
International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-05, Issue-02, May 2019

550 | IJREAMV05I0250134 DOI : 10.35291/2454-9150.2019.0091 © 2019, IJREAM All Rights Reserved.

Setting Up CICD Pipeline For Web Development Project in

Cloud

Sushmitha M S, Student, PES College of Engineering,Mandya,India sushmithams95@gmail.com

Mr. Sanjay H M, Assistant Professor, PES College of Engineering, Mandya, India ,

sanjaypesce@gmail.com

Abstract Few years back when agile methodology was playing a major role in the industry, software was deployed in

monthly, quarterly or annual basis which was time consuming. But now it’s DevOps era! Where software can be

deployed multiple times a day. In current era, delivering creative ideas in a rapid and steady manner is eminently

significant for all organizations. In addition to that, organizations need to react to vigorous market requirements, faster

time to market, decrease in failure rate and increase in customer interaction. This could be achieved with the help of

DevOps methodology. DevOps methodology extends the agile to quickly produce software and automatically deploy

them across various platforms/environment in order to gain high performance and quality assurance products.

Continuous integration/Continuous deployment (CI/CD) is the backbone of DevOps environment. By automating the

build, testing and deployment of software, CI/CD bridges the gap between development and operation teams. Git,

Maven, Jenkins, Terraform, Docker, Kuberentes are the DevOps tools used in order to automate the entire

environment.

Keywords — Agile, CICD, DevOps, Docker, Git, Jenkins, Kuberenetes, Maven, Terraform.

I. INTRODUCTION

Due to increasing competition in software industry,

organizations play a major in assigning required resources

to develop and deliver trustworthy and high quality products

to consumers. Consumers expect to have continuous

interaction with DevOps team so that they can provide their

continuous feedback. DevOps is blending of two terms

development and operations which aims to provide conjoin

approach to industry‟s software development and operation

team job in software development lifecycle. It provides a

good communication between these two teams. DevOps

describes the conformation of automation and

programmable software development and infrastructure

deployment and maintenance. Continuous integration,

continuous deployment and continuous delivery are the

important factors in software industry that helps

organizations to constantly release new attributes and

products that are trustworthy. Continuous integration

focuses on integrating each developers work multiple times

per day so that debugging of error is easy. Continuous

delivery focuses on demoting discordance in deployment or

release process and automating the build step so that code

can be released securely at any time. CI/CD pipeline

provides following benefits in software delivery lifecycle:

obtaining rapid feedback from customers, rapid and steady

release leads to have customer satisfaction and quality

assured product, CD helps to automate tasks which was

carried out manually.

Figure 1: DevOps lifecycle

In our work, developers push their code to common

repository every time they write the code and hence other

developer in different location can access the code to know

about current status of the project. Now the code in

common repository should be built. The task of the building

tool is to download the corresponding dependencies for the

code and convert it into package. Hence there is no need for

the testing team to download the dependencies again. If any

error occurs, they are sent back to the developer. This

process is manual. In order to automate the entire process,

continuous integration process can be used. CI process

frequently monitors the common repository to check for

new arrival of code. If any new code arrives, build it. This

entire process contributes to continuous integration. After

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-05, Issue-02, May 2019

551 | IJREAMV05I0250134 DOI : 10.35291/2454-9150.2019.0091 © 2019, IJREAM All Rights Reserved.

building the code, it should deploy to a web server hosted

with container technology. This process contributes to

continuous deployment.

Figure 2: DevOps Working Overview

II. SURVEY SUMMARY

Project development consists of three phases like

Development, testing and Production. Initially the software

industry has adopted Waterfall methodology. In this

methodology, if the project has to be completed within 12

months, the time required to complete the project is divided

among three phases: say development phase requires six

months and testing and production phase requires three

months each. During six months of development phase, the

developer writes the entire code of the project. After

development of code, the code is then transferred to testing

phase. In testing phase, the entire code is verified for error.

If any error occurs, testing team send the error message to

the development team. Now the developer starts to debug

the error and again send the altered code to testing team.

