

# **Design of Culvert with Realignment of the Road**

## Snehal R Lahande, Assistant Professor, NHCE Bangalore India, snehallahande@gmail.com

Abstract: Highway plays an important role in transportation, economic needs of the country and also helps general population to reach their destination in time in an efficient way. But if the road alignment is not proper it causes in convenience to the public as well as negative impression to travelers and tourists about the country, which is not good for the country's economic health. Culvert on the other hand helps as a passage of river flow as well as a connecting link to the other shore of the river and also helps in the transportation, helping both in economic growth and time saving. This project deals with realignment of road as per IRC standards and design of a culvert passing by the project road.

Keywords — Realignment of road, culvert design and analysis, highway, IRC, Kani's method

## I. INTRODUCTION

**1.1: Objectives of Pradhanmantri Gram Sadak yojna** (PMGSY): Generating increased agricultural incomes and productive employment opportunities, Rural road connectivity is a key factor for rural development by promoting entrée to economic and social services. It sets the target of:

Achieving all weather road admittance to every village with population more than 1000, Providing all weather road admittance to all the villages with population more than 500.

## 1.2: All weather Road

This is a VR category road having BT surface with formation width 7.5 m and carriage way width of 3.75 m with existing CD works.

## **1.3: Core Networks**

A core network consists of routes and links routes, 'Core Networks' is termed for the rural road network necessary to provide the basic admittance to all the villages. Link routes are the one which have dead ends terminating on habitats, while through routes come about from the convergence of two or more Link Routes and emerge on to a major road or to a market centre.

Studies illustrate 85-90% of rustic trips to market centers, core network is expected to be a cost effective intangible frame work for venture and managing purposes, particularly in the circumstance of insufficient resources.

## 1.4: Geography

This road has existing BT surface where land acquisition is not required. This road passes through a plain terrain.

## **1.5: Climatic Condition**

This block of area falls under moderate climatic condition.

## 1.6: The Sub Project Road

This road passes through a plain terrain. This is a VR category road having BT surface with formation width 7.5 m and carriage way width of 3.75 m with existing CD works.

## **II.** LITERATURE SURVEY

G S Kalimaras, L Brino, found out the best highway alignment, as of before it would have been difficult to find the best alignment for the project using multi criteria analysis.

The article by Salvatore cafiso, alessandro di graziano and bhagwan persuade, brings out the best policies that can be adopted for accident control and best way to reduce the accident on the highway, which is main problem in the present time.

Tom masoespossito, raffle Mauro presents the speed production of the current highway lying in rural category, which is dependent on the geometric road features.

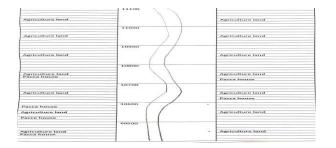
Peter g gipps, Kevin Q helped us knowing how to make cost effective road and also in addressing environmental issues.

Said M Easa established particular grades of road according to geometric specifications.

K W Ogden determined the safety effect of paving shoulders in rural roads. Data were obtained on the location, condition and cost of recent shoulders paving projects.

M J Rayll brought to us the bridges culverts and causes of degradations and various forms of it.

Bao Guo Chen and Liang Sun cleared the concept of reinforced concrete culverts under high fill and their wide use in highways and railways.


Manoj K Jha presents an overview of met heuristic application in highway and infrastructure planning and design based on genetic algorithms and colony optimization.

Tien Fang Fwa, Kumares C Sinha delt with comprehensive approach of allocation of various highway pavement costs in unfield and consistent manner.

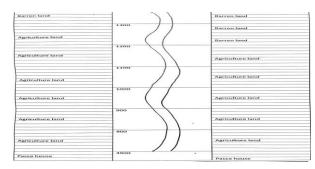
Deepak varadarajan, Md Najafi presented that usually the maintenance part of the culvert is to access the estimate design life of the culvert.

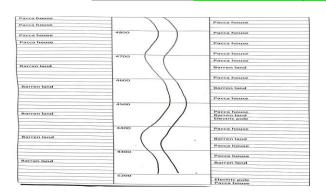


The article by M S Kang, J A Chun the method to design the culvert for critical design period, hydraulic design approach was proposed to optimize dimensions and hydraulic structures.



## 3. PLANNING AND BASIC DESIGN CONSIDERATION


## 3.1: KEY MAPS

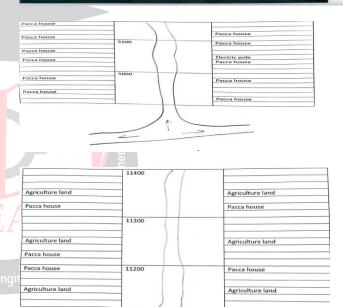



Site Location: PalayamAruakurichi road, near Karur dist, Tamilnadu

## 3.2: Preliminary alignment investigation

| Agriculture land |         | Agriculture land   |
|------------------|---------|--------------------|
| Agriculture land | 600 ) } | Agriculture land   |
| Agriculture land | 500     | Agriculture land   |
| Agriculture land | 100     | Agriculture land   |
| Agriculture land |         | Agriculture land   |
| Agriculture land | 300     | . Agriculture land |
| Agriculture land |         | Agriculture land   |






7. Chainage 7.2 km.









## 3.3: Site Photographs







0. Chainage 9 km.





#### 13. Chainage 11.3 km



#### 3.4: Road Design Brief

| SI. | Location             | Issue                                                                                                                                   | Design Solutions                                                                                                                                                       |
|-----|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | Ch. 0.00 to 0.96 km. | The proposed road having<br>existing BT surface in 3.75<br>Mt. is not fair and formation<br>width Av. 5.00 Mt. No<br>existing CD works. | For strengthening and<br>profile correction 50 mm<br>M.P.M., 20 mm carpet and<br>sealcoat is proposed.<br>Earthwork for widening<br>from 5.0 to 6.0 Mt. is<br>proposed |
| 2   | Ch. 4.3 to 4.78 km   | The proposed road having<br>existing BT surface in 3.75<br>Mt. is not fair and formation<br>width Av. 6.30 Mt. No<br>existing CD works. | For strengthening and<br>profile correction 50 mm<br>M.P.M., 20 mm carpet and<br>sealcoat is proposed.                                                                 |
| 3   | Ch. 10.5 to 11.46 km | The proposed road having<br>existing BT surface in 3.75<br>Mt. is not fair and formation<br>width Av. 5.80 Mt. No<br>existing CD works. | For strengthening and<br>profile correction 50 mm<br>M.P.M., 20 mm carpet and<br>sealcoat is proposed.                                                                 |

#### **3.5: longitudinal Section of Highway**

1. Fromchainage 0-0.96 km



3. Fromebainage 10.5-11.46 km







## III. TOPOGRAPHIC SURVEY

#### 4.1: General

Using chain, compass and level, Topographic survey accurate to ground realities was done. With reference to IRC: SP 19-2001, IRC: SP 20, IRC: SP 13 and international practices, the domestic standards, work events and quality sketch were prepared and followed during the above survey. **4.2: Traversing** 

## Having angular measurement accurateness of +/- 1 sec, traversing was done by total station for presented BT road.

## 4.3: Leveling

Leveling was done by considering temporary bench mark (TBM) at Ch. 0.

#### 4.4: Cross Section and Detailing

Cross sections were taken at 25 m interval and at curved portions closer intervals were taken for the presented road.

## 4.5: Data Processing – N/A

4.6: List of TBM

1] On top of fixed stone at Ch. 0. m.

2] On top of fixed stone at village of Madurai.

