
International Journal for Research in Engineering Application & Management (IJREAM) 

ISSN : 2454-9150    Vol-05,  Issue-02, May 2019 

118 | IJREAMV05I0250025                          DOI : 10.35291/2454-9150.2019.0020                     © 2019, IJREAM All Rights Reserved. 

 

Application of Exergy Analysis for the Aircraft 

Environmental Control System 

G. BhavaniSankar, Research Scholar, JNTUA, Ananthapuramu, India, gbspro@gmail.com 

Abstract Exergy Analysis has found application in many applications of component and system optimization. It 

combines the use of the first law of thermodynamics that allows to take account of all types of energies to satisfy the 

conservation of the total amount of it in any process with the second law that gives the directionality and the quality of 

the energy and its degradation. The application of exergy methods may lead to more effective methods for compact heat 

exchangers at the component level and at system level for a lower life cycle cost. Aircraft Environmental Control 

System (ECS) being the primary consumer of the secondary power developed by the engine, is yet to utilize the full 

potential of the exergy analysis for the optimization of its components and the configurations. This paper surveys the 

work done in application of the exergy analysis for the design and development of the Aircraft ECS till date. 
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I. INTRODUCTION 

The journey of Exergy Analysis (EA) starting from the 

introduction of the term Exergy in 1953 by Zoran Rant to 

2004 was covered in detail by E. Sciubba and G. Wall [1] 

with more than 2600 references [2]. EA combines the use of  

the first law of thermodynamics [3] that allows to take 

account of all types of energies to satisfy the conservation 

of the total amount of it in any process with the second law 

that gives the directionality and the quality of the energy 

and its degradation. It was predicted [3] that the application 

of exergy methods may lead to more effective methods for 

areas including fin selection for compact heat exchangers 

(CHE). Not much of published data was available at the 

time of publishing of that paper on EA of CHE, which are 

the primary components in many heat transfer applications 

including the Aircraft Environmental Control System 

(ECS), the primary function of which is air-conditioning.  

This paper looks at the work done in application of the 

EA to the Aircraft ECS, Air-conditioning Systems and 

Compact Heat Exchangers. Apart from the above, an 

attempt is made to carry out a review of the published work 

in the area of application of the EA for the design and 

development of Aircraft ECS till date.  

II. AIRCRAFT ENVIRONMENTAL CONTROL 

SYSTEM 

Aircraft is a system of integration of complex systems to 

achieve the intended purpose of the aircraft in the most 

efficient manner. The drivers for the advances in the 

development of these systems apart from the functional 

requirements are the environmental and other safety 

regulations and the availability of new technologies [4]. EA 

provides the common currency to optimize these diverse 

complex systems locally at component level, system level 

and globally at aircraft level. The first application of EA for 

the engine of an aircraft was in 1956 by Glansdorff [1]. It is 

not surprising that the EA was extensively used so far for 

the development of propulsion system of the aircraft, as it is 

the main source of energy on the aircraft and any aircraft 

operation depends hugely on the performance of its 

propulsion system. There were applications of EA in the 

other aspects of aircraft development like aerodynamics, 

wing analysis and ECS. But the penetration was not as 

pronounced as had been for the propulsion system.  

The cooling requirements keep increasing with the ever-

increasing avionics heat loads in each new aircraft 

development as well as the ongoing update programs on 

older aircraft.  ECS in meeting these requirements becomes 

the major consumer of the secondary power developed by 

the engine and thus the dominant user of the exergy [5]. 

Hence, it is undoubtedly the system that should make use of 

the optimization provided by EA. 

There are different configurations possible while 

designing an ECS for an aircraft based on air cycle systems, 

vapor cycle systems and hybrid systems. Different types of 

components like compact heat exchangers, valves, air cycle 

machines, compressors, jet pumps, water extractors, 

pressure regulators, heaters, venturis etc. make up these 

systems [6]. In these components the compressible moist air 

flow along with the phase change heat transfer is required to 

be taken care of. Like in all aircraft applications of EA, the 

changing environmental conditions like pressure, 

temperature and humidity are to be accounted for as the 

exergy in the system is measured from the dead state i.e. the 

surrounding environmental conditions.  

In a special section of exergy in the Journal of Aircraft 

D.J. Moorhouse gives an introduction to exergy [7] and 

explains how the exergy and thermoeconomics which were 

applied in the design of ground power stations were 

extended as a methodology for the design of the complete 

integrated system of systems of an aircraft in [8].   