Again the testing team should verify the entire code for

error. Thus it is a time consuming process. Hence the

project cannot be completed in specified time, say 12

months. During these 12 months, many new technologies

will emerge and they are unable to reach those technologies.

Hence adaptation of new technologies in middle of the

project is not possible. Also there is a lack of

communication between developer and other teams.

To overcome the above challenges, industry started to adopt

agile methodology. Here the project is divided into modules

called sprints. It supports adaptation of new technologies. In

this methodology, development and testing phases are

collaborated. The code is written in each sprint and after

completion of each sprint, it is given to testing phase. Thus

it is easy to identify the error in single sprint and also fixing

of error is easy and time consuming. After fixing all the

errors, the code is then deployed to production phase. When

compared to waterfall model, agile methodology is speedy.

There are some drawbacks of this methodology. They are

(i) it fails to deliver the product on deadline (ii) project

getting deviated due to lack of documentation during

discussions (iii) short time period to complete a task.

Hence these are the limitations of previous methodology

which was followed by the software industry. To overcome

these limitations, DevOps methodology era started.

III. PROPOSED METHODOLOGY

Devops is a software development procedure that combines

both software development and software operation teams

together. DevOps methodology is explained below using

various DevOps tools. In this work, source code repository

used is Git, building tool is Maven, CI tool is Jenkins, and

CD tool is Docker and Kubernetes.

A. System Architecture

The below figure gives an idea about system architecture:

Figure 3: System Architecture

1. Different developer from different locations pushes their

code from their local repository to remote repository

called Github.

2. The code is then build using Maven resulting in creation

of package called jar or war file.

3. This whole process is automated using Jenkins. Job is

created in Jenkins and task of that job is to monitor

Github for new code and build new code into package.

4. This jar file is deployed in common space say S3 with the

help of Jenkins.

5. At this point, testing team checks for error (in Jenkins), if

any error occurs, an error message occurs. Development

team debug the error and again pushes their code to

github.

6. Before deploying the jar file, testing team authenticate

the production environment for quality assurance.

7. The production environment is set up using terraform

tool by creating vpc, subnets, route table, and internet

gateway.

8. After authentication, jar file is deployed in servers.

9. The place where we deploy the code could be either

virtual machine or docker images. Here we use docker

images. Containers are created in docker. Docker is used

in order to overcome environmental change problem.

Requirements are placed in images and these images can

be transferred to all the phases.

10. Docker may contain „n‟ number of containers which is

called as micro service. In order to manage „n‟ number

of containers, a tool called Kubernetes is used.

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-05, Issue-02, May 2019

552 | IJREAMV05I0250134 DOI : 10.35291/2454-9150.2019.0091 © 2019, IJREAM All Rights Reserved.

Kubernetes is an orchestration tool used to have co-

ordination among containers. Kuberentes is also used for

automating deployment, managing containerized

application and scaling of resources.

B. DevOps Tools

1. Terraform

Terraform helps to build, change and version

infrastructure safely and efficiently. It is designed to

support and manage the lifecycle of a vast resources,

physical servers and SaaS products. It focuses on the

automation of the infrastructure itself. It is also used to

avoid code duplication. Install terraform using

commands given in the link:

https://medium.com/@anusha.sharma3010/terraform-

installation-on-ec2-ubuntu-instance-10ccc023bca8

2. Git

Git is a version control tool used to push code into

remote repository i.e., Github.com during software

development lifecycle. It is also used to monitor changes

in file sets. Developers push their code to repository

created in Github.com using git commands. Initially

install git in the server using sudo apt-get install git

command.

3. Maven

Maven is project management and comprehension tool

which provides complete build lifecycle framework for

developers. Maven is based on Project Object Tool

(POM) file. POM is used for project builds, dependency

and documentation. POM is a XML file that is present

in the base directory of project as pom.xml. POM file

contains all the necessary information and configuration

details of the project. Install maven using commands

given in the link:

https://qiita.com/dewaken/items/3f10c245b6780ad473bf

4. Jenkins

Continuous integration (CI) process is carried out using

Jenkins tool. Jenkins is an open source automation

server helps to automate manual work of software

development lifecycle. Install Jenkins using the

commands given in the link:

https://medium.com/@itsmattburgess/installing-jenkins-

on-amazon-linux-16aaa02c369c

5. Docker

Docker is a containerization platform that is used to

create a package containing an application and all its

dependencies altogether in the form of a docker

container to make sure that the application works

perfectly in all environments. Docker Container is a

standardized unit which is created on the fly to deploy a

specific application or environment. Consider a scenario

where code running in one machine is not running in

another machine. This is due to environmental change.