#### 4.7: Checklist

Given indication pillars - No

Given TBM with north-east - No

Carried out Traverse survey - No

Carried out Cross section and detail - Yes

## IV. SOIL AND MATERIALS SURVEY

#### 5.1: General

Following the guidelines of IRC: SP 20:2002 and IRC: SP 72-2007 and other relevant IS codes, the soil and material exploration was done. The probable sources of borrow area for soil and excavation (quarry) sites were identified.

## **5.2:** Soil Sample Collection and Testing

At 2 locations per km, soil samples were collected all along and around the road alignment from the adjoining borrow areas as well as one sample was collected from the existing road. For all the collected samples, classification tests for soil like grain size analysis and Atterberg's limit was carried



out. Due to discrepancy in soil type, Standard Procter Test and the analogous 4 days soaked CBR test was carried out either for least of one test per km for soil samples of same group or more tests. The following tests were done;

As per IS: 272 (part 4) – 1985- Grain size analysis

As per IS: 2720 (part 5)1985- Atterberg's limit

As per IS: 2720 (part 16) – 1980- Standard Proctor density test

As per IS: 2720 (part 16) – 1985- 4 days soak CBR test For CBR 3 samples were taken.

## 5.3: Analysis of Test Results

CBR value = 4.0%

| Penetration(mm) | Load(kg) | Penetration(mm) | Load(kg) |
|-----------------|----------|-----------------|----------|
| 0               | 0        | 3               | 56.5     |
| 0.5             | 5        | 4               | 67.5     |
| 1               | 16.2     | 5               | 75.2     |
| 1.5             | 28       | 7.5             | 89       |
| 2               | 40       | 10              | 99.5     |
| 2.5             | 48.5     | 12.5            | 106.5    |

## V. TRAFFIC SURVEY

#### 6.1: General

On the accomplished or analogous type of PMGSY road in the environs of the project road, 3 days, 24 days traffic volume count was carried out for upgrading the presented road. The classified volume count survey was carried out in accord with the TOR and appropriate codes (IRC: SP 19-2001, IRC: SP 20, IRC: SP 72:2007).

## 6.2: Traffic data and analysis

The traffic count done was classified into various vehicle categories as specified below;

Powered (motor) vehicles comprising light, medium and heavy commercial vehicles such as trucks, buses, tractors, jeep, two wheelers etc.

Non powered (motor) vehicles comprising cycles, rickshaw, cycle van, animal cart etc.

During traffic counts, the numbers of laden and unladed commercial vehicles were recorded. Traffic count was done in Englishing during monsoon season.

#### Average daily traffic at Ch. 0.00

| SR<br>NO. | Type of vehicle                  | Day 1 | Day 2 | Day 3 | Average |
|-----------|----------------------------------|-------|-------|-------|---------|
| 1         | Car, jeep, van                   | 250   | 210   | 260   | 240     |
| 2         | Auto Rickshaw                    | 150   | 130   | 270   | 150     |
| 3         | Scooters                         | 180   | 150   | 320   | 180     |
| 4         | Bus/Minibus                      | 50    | 40    | 60    | 50      |
| 5         | Trucks                           | 50    | 40    | - 60  | 50 -    |
| 6         | Tractos with trailors            | 240   | 20    | 250   | 230     |
| 7         | Tractor without trailor          |       |       |       |         |
| 8         | Cycles                           | 460   | 380   | 480   | 440     |
| 9         | Hand cart                        |       |       |       |         |
| 10        | Bullock cart                     | 80    | 70    | 80    | 80      |
| 11        | Pedestrian                       | 620   | 790   | 540   | 650     |
| Total o   | ommercial vehicle per day (cpvd) |       |       |       | 230     |
| Total r   | notorized vehicle per day        | 920   | 770   | 1010  | 900     |
| Total r   | on-motorized vehicle per day     | 540   | 450   | 560   | 520     |

**6.3: Traffic Growth Rate and Forecast** Average daily traffic at Ch. 0.00

| SR<br>NO.        | Type of vehicle                   | ADT   | AADT      | Average |
|------------------|-----------------------------------|-------|-----------|---------|
| 1                | Car, jeep, van                    | 990   | 885       | 6%      |
| 1 2              | Auto Rickshaw                     | 200   |           |         |
| 3                | Scooters                          |       |           |         |
| 4                | Bus/Minibus                       |       |           |         |
| 4<br>5<br>6<br>7 | Trucks                            |       |           |         |
| 6                | Tractors with trailers            |       |           | 1 10    |
| 7                | Tractor without trailer           |       | 1.10      |         |
| 8<br>9           | Cycles                            |       |           |         |
| 9                | Hand cart                         |       |           | 1 m m   |
| 10               | Bullock cart                      |       | 148 N. 14 |         |
| 11               | Pedestrian                        |       |           |         |
|                  | commercial vehicle per day (cpvd) |       |           | 230     |
|                  | motorized vehicle per day         |       |           | 900     |
| Total            | non-motorized vehicle per day     | 1.000 |           | 520     |

## VI. ADOPTED GEOMETRIC DESIGN STANDARD

## 7.1: General

Corroborating to PMGSY guiding principle and the rule as stated in IRC-SP 20:2002, the geometric design standards for this project are considered. Recommended design standards as stated below.

Terrain: planeDesign speed: 40-50 kmRoadway width: 7.5 mCarriageway width: 3.75 m

7.2: Shoulders

It was proposed to have shoulder width of 1.125 m with selected soil.

## 7.3: Sight Distance

In geometric design, the safe stopping sight distance is applicable. As per the IRC recommendations, for the present road the sight distance ideals are as follows:

| Design speed (KM/HR) | Safe stopping sight distance(M) |
|----------------------|---------------------------------|
| 20                   | -20 -                           |
| 30                   | 30                              |
| 40                   | 45                              |
| 50                   | 60                              |

## 7.4: Radii for Horizontal Curves

As per the IRC recommendation, the minimum radius for the horizontal curve for this project is as follows;

| Terrain · | Radius of horizontal curve (m) |                  |  |
|-----------|--------------------------------|------------------|--|
| Category  | Ruling minimum                 | Absolute Maximun |  |
| Plain     | 90                             | 60               |  |

## 7.5 Vertical Alignment

A least gradient of 1 in 30 for drainage purpose is assumed for the design of the vertical alignment of this road as the existing road is in plain terrain and vertical alignment has been designed well within ruling gradient.

## 7.6: Side Slope

For this rural road where embankment height is less than 3 m, side slope is 1.5:1

## 7.7: Right of Way

The requirement of right of way as specified in IRC SP 20:2000

| Road classification      | Type of terrain           | Open area    | Builtup area |
|--------------------------|---------------------------|--------------|--------------|
|                          |                           | Normal Range | Normal Range |
| Rural roads( vr and odr) | Plain and rolling terrain | 15 15-20     | 15 15-20     |

## 7.8: Camber and Superelevation

| Surface type    | Camber<br>Low rainfall | Camber<br>- high rainfall |
|-----------------|------------------------|---------------------------|
| Earth road      | 4                      | 5                         |
| Wbm gravel road | 3.5                    | 4                         |
| Thin BT road    | 3                      | 3.5                       |
| Rigid pavement  | 2                      | 2.5                       |

## VII. PAVEMENT DESIGN

## 8.1: General

Technically sound, environment affable and economically realistic highway alignment are the fundamental intend of a



good highway geometric design. The resulting sections deals with requisite points, that control highway alignment, design of cross section, highway geometric design and methodology, design of miscellaneous items.