III. REVIEW PAPERS 

There are many review papers available on EA which 

are either application specific or general in nature. Some of 
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the review papers are useful from the sub-system point of 

view (e.g. vapor cycle system or refrigeration system) while 

others are from component point of view (e.g. heat 

exchanger). 

D.J. Moorhouse along with D.B. Paul and D.M. Pratt [9] 

discussed the Multi-Disciplinary Optimization (MDO) 

methodologies employed in design of an aircraft from the 

view point of a system of systems. The use of energy-based 

methods was presented, and it was concluded that these 

methods can be used during conceptual stage in a 

revolutionary design. An evolutionary design using 

traditional methods can be audited by these energy-based 

methods at any stage of the design process to identify the 

use and wastage of energy. 

J.U. Ahamed, R. Saidur and H.H. Masjuki paper [10] 

reviewed the possibilities of exergy analysis in vapor 

compression refrigeration (VCR) applications. The 

dependence of exergy on evaporating temperature, 

condensing temperature, sub-cooling, compressor pressure 

and the environmental temperature were highlighted. 

Exergy efficiency variation with different refrigerants 

having low ODP and GWP was analyzed. It was also shown 

that the compressor plays a major part in exergy losses of 

the VCR system. Pradhumn Tiwari and Prakash Pandey 

[11] also presented a review of exergy analysis of VCR 

cycle with different refrigerants to study the components of 

the system separately. 

In a 2012 paper [12] M. Mohanraj, S. Jayaraj and C. 

Muraleedharan reviewed the application of artificial neural 

networks (ANN) methods for the energy and exergy 

analysis of refrigeration, air-conditioning and heat pump 

systems. In a follow-up paper of 2015 [13] they reviewed 

the application of ANN methods for the thermal analysis of 

heat exchangers. K. Manjunath and S.C. Kaushik [14] 

presented a review of second law of thermodynamic 

analysis of heat exchangers. Various performance 

parameters such as entropy generation, exergy analysis, 

production and manufacturing irreversibility and two-phase 

fluid loss were considered in their review. 

Thermodynamic irreversibility of heat and mass transfer 

components and systems and the design of these devices 

based on entropy generation minimization was reviewed by 

Adrian Bejan in his 1987 article [15]. The review focused 

on the fundamental mechanisms responsible for the 

generation of entropy in heat and fluid flow and on the 

design trade-off of balancing the heat transfer irreversibility 

against the fluid flow irreversibility. Applications were 

selected from the fields of heat exchanger design, thermal 

energy storage, and mass exchanger design. The Constructal 

law that accounts for contradictory end-design statements 

such as minimum entropy production and maximum entropy 

production, and minimum flow resistance and maximum 

flow resistance was reviewed by A. Bejan [16] detailing 

how the optimization fits in the design evolution.  

Brayton cycle is employed in aircraft propulsion systems 

and reverse Brayton cycle is employed in aircraft ECS air 

cycle systems. W.G. Le Roux, T. Bello-Ochende and J.P. 

Meyer [17] reviewed the optimization studies of a solar 

thermal Brayton cycle. The method of total EGM was 

highlighted as it allows heat transfer and fluid flow terms to 

be available for optimization in a single equation for 

simultaneous optimization of geometries of various 

components of the system.  

David Hayes, Mudassir Lone, James F Whidbone and 

Etienne Coetzee reviewed the methods of EGM and EA for 

aerospace applications [18]. They concluded that the EA is 

an excellent tool for optimizing individual sub-systems. 

However, they opined that the true potential of the method 

could only be harnessed by applying it for the top-level 

system of systems optimization. It could be done at any 

stage of the design over the entire mission profile to 

highlight the locations of exergy destruction. Along with 

José Camberos the authors have reviewed the use of exergy 

analysis in Aerospace [19]. This review justifies how 

thermodynamic exergy analysis has the potential to 

facilitate a breakthrough in the optimization of aerospace 

vehicles based on a system of energy systems, through 

studying the exergy-based multidisciplinary design of future 

flight vehicles. 

Hiren K. Bapodara and Jaspal B. Dabhi [20] reviewed 

the EA of packaged air conditioning system to improve its 

Coefficient of Performance (CoP). They reported that less 

work is done on usage of EA of packaged air-conditioning 

process.  

Daniel Bender [21] giving a survey of the published work 

focused on the methods of exergy and energy analysis 

applied to ECS, splitting the exergy destruction in each 

component into different parts. This method enables a 

realistic assessment of the potential for improving the 

thermodynamic efficiency of each component. 

And finally in a chapter in the book edited by Jovan 

Mitrovic, titled ―Heat Exchangers-Basics Design 

Applications‖ [22], M.M. Awad and Y.S. Muzychka gave a 

review of the EGM method for heat exchangers. 