To overcome this problem, Docker is used. Docker

image is created. Install Docker using the commands

given in the link:

https://gist.github.com/brianz/8458fc666f5156fdbbc2

6. Kubernetes

Kubernetes is a platform for deploying and managing

containers. It is production-grade, open-source

infrastructure for the deployment, scaling, management,

and composition of application containers across

clusters of hosts. It is primarily targeted at applications

composed of multiple containers. It is therefore a group

of containers using pods and labels into tightly coupled

and loosely coupled formations for easy management

and discovery. Install kubernetes using the commands

given in the link:

https://kubernetes.io/docs/tasks/tools/install-kubectl/

C. Working Procedure

 Install Git software (for windows). Create single

container website called "Pet Mitra" using php. Initially

launch two instances. Now connect to server_2 using

"connect" option. Install Terraform and Kubernetes.

After installing terraform, create a directory called

"terraform" and move to that directory and create two

files called "main.tf" and "variable.tf". Run the

terraform script using commands using terraform init,

terraform plan and terraform apply.

 It creates virtual private cloud (VPC), Subnets, Internet

gateway and Route table. Here IP address is given

externally by calling function “variable”, provide VPC

name and enable DNS support and DNS host name

externally. Then create four subnets out which two are

public subnets (subnet1 and subnet2) and other two are

private subnets (subnet3 and subnet4). Provide IP

address of subnets within the function but give

availability zone and vpc id by calling function

“variable”. Create internet gateway and attach it to VPC.

Create route table and attach route table to internet

gateway. Now associate two public subnets to public

route table and other two private route tables to private

route table. Thus the whole infrastructure is automated.

Thus creates vpc, subnets, route table and internet

gateway. Exit from server. Create an account in github

and create a public repository (say Pet-Mainproject-

Kubernetes). Connect to server_1 using "connect"

option. Install git, maven, Jenkins and docker. Create a

folder called “sourcecode”. Inside that folder copy all

the code of website pet mitra using “scp” command.

Perform all the git commands (like init, add, push which

are given while creating github repository) on the folder

“sourcecode” to push code to git repository.

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-05, Issue-02, May 2019

553 | IJREAMV05I0250134 DOI : 10.35291/2454-9150.2019.0091 © 2019, IJREAM All Rights Reserved.

 Create two bucket in S3 (AWS) with bucket name unique

and enable versioning and set all the permissions. One

bucket is to store output of Jenkins and other is to store

kubernetes state information. Create user in IAM

(AWS) with programmatic access and set

Administartion access permission. Secret key and

Access key will be created and use that in Jenkins to

get access to AWS. Open Jenkins server using IP

address of that server with port number 8080 exposed.

A window Unlock Jenkins appears and prompts for

“initialadminpassword”. The path of initial admin

password will be present in the window. Move to that

path and copy the password and use it in the Unlock

Jenkins window. Next another window appears to

install suggested or specific plugins. Here “install

suggested plugins” is chosen. After the installation of

plugins, sign up page appears. Sign up using required

credentials. Then click on “start using Jenkins”. Then

Jenkins dashboard appears. Here jobs can be created.

Download git, maven and S3 plugins in manage plugins

section. Click on create new job and create job (say

“CI-petproject”). Then enter required credentials. Enter

description of the project but it is optional. Select

Source code management as “Git”: enter repository

URL and select “master” branch. Select required build

trigger option. In Build field, enter “mvn clean

package” command. In Post Build Action select

Publish Artefacts to S3. Here enter S3 profile details

obtained during S3 bucket and IAM user creation. Now

the job will build the code and deploy to s3 bucket.