|      |                                                               | Total No. of CVD =                            | HCN           | + MCV  |         |  |
|------|---------------------------------------------------------------|-----------------------------------------------|---------------|--------|---------|--|
|      |                                                               |                                               | 7 + 1         | 6 - 23 |         |  |
|      |                                                               |                                               | 23            |        |         |  |
| 11)  | Value of VDF(As per SP 72:2007 pg no. 10 Clause no. 3.44(iv)  |                                               |               |        |         |  |
|      |                                                               |                                               | Laden         |        | Unladen |  |
|      | a) Fo                                                         | r HCV                                         | 2.86          |        | 0.31    |  |
|      | b) Fo                                                         | r MCV                                         | 0.34          |        | 0.02    |  |
| 12)  | Equal S                                                       | tandard Axel Load (ESAL) to                   |               |        |         |  |
|      | To (of 1                                                      | $ICV) = ((HCV/2) \times 2.86) + ((H$          | CV/2) x 0.31) |        |         |  |
|      |                                                               | $((7/2) \times 2.86) + ((7/2) \times 0.3$     | 15            |        |         |  |
|      |                                                               | 11.09                                         |               |        |         |  |
|      | To (of MCV) = $((MCV/2) \times 0.34) + ((MCV/2) \times 0.02)$ |                                               |               |        |         |  |
|      |                                                               | $((16/2) \times 0.34) + ((16/2) \times 0.34)$ | 0.02)         |        |         |  |
|      |                                                               | 2.88                                          |               |        |         |  |
|      | то                                                            | $11.09 \pm 2.88 \pm 13.97$                    |               |        |         |  |
|      | As per 5                                                      | SP 72:2007 Pg. No. 10 Clause N                | lo. 3.444(iv) |        |         |  |
|      | N =                                                           | To x 365 [(1 + 0.01r)^n - 1                   | 1 ×           | L      |         |  |
|      |                                                               | 0.01r .                                       |               |        |         |  |
|      |                                                               | 13.97 × 365 [(1 + 0.06)^10                    | <u>-11</u> ×  | 1      |         |  |
|      |                                                               | 0.06                                          |               |        |         |  |
|      |                                                               | 13.97 x 365 [(1.06^10) - 1]                   | ×             | а.     |         |  |
|      |                                                               | . 0.06                                        |               |        |         |  |
| 0 1. | <b>D</b>                                                      |                                               | 1.            |        |         |  |

## 8.2: Pavement Design Approach

## 8.2.1: Design Life

A design life period of 10 years was considered for the purpose of flexible and granular pavement design.

#### 8.2.2: Design Traffic

As shown in the section 5.2, the typical yearly daily traffic for the breach year as well as total marketable vehicle per day was considered.

| uay was co  | insidered.                                               |
|-------------|----------------------------------------------------------|
| 8.2.3: Dete | ermining applications of ESAL                            |
|             | 13.97 x 365 [0.79] x 1                                   |
|             | 0.06                                                     |
|             | 67137.49                                                 |
| As not IRC  | C:SP:72-2007 Fig. 4 Pavement Design Ctalouges for 4.0%   |
|             | SAL 100000 to 200000                                     |
| Pavement 1  | hickness = 325 mm                                        |
| As per IRC  | C:SP:72-2007 Pg. No. 16 Fig 4 Design catalogues as under |
| Columni     | Column2                                                  |
| Columnt     |                                                          |
| S. C. Sole  | 20 mm                                                    |
|             | Carpet and Sealcoat                                      |
| 275 mm      | Existing Crust(Average)                                  |
| 50 mm       | мрм                                                      |

Considered are only marketable vehicles with a gross loaded weight of 3 tonns or more. The design traffic value was measured in terms of increasing number of standard axles to be carried during the design life of the road. The number of commercial vehicle of different axel loads are transformed to number of standard axel repetitions by a multiplier called the vehicle damage factor (VDF). As the traffic volume of rural road does not demand load survey, an analytical VDF value was considered. For scheming the VDF, the following categories of vehicles were measured as suggested in paragraph 3.4.4 of IRC: SP 72-2007;

Laden heavy/medium commercial vehicles.

Unladen/partially loaded heavy/medium commercial vehicles.

Over loaded heavy/medium commercial vehicles.

#### 8.2.4: Sub grade CBR

The sub grade CBR ranging 4 % was considered and the traffic cataract in the moderate traffic category.

#### 8.3: Pavement Composition

Flexible Pavement: The design thickness of pavement and its composition was calculated by referring figure 4 (Pavement Design catalogue) of IRC: 72-2007.

The pavement layers provided are given below;

# Top layer Premix Carpet with Type C seal coat 20 mm Strengthening MPM 50 mm Total thickness 70 mm

## PAVEMENT DESIGN

| AV |                           | DESIGN                                               |                    |            |                       |                   |
|----|---------------------------|------------------------------------------------------|--------------------|------------|-----------------------|-------------------|
|    |                           | Av. No. of commercial vehicle                        |                    |            |                       |                   |
|    |                           | Duration of Harvesting season -                      |                    | lean sease | on .                  |                   |
|    |                           | -                                                    |                    |            |                       |                   |
|    | n =                       | 1 (As per Sp 72:2007 Pg No. 3-                       | 4)                 |            |                       |                   |
|    | 710                       | 0 + <u>1.2 x 1 x 710 x 75</u><br>365                 |                    |            |                       |                   |
|    | 88                        |                                                      |                    |            |                       |                   |
| 0) | Average Da                | ily Traffic                                          |                    |            |                       |                   |
|    | _                         | Growth of Traffic @ 6.0%                             |                    |            |                       |                   |
|    | ADT -                     | AADT x(1.0 +.06)^2                                   |                    |            |                       |                   |
|    | AD.                       | 885 x 1.12                                           |                    |            |                       |                   |
|    |                           | 994.3                                                |                    |            |                       |                   |
|    | SAY                       | 995                                                  |                    |            |                       |                   |
|    | SAY                       | 993                                                  |                    |            |                       |                   |
|    | From the gi<br>ADT of 995 | ven traffic count data the prop<br>work out as under | ortions of I       | HCV and    | MCV                   | out of the        |
|    | Heavy com                 | nercial vehicle(HCV) =                               | (AD<br>TRL<br>seas | JCK/Tota   |                       | L SIZE<br>OT peak |
|    |                           | •                                                    | 995                | +10        |                       |                   |
|    |                           |                                                      | 1420               | D          |                       |                   |
|    |                           |                                                      |                    |            |                       |                   |
|    |                           |                                                      | 7.00               | 7          |                       |                   |
|    |                           | Say                                                  | 7                  |            |                       |                   |
|    | PAVEM                     | ENT DESIGN                                           |                    |            |                       |                   |
| 1) | Ground wate               | rlevel                                               | 25.00              | mt.        |                       |                   |
| 2) | Average rain              | fall                                                 | 854                | Mm         |                       |                   |
| 3) | CBR                       |                                                      | 4.20%              |            |                       |                   |
| 4) | Dry density               |                                                      | 1.85               |            |                       |                   |
| 5) | Assume initi              | al growth rate                                       | 6.00%              |            |                       |                   |
| 6) | design life(n             | 2                                                    | 10                 | years      |                       |                   |
| 7) | Duration of               | harvesting season(t)                                 | 75                 | Days       |                       |                   |
| 8) | Average dai               | y traffic(ADT)                                       | Peak S             | eason      | Lean<br>(50%<br>peak) | Season<br>of      |
|    | a) Animal                 | drawn cart                                           | 80                 |            |                       |                   |
|    | b) Bicycle                |                                                      | 440                |            |                       |                   |
|    | c) Full size              | truck and bus                                        | 100                |            |                       |                   |
|    | d) Agricul                | ural Tractors, Trailors and Jugads                   | 230                |            |                       |                   |
|    | e) Cars an                | d Jeeps                                              | 240                |            |                       |                   |
|    | f) Motor (                | lyele                                                | 180                |            |                       |                   |
|    | g) Auto Ri                | ekshaw                                               | 150                |            |                       |                   |
|    | TOTAL                     | 2                                                    | 1420               |            | 710                   |                   |
|    |                           |                                                      |                    |            |                       |                   |

(As per SP 72:2007 Page No. 8 Clause No 3.4.1) AADT T + <u>1.2 x N x T x 1</u>

## VIII. PROTECTIVE WORKS AND DRAINAGE

## 9.1: General

Proposed road passes through plain terrain so no protective work necessary.

