both the material removal 

rate (MRR) and tool wear rate (TWR) as there is 

improvement of 88.6 % and 27.6%, in MRR and TWR, 

respectively using TLBO. 

4. The optimization results obtained by TLBO are better 

than PSO by 2.3% and 6.8%, respectively for MRR and 

TWR. 
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