IV. EA APPLICABLE TO THE AIRCRAFT ECS 

Application of EA at component level, sub-system level 

and system level is given in the following sub-sections: 

A. Heat Exchangers: 

The compact heat exchangers are indispensable in any 

aircraft ECS, both in air cycle and vapor cycle systems. It is 

also the component that contributes to the maximum 

destruction of the exergy in the system.  Hence, 

optimization of the same is tried by many authors for 

different configurations and flight conditions. 

Thermodynamic optimization of finned crossflow heat 

exchangers for aircraft environmental control system [23] 

and Integrative thermodynamic optimization of the 

environmental control system of an aircraft [24] were 

presented by J.V.C. Vargas and A. Bejan. Along with D.L. 

Siems they authored the optimization of the crossflow heat 

exchanger of an aircraft [25]. In these papers the authors 

have shown optimization at component level and at an 

integrated system level. The thermodynamic (Constructal) 

optimization of the flow geometry applicable to any system 

that runs based on a limited amount of fuel (exergy) 

installed onboard was presented. EGM in a crossflow heat 

exchanger used in aircraft ECS with ram air on the cold side 
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was optimized for its geometric features by A. Alebrahim 

along with A. Bejan [26]. They further studied [27] several 

architectural features deduced from the same principle: the 

relative position of the two heat exchangers, their relative 

sizes, and all the geometric aspect ratios of the two heat 

exchanger cores. Thermodynamic optimization of geometric 

structure in the counterflow heat exchanger for an 

environmental control system was reported by T. Shiba and 

A. Bejan [28]. Experimental analysis of heat exchangers 

from exergy point of view can be found in [29]–[32]. 

Second law based performance evaluation and optimization 

of the heat exchangers was elaborated in [33]–[37]. Multi 

objective optimization of heat exchanger design was 

recommended by J. Guo, L. Cheng and M. Xu [38]–[40]. 

Application of EA for performance evaluation and optimal 

configuration of a condenser was dealt in [41], [42]. 

A design procedure for offset strip fin heat exchangers 

was proposed on the basis of minimum entropy production 

criteria by C. Shenone [43]. Entropy generation extrema 

and their relationship with heat exchanger effectiveness was 

presented by R.K. Shah and T. Skiepko [44] showing the 

Number of Transfer Unit (NTU) behavior for complex flow 

arrangements. The EGM based approach for a plate and fin 

heat exchanger of a heat recovery system was given by 

Jaingfeng Guo [40]. This type of heat exchangers are 

extensively used in aircraft ECS. 

Due to change in flight conditions and operation at 

different altitudes, the environmental conditions vary vastly 

in case of operation of an aircraft and its systems. Finding 

the exergy balance was illustrated for many applications 

including an aircraft heat exchanger by Yalcin A. GöǧüĢ, Ü. 

Çamdali, and M. ġ. Kavsaoǧlu in [45]. 

B. Air Cycle Machines: 

In an air cycle system of an ECS, the heart of the system 

is the air cycle machine. Different types of air cycle 

configurations are in use like the boot-strap type, turbo fan 

type, three-wheel and four-wheel configurations etc. While 

thermodynamic study of these machines is available in SAE 

standards like AIR1168, there are papers detailing the 

thermodynamic performance of these machines [46]. The 

EA of an aircraft air cycle machine at cruise altitude was 

done by Ayaz Süleyman Kağan, A. ÖNDER, T. H. 

Karakoc, and E. A. Bilecik [47]. A dynamic air cycle 

machine model was developed by M. Bracey, S. R. Nuzum, 

R. A. Roberts, M. Wolff, and J. Zumberge [48] to carry out 

the transient EA. 

C. Sub-system Vapor Cycle System (VCS): 

There are EA studies done on ordinary VCS for ground 

applications. Jing-Nang Lee, C. Chen, and C. Ting [49]  

studied the influence of varying ambient temperature on the 

devices exergy of an air-conditioning system. The exergy 

efficiencies of simple, boot strap and vapor cycle systems 

was calculated by Seda Tuzemen, O. Altuntas, M. Z. Sogut, 

and T. H. Karakoc [50] while investigating the humidity 

effect in aircraft ECS. 

D. System level EA studies of ECS: 

R.S. Figliola and R. Tipton [51] using the EA and 

traditional energy method tried to optimize the weight of an 

aircraft ECS. Even though they found that the comparison is 

not direct, they agreed that the EA provides information to 

optimize the component and the system during design 

phase. They have opined that further progress is necessary 

to establish the advantage of using EA in the design of 

integrated systems. This conference proceeding was again 

published in the Journal of Aircraft in 2003[52], which was 

referred by Sciubba and Wall [1]. Based on an earlier work 

[53] and the later works as mentioned above, Richard S. 