#### 9.2: Road side Drain

Road side drain is proposed by cutting inside earth in required portion.

## **IX. LAND REQUIREMENTS**

#### 10.1: General

The existing road is a BT surface road. Thus the project road is a renewal project. The existing Right of Way (ROW) is ranging from 15 m to 25 m.

#### 10.2: Proposed ROW

In accordance with the IRC: SP 20-2002, the width of carriageway has been considered as 3.75 m. The total road way width is limited to 6 m with 1.125 earthen shoulder on either side of carriage way. Depending upon the embankment height, the planned ROW ranges from 15 m - 25 m and the planned ROW is even less than 10 m in some stretch of habitat areas and in areas having tree cultivations.

## X. TRAFFIC MANAGEMENT AND ROAD SAFETY MEASURES

## 11.1 Road Furniture

PMGSY logo sign board km stones and 200 m stones Road sign, village name and junction board **11.1.1: Road Markings: N/A** 



## 11.1.2: Caution, Mandatory and Informative Signs

In accord with the IRC: 67-2001 rule of road signs, PMGSY sign board, road sign and village name boards were provided depending on the circumstances and purpose they perform.

## 11.1.3: Stones indicating Kilometer and Hectometer

In accord with the IRC: 8-1980 guidelines, the particulars of kilometer stones were provided, both regular and fifth kilometer stones as per the schedule, on both sides of the roads.

In accordance with the IRC: 26-1967 guidelines, the particulars of 200 m stones are provided and positioned on the same side of the road where km stones were provided.

- 11.1.4: Delineators and Object Markers: N/A
- 11.1.5: Guard Posts and speed breakers: N/A
- 11.2: Temporary Traffic Control: N/A
- 11.3: Road Safety CheckList

1) To the full road width, a minimum of 100 mm thick pavement of GSB layer is constructed

## XI. SPECIFICATIONS

The construction equipments such as motor grader, rotavator towed by tractor, wheeled roller, mechanical mixer fixed with water measure devices; excavators etc were used as per the guidelines of NNDA.

The construction methods such as preparation of earth work, embankment work, sub grade, sub base, base, shoulder, surfacing and structural works meet the terms of MORD and IRC specifications.

## XII. Environmental Issues

For the proposed road alignment, environmental susceptible area (National park, wildlife sanctuary, protected/ reserved forest, wet land etc), assembly camp, permit/ clearance requisite prior to commencement of municipal work (NOC, CFE, CFO), measures to control erosion, drainage systems and materials used were considered seriously.

## XIII. ANALYSIS OF RATE

**14.1: Estimation of materials and cost for highway construction and maintenance** 

| SR. | DESCRIPTION                                                                                                                                                                                                                               | UNIT | QUANTITY | RATE   | AMOUNT   |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|--------|----------|
|     | TACK COAT                                                                                                                                                                                                                                 | -    |          |        |          |
|     | iii) Providing and applying tack coat<br>with bitamen emulsion (RS-1) using<br>emulsion distributor at the rate of 0.25<br>to 0.3 kg per sqm on the prepared<br>belowed with hydraulic broom an per<br>technical specification chause 503 |      |          |        |          |
|     | unit-sqm                                                                                                                                                                                                                                  |      |          |        |          |
|     | taking output = 1750sqm                                                                                                                                                                                                                   |      |          |        |          |
|     | a)labour                                                                                                                                                                                                                                  |      |          |        |          |
|     | Mate                                                                                                                                                                                                                                      | Day  | 0.04     | 250    | 10       |
|     | Mazdoor (unskilled)                                                                                                                                                                                                                       | Day  | 1.00     | 250    | 250      |
|     | b)Machinery                                                                                                                                                                                                                               |      |          |        |          |
|     | hydraulic broom@ 1250 sqm/hr                                                                                                                                                                                                              | Hour | 1,40     | 450    | 630      |
|     | air compressor 210 cm                                                                                                                                                                                                                     | Hour | 1.40     | 450    | 630      |
|     | emulsion pressure distributor @<br>1750sqm/ hr                                                                                                                                                                                            | Hour | 1.00     | 1000   | 1000     |
|     | c) Material                                                                                                                                                                                                                               |      |          |        |          |
|     | bitumen emulsion (Rs-<br>1)@0.275kg/sqm                                                                                                                                                                                                   |      | 0.48     | 42,000 | 20,160   |
|     | d) Contractor's profit & overheads<br>@12.5% on (a+b+e)                                                                                                                                                                                   |      |          |        | 2835     |
|     | cost of 1750 sqm - a+b+c+d                                                                                                                                                                                                                |      |          |        | 25515    |
|     | Rate per sqm (a+b+c+d)/1750                                                                                                                                                                                                               |      |          |        | 14.5861  |
|     | Haulage excluding loading &<br>unloading                                                                                                                                                                                                  |      |          |        |          |
|     | case-1 surface road                                                                                                                                                                                                                       |      |          |        |          |
|     | haulage of materials by tipper<br>excluding coat of loading, unloading<br>and stacking                                                                                                                                                    |      |          |        |          |
| -   | Rate/t.km                                                                                                                                                                                                                                 |      | •        |        | 2.3      |
|     | Rate/M.T./km of bitumen emulsion<br>with 425km.lead                                                                                                                                                                                       | Km.  | 675.0    | 2.3    | 1552.5   |
|     | for one sqmQty=0.275kg                                                                                                                                                                                                                    | Kg.  | 0.275    | 1.552  | 0.427 CH |
|     | total rate- A+B                                                                                                                                                                                                                           |      |          |        | 15.007   |
| _   |                                                                                                                                                                                                                                           | -    |          |        |          |
|     |                                                                                                                                                                                                                                           |      |          |        |          |
| _   |                                                                                                                                                                                                                                           |      |          |        |          |

| SR. | DESCRIPTION                                                                             | UNIT | QUANTITY | RATE<br>(RS.) | AMOUNT      |
|-----|-----------------------------------------------------------------------------------------|------|----------|---------------|-------------|
|     | Modified Penetration Macadam                                                            |      |          |               |             |
|     | Construction of penetration macadam                                                     |      |          |               | 1           |
|     | over prepared base by providing a                                                       |      |          |               |             |
|     | layer of compacted crushed coarse                                                       |      |          |               |             |
|     | aggregate using chips spreader with                                                     |      |          |               | 1           |
|     | alternate applications of bituminous                                                    |      | 1 1      |               | 1           |
|     | binder and key aggregates and rolling                                                   |      | 1 1      |               |             |
|     | with a three wheel 80-100 kn static                                                     | S    |          |               | 1           |
|     | roller to achieve the desired degree of                                                 |      |          |               | 1           |
|     | compaction as per Technical                                                             |      |          |               | 1           |
|     | Specification Clause 506                                                                |      |          |               |             |
|     | A) 50 mm thick                                                                          |      |          |               |             |
|     | Unit – sqmt.                                                                            |      |          |               |             |
|     | Taking output - 4500 sqm (225                                                           |      |          |               |             |
|     | cum)                                                                                    |      |          |               |             |
|     | 1)Bitumen                                                                               |      |          |               | -           |
| _   | Mate                                                                                    | Day  | 0.32     | 250           | 80          |
| _   | Mate<br>Mazdoor (unskilled)                                                             | Day  | 6.0      | 250           | 1500        |
|     | Mazdoor (unskilled)<br>Mazdoor (skilled)                                                | Day  | 2.0      | 275           | 550         |
|     | b) Machinery                                                                            | Day  | 2.0      | 275           | 330         |
|     | Hydraulic self-propelled chips                                                          | Hour | 6.0      | 3200          | 19200       |
|     | spreader both for aggregates and key<br>aggregates (7) 1500 sqm per hour for            | riou | 0.0      | 3200          | 19200       |
|     | 4500 x 2 sqm                                                                            |      |          |               |             |
|     | Bitumen pressure distributor for<br>@1750 sqm per hour                                  | Hour | 2.57     | 1200          | 3084        |
|     | Tipper 5.5 cu capacity for carriage of<br>aggregates from stockpile to chip<br>spreader | Hour | 10.0     | 400           | 4000        |
|     | Three wheel 80-100 kn static roller                                                     | Hour | 22.5     | 650           | 14625       |
|     | Front end loader 1 cum bucket<br>capacity                                               | Hour | 6.00     | 925           | 5550        |
|     | c) Material                                                                             |      | 7.87     | Carlo Carlos  |             |
| _   | Bitumen @1.75 kg per sqm                                                                | t    | 270.00   | 50,000        | 393500      |
|     | 40 mm size MC metal @0.06 cum<br>per sqm (M-017) (without<br>conveyance)                | eum  | 270.00   | 600           | 130200      |
|     | 12 mm size stone chips @0.018 cum                                                       | Cum  | 81.00    | 625           | 50625       |
|     | d) Contractor's profit & O.H.<br>@12.5% on (a+b+c)                                      |      |          |               | 77864.25    |
|     | Cost of 4500 som - a+b+e+d                                                              |      |          |               | 7,00,778,25 |
|     | Rate per som = (a+b+c+d)/4500                                                           |      |          |               | 155.72 ca   |

|    | Total rate = a+b+e+d+e+r+g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |          |         | 170,46     |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------|---------|------------|
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |          |         |            |
| R. | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UNIT  | QUANTITY | RATE    | AMOUNT     |
|    | 20 mm thick open graded premix<br>carpet using bituminous (penetration<br>grade/modified bitumen) binder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |          |         |            |
|    | Preventions, high material indicates any opera-<br>tion of the second second second second second second<br>numerical second se |       |          |         |            |
|    | enpacity, finished to the required level<br>and grades to be followed by seal coat<br>of type B as per Technical<br>Specification Clause 508                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |          |         |            |
| _  | Case-II by mechanical means<br>1)Bitumen (8-90)<br>Taking output = 4000 sam (80 cum)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sam   |          |         |            |
|    | a) Labour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |          |         |            |
|    | Mate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Dav   | 0.52     | 250     | 130        |
| _  | Mazdoor (unskilled)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Day   | 10.0     | 250     | 2500       |
| _  | Mazdoor (skilled)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dav   | 3.0      | 376     | 825        |
| -  | b) Machinery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |          |         | 0.0.0      |
|    | HMP 30/40 t per hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LIGHT | 6.0      | 6000    | 36.000     |
|    | Electric generator set 123 KVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Hour  | 6.0      | 800     | 4900       |
|    | Front end loader 1 cum bucket                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Hour  | 6.0      | 925     | 5550       |
|    | Tipper 5.5 10t capacity paver finisher                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hour  | 3.64     | 400     | 1456       |
|    | Three wheel 80-100 kn statle roller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Hour  | . 6      | 950     | 5700       |
| _  | c) Material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |          |         |            |
| _  | Bitumen (S-90) @214.6 kg per 10 sqm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | 5.84     | \$0,000 | 2,92,000   |
|    | Crushed atone chipping, 13.2 mm to<br>5.6 mm @ 0.27 cum per 10 sqm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cum   | 108.0    | 625     | 67.500     |
| _  | d) Contractor's profit and O.H. @12.5<br>% on (a+b+e)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |         | 53,375.63  |
| -  | Cost of 4000 sqm = a+b+e+d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |          |         | 4,80,236.6 |
| -  | Rate per sqm = (a+b+c+d)/4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |          |         | 120.05     |
|    | b) loading aggregate MC Metal by<br>mechanical means including a lead up<br>to 30 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cum   |          |         | 42         |
|    | For 4500 sq of work MC metal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cum   | 108.0    |         |            |

| 1) loading aggregate MC Metal by mechanical means including a lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cum      |         | 1       | 42               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|---------|------------------|
| for 4500 sq of work MC metal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cum      | 351.00  |         |                  |
| required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |         |         |                  |
| For one sqm of work MC metal<br>required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cum      | 0.078   |         |                  |
| Hence loading charge for MC metal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cum      | 0.078   | 42      | 3.276 (b)<br>120 |
| D Loading of bitumen drums by<br>monutal means including a lead up to<br>30 m<br>For 4500 sq of work bitumen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cum      |         |         | 120              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | 7.87    |         |                  |
| For one sqm of work bitumen<br>required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1        | 0.00175 |         |                  |
| Hence leading charge for bitumen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | 0.00175 | 120     | 0.21 26.5        |
| iii) Unloading of aggregate (MC<br>metaD by mechanical means<br>For 4500 aq of work MC metal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cum      |         |         | 5.1              |
| metal) by mechanical means                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cum      | 351.00  |         |                  |
| For one sqm of work MC metal<br>required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cum      | 0.078   |         |                  |
| required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |         |         |                  |
| Hence unloading charge for MC<br>metal<br>II) Unloading of bitumen drums by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cum      | 0.078   | 5.1     | 0.39 (#)         |
| manual means including a lead upto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cum      |         |         | 72.55            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e .      | 7.87    |         |                  |
| For one sqm of work bitumen<br>required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | 0.00175 |         |                  |
| required<br>Hence unloading charge for bitumen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | 0.00175 | 72.55   | 0.126 Le         |
| Hence unloading charge for bitumen<br>Haulage excluding loading and<br>unloading Case-1 : surfaced road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |         | 72.35   | 0.126 (2)        |
| Rate per t.km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |         |         |                  |
| 60.00 km. lead rates per cu. M.<br>Rate per sq. M./km. = (a)* 0.0078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | km       | 60.00   | 2.3     | 138<br>9.14 cr   |
| 40 mm 270 cu. M.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |         |         |                  |
| $ \begin{array}{c} Case-1: {\rm Surfaced road} \\ consects (1-1) \\ cons$ |          |         |         |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100000   |         |         |                  |
| 425.00   km. Lead<br>For one sq. M. Asphalt required 1.75<br>kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Km<br>Kg | 425.00  | 0.01375 | 013.75           |
| required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1        |         |         | 1                |
| For one sqm of work MC metal required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cum      | 0.027   |         |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cum      | 0.027   | 42      | 1.1366           |
| i) Loading of bitumen drums by<br>manual means including a lead up to<br>30 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cum      |         |         | 120              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | t        | 5.84    |         |                  |
| For one sqm of work bitumen required<br>Mence loading charge for bitumen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 0.0014  | 120     | 0.16             |
| Hence tottamig entrige for bitumen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 .      | 0.0014  | 1 120   | 0.10 00          |
| iii) Unloading of aggregate (MC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cum      | 1       |         | 5.1              |
| metal) by mechanical means<br>For 4500 sq of work MC meta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 108.00  |         | 1000             |
| required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |         |         |                  |
| For one sqm of work MC meta<br>required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I Cum    | 0.027   |         |                  |
| Hence unloading charge for MC metal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cum      | 0.027   | 5.1     | 0.137 6          |
| ii) Unloading of bitumen drums by<br>manual means including a lead upto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cum      |         |         |                  |
| 30 m<br>For 4500 sq of work bitumen required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 .      | 5.84    |         |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | i i      | 0.0014  | 72.55   | 0.1 64           |
| Hence unloading charge for bitumen<br>Haulage excluding loading and<br>unloading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1        | 0.0014  | 72.55   | 0.1 64           |
| Case-1 : surfaced road<br>Rate per t.km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -        |         |         | 2.3              |
| 60.00 km. lead rates per cu. M.<br>One M.T. covers 23.8 sq. Mt. For 1 sq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | km       | 60.00   | 2.3     |                  |
| One M.T. covers 23.8 sq. Mt. For 1 sq<br>Mt. = 0.04 M.T.<br>Haulage charge of asphalt with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | 0.04    | 117.3   | 4.69 c           |
| 425.00   km Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | km       | 425.00  | 2.15    | 913.75           |
| For one sq. Mt. Quantity = 1.46 kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -        | 1.46    | 0.9137  | 5 1,336          |
| Total rate = a+b+c+d+e+f+g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |         | -       | 127.59           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -        | -       |         |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |         |         |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -        |         |         |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |         |         |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |         |         |                  |