Figliola, Robert Tipton and Haipeng Li had written in 

chapter 4 of [54] the use of EA in conception and 

assessment of aircraft systems. Salient points of the chapter 

are: 

    ECS of an advanced aircraft encompassing seven 

integrated sub-systems was considered, while the 

details of ACS, Oil & Hydraulic details are 

excluded. 

    VCS with R-12 & R-114 compared 

    Cruise conditions are used for analysis 

    Each component of the system is evaluated in terms 

of its entropy generation 

    Pareto optimal design set generated through the 

multiple objectives to minimize entropy generation 

and system GTW 

Under the guidance of M.R. von Spakovsky, the 

optimization of a propulsion system of an aircraft that is 

coupled to an ECS was studied by J.R. Munoz [55]–[57], 

the EA based optimization of a fighter aircraft systems 

including ECS was studied by V. Periannan. The thesis of 

Periannan [58] considered a boot strap air cycle 

configuration ECS to bring out the exergy destruction in the 

system components for four objective functions. In a paper 

that followed [59] the authors suggested that EA may be 

more beneficial in revolutionary system designs. 

EA was used to compare the conventional air bleeding 

with the electric power off-take for aircraft ECS by H. 

Jiang, S. Dong, and H. Zhang [60] for a commercial 

aircraft. While they concluded that the air bleeding is more 

efficient, Yitao Liu, J. Deng, C. Liu, and S. Li [61] 

indicated greater efficiency in terms of fuel consumption in 

the electric architecture. R. Gandolfi, L. F. Pellegrini, G. A. 

Lima da Silva, and S. de Oliveira Junior carried out the 

trade-off studies of ECS using EA as a design comparison 

tool [62], [63] and applied EA to a complete flight envelope 

of a commercial aircraft [64]. Simulating the ram air inlet 

adjustment door opening, EA was performed by Yang Juan 

[65] on the ECS of a civil aircraft. 

Thermoeconomic analysis and optimization of aircraft 

environmental control system was detailed by T.J. Leo and 

I. Perez-Grande in [66] & [67]. On similar lines the 

optimization of the heat exchanger for a simple ECS system 

was done by Li Hong-bo, D. Xin-min, G. Jun, C. Yong, and 

L. Ting-ting [68]. 

Daniel Bender’s thesis [69] is about applying the EA to 

the Model based design of aircraft ECS. Salient points of 

the analysis were: 

    Three Wheel Bootstrap cycle 
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    Restricted to components that contain the appropriate 

equations 

    Model based design based on Modelica modelling 

language and libraries of Dymola 

    For Take-off, Cruise, Landing and Taxi conditions 

Exergy destruction and η were compared 

The results showed that the turbo components (Fan, 

Compressor & Turbine) show best exergy efficiencies and 

lowest variations. The Main Heat Exchanger (MHX), 

Condenser & Reheater should be addressed first for 

optimization as they are the biggest exergy destroyers in the 

system. Optimizing the operation strategy for the TCV and 

Injector could improve their exergy efficiency. 

Kirk A. Clem, G. J. Nelson, B. L. Mesmer, M. D. 

Watson, and J. L. Perry [70] carried out the EA of ECS and 

LSS of the International Space Station by developing the 

exergy balance equations to allow exergy efficiency 

calculations and system optimization. 

V. DISCUSSION 

ECS of an aircraft is a complex system involving 

compressible flow and phase change heat transfer, catering 

to wide variety of requirements ranging from human 

comfort to avionics cooling. It integrates with many aircraft 

systems starting from the engine to the cabin. The number 

of components and the different types of configurations that 

they make up give ample scope for optimization. The 

conventional development depended on rules of thumb and 

trade of analysis relying on designers’ experience. Many 

authors have recommended the use of EA for the integrated 

development of these systems to meet their varied 

requirements in an optimal way. The thermodynamic 

irreversibilities at component, sub-system and system levels 

can be evaluated for all flight conditions and missions to 

evaluate the exergy efficiencies, exergy destroyed rate and 

the cost there off. Multi objective optimization can be 

carried out to study various configurations to select the 

optimal solution. 