| SR.<br>NO. | DESCRIPTION                                                                                                                                                                                  | UNIT | QUANTITY | RATE<br>(RS.) | AMOUNT     |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|---------------|------------|
| NO.        | SEAL COAT                                                                                                                                                                                    |      |          |               |            |
|            | providing & laying seal coat sealing the<br>voids in a bituminous surface laid to<br>the specified levels, grade and cross<br>fall using type C as per technical<br>specification clause 510 |      |          |               |            |
|            | B. By mechanical Means                                                                                                                                                                       | 2    |          |               |            |
|            | case-3 : type C                                                                                                                                                                              |      |          |               |            |
|            | 1)bitumen(S-90)                                                                                                                                                                              | Sqm  | -        |               |            |
|            | taking output- 7500sqm(67.5)                                                                                                                                                                 |      |          |               |            |
|            | a) labour                                                                                                                                                                                    |      |          |               |            |
|            | Mate                                                                                                                                                                                         | Day  | 0.20     | 250           | 50         |
| -          | Mazdoor (unskilled)                                                                                                                                                                          | Day  | 5.0      | 250           | 1250       |
|            | b) machinery                                                                                                                                                                                 | 1    |          |               |            |
|            | hydraulic self propelled chips spreader                                                                                                                                                      | Hour | 6.0      | 3200          | 19,200     |
|            | tipper 5.5 cum capacity                                                                                                                                                                      | Hour | 6.0      | 400           | 2400       |
|            | bitumen pressure distributor                                                                                                                                                                 | Hour | 6.0      | 1000          | 6000       |
|            | three wheel 80-100kN static roller                                                                                                                                                           | Hour | 15.0     | 650           | 9750       |
|            | c) material                                                                                                                                                                                  |      |          |               |            |
|            | bitumen(S-90)@6.50kg/10sqm                                                                                                                                                                   | t    | 4.88     | 50,000        | 2,44,000   |
|            | crushed stone chipping of 6.7mm size<br>100 per cent passing 9.5mm sieve and<br>retained on sieve applied @ 0.09cum m<br>per 10 sqm                                                          | Cum  | 67.50    | 425           | 28687.5    |
|            | d) OH & Contractor's profit<br>@12.5% on(a+b+c)                                                                                                                                              |      |          |               | 38917.18   |
|            | cost of 7500sqm=a+b+c+d                                                                                                                                                                      |      |          |               | 3,50,254.7 |
|            | rate per sqm=(a+b+c+d)/7500                                                                                                                                                                  |      |          |               | 46.7 Ca)   |
|            |                                                                                                                                                                                              |      |          |               |            |



#### International Journal for Research in Engineering Application & Management (IJREAM) ISSN: 2454-9150 Vol-05, Issue-02, May 2019

 $b = 0.85 + 2^{*}0.08 - 1.01 m$   $ber = 2.97^{*}2.4(1 - (2.4.2.8)) + 1.01$   $= (2.97^{*}2.4^{*}.5) + 1.01$  = 4.57mFor (wo),

| i) Loading crushed stone by mechanical means including a lead up to 30m                             | Cum |         |        | 42                 |
|-----------------------------------------------------------------------------------------------------|-----|---------|--------|--------------------|
| for 7500sqm of work crushed metal required                                                          | Cum | 67.50   |        |                    |
| for one sqm of work crushed metal required                                                          | Cum | 0.009   |        |                    |
| hence loading charge for crushed sand                                                               | Cum | 0.009   | 42     | 0.378.5            |
| <ul> <li>i) Loading of bitumen drums by manual<br/>means including a lead up to 30m</li> </ul>      | Cum |         |        | 120                |
| for 7500 sqm of work bitumen required                                                               | t   | 4.88    |        |                    |
| for one sqm of work bitumen required                                                                | t   | 0.00065 |        |                    |
| hence loading charge for bitumen                                                                    | t   | 0.00065 | 120    | 0.078 ( t.         |
| <ul> <li>iii) Unloading crushed stone by mechanical<br/>means including a lead up to 30m</li> </ul> | Cum |         |        | 5.1                |
| for 7500sqm of work crushed metal<br>required                                                       | Cum | 67.50   |        |                    |
| for one sqm of work crushed sand required                                                           | Cum | 0.009   |        |                    |
| hence loading charge for crushed sand                                                               | Cum | 0.009   | 5.1    | 0.0459(d           |
| iii) Unloading of bitumen drums by manual<br>means including a lead up to 30m                       | Cum |         |        | 72.55              |
| for 7500 sqm of work bitumen required                                                               | t   | 4.88    |        |                    |
| for one sqm of work bitumen required                                                                | t   | 0.00065 |        | in a second second |
| hence loading charge for bitumen                                                                    | t   | 0.00065 | 72.55  | 0.047 (e           |
| haulage excluding loading&                                                                          |     |         |        |                    |
| case-1: surfaced road                                                                               |     |         |        | 2.3                |
| for mix material i.e. crushed sand with 60<br>Km                                                    | Km. | 60      | 2.3    | 138                |
| for one sqm quantity=.009 cu.m                                                                      |     | 0.009   | 138    | 1.242 (4           |
| haulage charge of asphalt with 425Km.<br>bitumen lead                                               | Km. | 425     | 2.3    | 977.5              |
| for one sq.m quantity= 0.65kg                                                                       |     | 0.65    | 0.9775 | 0.635              |
| total rate= A+B+C+D+E+F+G                                                                           |     |         |        | 49.12 0            |

## 14.2: Maintenance

| 14.2: Maintenance                |                             |
|----------------------------------|-----------------------------|
| Average traffic during design pe | sriod - (1500+2000/2)       |
|                                  | - 1750 mv/day               |
| Average road user cost on exist  | ing road per year           |
|                                  | - 365*13*1750*40            |
|                                  | - Rs 3321.5 lakhs           |
| Average road user cost on impr   | roved road per year         |
|                                  | = 365*13*1750*35            |
|                                  | - Rs 2906.3 lakhs           |
| Total benefit = 3321.5-2906.3    |                             |
| - Rs 415.18 lak                  | ha                          |
| Assuming cost of improvemen      | nt Rs 10, 00,000            |
| Total cost of improvement P =    | - 10+13                     |
|                                  | — 130 lakbs                 |
| CRF (Capital Recovery Facto      | r) — (i(1+i))/(((i+1)^n)-1) |
| At i = 12% & n=10 yrs            |                             |
| CRF - 0.231                      |                             |
| Present annual cost of improv    | vement, Cr = P*CRF          |
|                                  |                             |

- 130\*0.231 - 30.03 lakbs

ress values from the strat

## XIV. DESIGN OF CROSS DRAINAGE WORKS

Slab culvert was selected since;

Span of bridge is less than 8 m, cost of frame work is less, As per the SBC of the soil.

#### 15.1: Design of Slab

 $\begin{aligned} \begin{array}{c} & & & & & \\ \text{RED} \left( \text{EXYEL OF STREAM} - 100 \text{ m} \\ \text{FOLL SUPPLY LEYEL} & -101 \text{ m} \\ \text{ROTTOM SLAB LEYEL} & -101 \text{ m} \\ \text{$ 

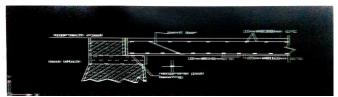
AMINARY AND A DESCRIPTION OF A DESCRIPTI

Clear span + bearing width terive span - 4.8 m d load beading moment and shear force Wearing cent or 80 mm thickness is assumed \* . Dead load of the stab + 0.32\*24 - 7.68

 $\begin{array}{l} \label{eq:constant} = c(10+10)c(10+(10+300))\\ & -0.53\\ \hline & -0.53\\ \hline & -0.53\\ \hline & -0.53\\ \hline & -0.58\\ \hline & -0.68\\ \hline & -1.465 = -1.5\\ \hline & -1.65\\ \hline & -1.65\\$ 

| siab                                                                                                     |     |
|----------------------------------------------------------------------------------------------------------|-----|
| Effective depth required=V (120+10~6)/(1.5+1000)                                                         |     |
| -282.84 mm                                                                                               |     |
| Effective depth provided -310mm                                                                          |     |
| Area of longitudinal reinforcement =(120+10^6)/(200+0.9+210)                                             |     |
|                                                                                                          |     |
| From 15 456                                                                                              |     |
| The even distance of this reinforcement $= (314.2*1000)/2130$                                            |     |
| -146.14mm                                                                                                |     |
| The e/e distance of reinforcement 140 mm can be adopted                                                  |     |
| Actual steel area of steel provided is 1873 mm^2                                                         |     |
| Distribution steel should be designed bending moment of                                                  |     |
| = 0.3*LL moment+ 0.2 DL moment                                                                           |     |
| - (0.3*91.38)+(.2*28)                                                                                    |     |
| - 33 kn-m                                                                                                |     |
| Bifeetive depth available in the widthwise direction with 12 mm rod                                      | 200 |
| - 310-10-6                                                                                               |     |
| -294 mm                                                                                                  |     |
| Area of distribution steel                                                                               |     |
| =33*10^6/(200+.9+294)                                                                                    |     |
| - 623 mm-2                                                                                               |     |
| e/edist of distribution steel                                                                            |     |
| <u>-113.1+1000/623</u>                                                                                   |     |
|                                                                                                          |     |
|                                                                                                          |     |
| = 181.4 mm                                                                                               |     |
| Check for shear stress                                                                                   |     |
| Nominal shear stress                                                                                     |     |
| $T_{V} = SE/bd$                                                                                          |     |
| = (93.33*10^6)/(1000+310)                                                                                |     |
| = 0.30 mpa                                                                                               |     |
| As per IRC 21(2000)                                                                                      |     |
| For solid slabs, the permissible stress in concrete - kTe                                                |     |
| K - Factor depending on concrete grade                                                                   |     |
| P u % steel - 100+As+ (As-(1873/23)/pd                                                                   |     |
| - 100*936.5/(1000*310)                                                                                   |     |
| - 0.3                                                                                                    |     |
| From table 12 of IRC 21(2000)                                                                            |     |
| p = 0.3 M30                                                                                              |     |
| Tc = 0.226 (interpolation)                                                                               |     |
| K-1 (table 12C)                                                                                          |     |
| $T_{e} = 1 \pm 0.226 = 0.226$ mpa                                                                        |     |
| To-Tv . hence ok                                                                                         |     |
| Pestan of kerb                                                                                           |     |
|                                                                                                          |     |
| The kerb may be designed for LL of 4 kn/m^2. The min height of kerbmay be taken as 2 mm above road level | 225 |
| Total depth of kerb = 360 + 80 + 225                                                                     |     |
| = 665 mm                                                                                                 |     |
| Assuming footpath on either side 600 mm                                                                  |     |
| LL/m run of the road $= 0.6 \pm 1 \pm 4$                                                                 |     |
| - 2.4 ko/m                                                                                               |     |
| Dead load = $0.665 + 0.6 + 24$                                                                           |     |
|                                                                                                          |     |
| = 9.6 kn/m~2                                                                                             |     |
| Wt of railings = 0.5/12.5                                                                                |     |
| = 0.4  kg                                                                                                |     |
| Bending moment -12.5*(4.8^2)/8                                                                           |     |
| - 36 kn-m                                                                                                |     |
| The bending moment is generally taken as 50%                                                             |     |
| LL bending moment -0.5++91.38                                                                            |     |
| - 45.69 kn-m                                                                                             |     |
| Design bending moment - DL BM + LL BM                                                                    |     |
| -36 + 45.69                                                                                              |     |
| - 81.69 kn-m                                                                                             |     |
|                                                                                                          |     |
| Hence effective depth required $= \sqrt{(81.69*10^{60})(600*1.5)}$                                       |     |
| Hence effective depth required $= \sqrt{(81.69*10^6)/(600*1.5)}$<br>= 301 mm ·                           |     |

Par two. BeF 3.38+3.05+3.28= 0.61m The wheel food will have a dispersed area -4.8+6.01  $-31.73kF/Am^2$ Intensity loading  $-(1.23+747)/(4.8+6.01) = 20.43kF/Am^2$ Max five food bending moment at centre of class -(31.73+4.8+2)/8 -(31.73+4.8+2)/8Design bending moment at centre of class -(31.73+4.8+2)/8 -(31.73+4.8+2)/8 -(31.73+1.2)/8 -(31.73+1.2)/8-(31.73+1.2)/8


Effective length is 4.8 For two wheels the net effective width is 6.61m Intensity of loading is 29.43 kH7m/93 Live load shear force-29.43\*(4.82) =70.63 Kn Design shear force-9 dead load shear force + live load shear force = 22.7+70.63 = 93.33kN

- 301 mm -- 301

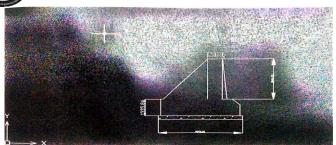


- 3.5 - 4 bar

15.3: Longitudinal Section of Slab



15.4: View of Abutment

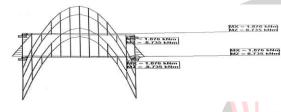

| Dead load of wearing cost = $0.08*22 - 1.76$                                   |
|--------------------------------------------------------------------------------|
| Total - 9.44 kn/m2                                                             |
| Dead load bending moment = (w1^2)/8                                            |
| - (0.44+4.8~23/8                                                               |
| - 27.18 - 28 kn-m                                                              |
| Dead load shear force — 9.14+4.8/8                                             |
| - 22.7 km                                                                      |
| Live load bending moment and shear force                                       |
| Dispersed wheel load length - length of contact + 2(overall thickness of slab) |
| $= 3.6 \pm 2(0.36 \pm 0.08)$                                                   |
| - 4.5 m                                                                        |
| Proportional load to be considered                                             |
| - 4.8 *700/4.5                                                                 |
| - 747 kn                                                                       |
| Effective width of dispersion                                                  |
| bef- ax (1-(1/x))+b                                                            |
| Width of slab $= 7.5 \pm 2(0.6)$                                               |
| - 8.7 m                                                                        |
| $\mathbf{E} = \mathbf{E}/1$                                                    |
| -8.7/4.8 - 1.81                                                                |

548 | IJREAMV05I0250109

From IRC 21(2000) page 52 α = 2.97 x = 4.8/2= 2.4 m

© 2019, IJREAM All Rights Reserved.