Out of the various components of the ECS, the compact 

heat exchangers are the most prominent. The medium of 

heat transfer could be air (moist air), refrigerant (mixtures), 

phase change materials, hydraulic oil or fuel. The literature 

is available in abundance giving the theory and the models 

to carry out the EA of heat exchanger. The entropy 

generated due to the pressure loss and the heat transfer on 

the charge and coolant sides can be calculated based on the 

overall dimensions and the fin details. In future the effect of 

the Nanofluids on the exergy efficiencies of these heat 

transfer devices would be studied.  

The heart of an air cycle ECS is the cold air unit. 

Different configurations in the form of simple, boot strap, 3 

wheel and 4 wheels are available. However, the basic units 

are the compressor, turbine and fan. In some configurations 

jet pump is also used, but from an EA point of view that 

would be the least preferred because of its poor thermal 

efficiency. The models for the basic units are well 

established and can be extended for the EA of these air 

cycle machines. 

The pressure drops and the heat and mass transfer of all 

other components like valves, water separator, heater etc. 

can be added while the different configurations are studied 

and evaluated. Since the contribution due to most of these 

components in terms of exergy destruction is negligible 

compared to the heat exchangers and the air cycle machines 

many a time they are not included in the analysis. 

Thermoeconomic analysis and optimization of a simple 

aircraft environmental control system was detailed by T.J. 

Leo and I. Perez-Grande in [66] & [67]. The study was 

extended for configuration studies involving the 

complexities from practical applications [71] & [72]. 

 

FIGURE 1 SIMPLE SYSTEM STUDIED IN [66] & [67] 

 

FIGURE 2 PRACTICAL SYSTEM STUDIED IN [71] 

 

FIGURE 3 EXTENDED CONFIGURATION STUDIED IN [72] 

Mathematical models for each of these configurations have 

about 200 variables with as many equations including 

assignment of values. This number would keep increasing 

as we add more components in to the architecture 

depending on the performance and safety requirements. For 

the chosen flight conditions, bleed conditions can be 

evaluated from the basics incorporating the engine 
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compressor and ram air efficiencies and checked with the 

engine bleed conditions that were obtained from the engine 

deck. After evaluation of the variables, the unknown 

variables with a smaller number of equations are to be 

analyzed.   

The objective functions are to be framed, for which the 

parametric study and sensitivity analysis can be done. For 

example, the Entropy generation number (Ns) and the total 

volume of three heat exchangers, as given below, could be 

the objective functions. 

 

The effect of introduction of water separator and reuse of 

the water through spray at the inlet of SHE shows that, there 

is a reduction of about 2.5% in the entropy number. When a 

small RHE is introduced parallel to the SHE with water 

sprayed at its inlet, it results in a reduction of about 20% in 

the total volume of the heat exchangers. Thereby, the total 

system weight would reduce to similar extent meeting the 

system performance requirements. Typical parametric plots 

generated in these configurations are given in Figure 4. 

 

Figure 4 Parametric Plots 

Sensitivity analysis can also be carried out to check the 

effect of various parameters on the objective functions. An 

example plot is shown in Figure 5. 

 

Figure 5 Sensitivity Plots 

As can be seen from the above EA can effectively be 

used at the system architecture level for the configuration 

studies as well as optimization of the components of the 

system. Parametric studies and sensitivity analysis to study 

the effect of various parameters including the geometric 

values of the components can be carried out leading to the 

MDO of the system and the components. Further studies to 

evaluate the effect of moisture at other flight conditions, and 

more configuration studies to include the high-pressure 

water separation can be taken up. The MDO with EA can be 

extended to VCS configurations of ECS to optimize the 

components involving refrigerant phase change on the same 

lines of water injection at RHE inlet as was done in [72]. 

VI. CONCLUSION 

Many authors have put forward the utility of the EA in 

providing the common currency between various integrated 

complex systems of an aircraft in developing optimised 

solutions. Even though EA is extensively used for 

optimisation of the aircraft engine, it is less used in the 

development of other aircraft systems. ECS being the main 

consumer of the secondary power generated by the engine 

to meet various performance requirements of the aircraft, is 

definitely the candidate for making use of the EA for its 

optimization providing the sufficient conditions for system 

feasibility, directionality and performance. 

Literature is available on the application of EA at 

component, sub-system and system level EA. The models 

and the theory of EA of the main components of the ECS 

are presented in many papers.  The models developed 

therein could be extended to the newer developments like 

new fin configurations at CHE level and to newer 

configurations at system level to carryout the MDO of the 

aircraft ECS.  

The configuration studies of the ECS that consist of so 

many components can be performed for new developments 

as well as the system updates. An example of the EA 

applied for configuration studies of an aircraft ECS along 

with the optimization of major components is given to high 

light the usefulness of EA wherein practical systems with 

the inclusion of phase change due to moist air was studied. 
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