## **XV. BENDING MOMENT**

#### 16.1: Abutment



16.2: Slab



## XVI. ESTIMATION OF MATERIALS AND RATE FOR CULVERT AND WING WALLS

#### 17.1: Rate Analysis

| Detail of work                                                                                                           | No. | 1 0  | tensurer | ment 1 | communes.             |
|--------------------------------------------------------------------------------------------------------------------------|-----|------|----------|--------|-----------------------|
| Sub-Head I. Earth Work<br>1. Excavation for foundations<br>Abuttoents and floors<br>( togstate - 10 )<br>Wing walls      | 4   | 7.8  | 4.64     | 8:3    | 2.52                  |
| Total<br>Sub-Head II, Concrete                                                                                           |     |      |          |        | 37.02                 |
| 2.Cement concrete 1:4:8 in<br>foundation<br>Abutment and floor<br>Wing walls                                             | 4   | 7.8  | 4.54     | 8:3    | 6.345<br>27.5         |
| Total                                                                                                                    |     |      |          | 1 1    | 33.84                 |
| 3.Coment Concrete (1:2:4)<br>Parapet coping<br>Wearing cont over the stab                                                | 7   | 5.15 | 3:3      | 0.225  | 9:59                  |
| Total                                                                                                                    |     |      |          |        | 2.6                   |
| 4.Reinforced coment concrete<br>(1:2:4)<br>Including reinforcements<br>Silab                                             |     | 7.5  | a.o      | 0.2    | 5.26                  |
| Fotal                                                                                                                    |     |      | 1        | 1 1    | 5.26                  |
| Sub-Head III, Brick Work<br>5.First class burnt brick laid in<br>coment mortar (1:3) in<br>foundation and superstructure |     |      |          |        |                       |
| Abument 1 <sup>th</sup> step<br>Wing walls 2 <sup>th</sup> step                                                          | NNN | 77.8 | 8.9      | 0.225  | 1.82<br>34.6<br>26.67 |
| Wing walls 21 step                                                                                                       | 1   | 1.71 | 8.3      | 4.64   | 26.39                 |
| samplet walls on the slats                                                                                               |     |      | 0.85     | 0.74   | 1.95                  |
| Beduct<br>tearing of state                                                                                               |     | 7.5  | 0.2      | 0.2    | 0.54                  |
| Potal                                                                                                                    |     |      |          |        | 134.69                |
| wh-Head IV, Flooring<br>Child Holving faid in cement<br>notar (1.5.)                                                     |     | 7.5  | 0.4      |        | 3.7                   |
| Const                                                                                                                    | ÷ . |      |          | _      | 0.7                   |
| Sub-Head V. Finishing<br>Comont pointing doop variety                                                                    |     |      |          |        |                       |
| Duside the abutment<br>Outside the faces (1.28 +<br>20)-1.48*                                                            | 2   | 3:5  | ==       | 0.8    | 10.8                  |
| Deduct                                                                                                                   |     |      |          |        |                       |
| Side openings<br>Side faces                                                                                              | 22  | 4.94 | =,       | 8.8    | 7.90                  |
| Potal                                                                                                                    |     |      |          |        | 20.48                 |
| Cement pointing flush<br>Floor                                                                                           |     | 7.5  | 4.94     | -      | 33.34                 |
| Potat                                                                                                                    |     |      | -        |        | 33.34                 |

## 17.2: Abstract of Cost

Sub-Head of work Ouantity Unit Rate (Rs) Cost (Rs) Sub-Head I, Earth work 1. Excavation for foundations 8329.5 37.02 % cub m 225 Sub-Head II. Concrete 2.Cement concrete in foundations(1:4:8) 33.845 170 5692.36 Cub m 3.Cement concrete (1:2:4) 2.6 Cub m 322 8732 3945 . Reinforced cement concrete(1:2:4) Including Reinforcement 5.26 Cub m 750 Sub-Head III, Brick Work 5. First class burnt brick laid in c mortar (1:5) in foundations superstructure. 133.28 Cub m 165 21991.2 Sub-Head !V, Flooring 6. Brick flooring laid in cement mortar (1:6) 2.7 Cub m 16 43.2 7. Cement pointing deep variety (1:2) 18.18 Cub m 109.08 8. Cement pointing flush 33.34 Cub m 6.50 216.71 Total 48930.77 Add 5% contingencies & P.E 2446.5 Add Premium @ 400%-above C.S.R 205509.08 Total = Rs 256886.5~ Rs 256887 Rate per meter = 256887/4.94 = Rs 52000

## XVII. CONCLUSION

All weather road access to the village with population more than 1000 was achieved.

A core network consisting routes and links routes was designed to provide the basic admission to all the villages. Realignment of the road was done considering all the future aspects.

## REFERENCE

[1] G S Kalimaras, L Brino, 'Tunneling and underground space technology', Vol. 15, Issue 4, 12 Oct. 2000, page 415-420.

[2] Salvatore cafiso, Alessandro Di Graziano and Bhagwan Persuade, 'Accident analysis and prevention', Vol. 42, Issue 4, July 2010, pages 1072-1079.

[3]Tom Masoespossito, Raffale Mauro, 'Speed prediction model for sustainable and road safety management', 23 Oct. 2007.

[4] Peter G Gipps and Kevin Q, 'Transport research part C, emerging technologies', Vol. 9, Issue 2, Page 135-154.

[5] Said M Easa, 'Transportation Research, part A, Vol. 22, Issue 2, 1988, Page 121-136.

[6] K W Ogden, ' Accident analysis and Prevention, Vol. 29, Issue 3, May 1997, page 353-362.

[7] M J Rayll, 'Bridge Management, 2001, page 1-27.

[8] Bao Guo Chen and Liang Sun, 'Computer and Geotechnics, Vol. 52, july 2012, page 46-53.

[9] Manoj K Jha, 'Met heuristic in water, Geotechnical and Transport engineering', 2013, page 365-384.

[10] Tien Fang Fwa, Kumares C Sinha, 'Transportation research part A', Vol. 20, Issue 3, may 1986, page 211-221.

[11] Deepak varadarajan, Md Najafi, 'Journal of King saud university, Vol. 23, Issue 3, july 2011, page 243-254.

[12] Biosystems Engineering, Vol. 24, Issue 3, Nov 2009, Page 425- 434 M S Kang, J A Chun.

Bridge Engineering- Jagdeesh and Jayram Environmental Engineering 2- S K Garg Essentials of Bridge Engieering- Dr. JohnsonnVictor Estimation and Costing- B N Dutta Indian Practical civil engineering handbook- P K Khanna Transportation Engineering 1- Khanna and Justo **Code Books** IRC 6-2000 IRC 78-2000 IRC 21-2000 IS 456-2000 IS 458