Check S3 service in AWS. (Code is deployed). Now

create an account in dockerhub using docker ID,

password and email and create a repository (say

“petproject”). Write a Dockerfile to create docker

image. This Dockerfile contains commands to create

docker image. It uses already build image 16.04, update

the dependencies and install apache. Download php

and mysql files. Also download the contents of Github

repository to create an image and unzip. Expose port 80

and allow this website or code to run in foreground.

After creating Dockerfile, build that file using the

command “sudo docker build –t xyz/petproject: 10.0”.

This command build the Dockerfile and store that in

Dockerhub repository specified in url. –t specifies the

tag. Now run the Dockerfile using the command

“docker run –d –p 80:80 b596f2c49e16”. This

command creates a container. b596f2c49e16 is the

docker image id which is created when build command

was executed. 80:80 is to map virtual machine and

docker. After this push the docker image to repository

using the command “sudo docker push

petproject:10.0”. Thus the code is dockerized. Use

command "docker images" to view the docker images

created. Use command "docker ps" to view the

container created Check dockerhub repository for

docker image with tag 10.0 Exit from server

 Now connect to server_2 using "connect" option. To set

environmental variables and to store state information of

kubernetes, create a bucket called project-

kubernetescluster in S3. Give the name of cluster as

“petproject.k8s.local”. Now create cluster using the

command “kops create cluster --node-count=1 --node-

size=t2.small --master-size=t2.small --zones=us-west-1a

--name=${KOPS_CLUSTER_NAME}”. It creates one

worker node with size t2.small and one master node with

size t2.small in zone us-west-1a. Then by giving

following command kubernetes cluster will be created.

“kops” is used to create cluster and “kubectl” is used for

deployment.

 “kubectl cluster info” command gives complete

information about the created cluster. Now deploy

dockerized image inside kubernetes. Now run

dockerized image using the command “kubectl run

petproject010 --image=xyz/petproject:10.0 --replicas=1

--port=80”. Here “petproject010” is a pod. Pod is a

place where the docker image will run. Thus pod will

create after executing this command. In order to know

about the pod information, execute the command

“kubectl get pods”. Inside pod dockerized image is

running. To know information about the deployment,

execute the command “kubectl get deployment”. Now

code deployment should be exposed to load balancer.

This is done by executing the command “kubectl expose

deployment petproject010 --type=LoadBalancer --

name=my-project010”. To know the information of load

balancer, execute the command “kubectl get service”.

Upon executing this command, external IP of the load

balancer is obtained

(a648de64b5e9a11e9a11906195251c80-138107180.us-

west-1.elb.amazonaws.com). This is the end point. If

this IP address is accessed, it will redirect to the pod

where the website is running in a dockerized form.

(Petmitra website code which is pushed as input to git

repository). In real world, one cannot remember this

load balancer link to access this website. So this link

should be mapped to domain name. To create ease of

access to this website, a domain name called

"projectpet.tk" is purchased from "freenom". Then go to

Route 53 service in AWS and create a public hosted

zone called “projectpet.tk”. Thus connection between

freenom and AWS is created by updating NS Record

obtained in Route 53 to “projectpet.tk”. Also, “A

Record” is created for load balancer link with some

additional credentials. If anyone tries to access either

“projectpet.tk” or load balancer link, it redirects to pet

mitra website. Now the user request to “projectpet.tk”

goes to freenom, from freenom it redirects to Route 53.

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-05, Issue-02, May 2019

554 | IJREAMV05I0250134 DOI : 10.35291/2454-9150.2019.0091 © 2019, IJREAM All Rights Reserved.

From Route 53 it redirects to load balancer link and

petmitra website appears.

IV. RESULTS

The below snapshots gives the result of each tool used.

Figure 4: Code pushed from local to Github Repository after

executing git commands

Figure 5: Job- CI-PetProject is created in Jenkins that build the code

and deploy to S3

Figure 6: Code deployed to S3 by Jenkins job

Figure 7: Docker image pushed into dockerhub repository petproject

Figure 8: Docker image (contains code of input website) running in

kubernetes cluster (pod) with the help of load balancer link

Figure 9: Website accessed via domain name “projectpet.tk”- the user

request to “projectpet.tk” goes to freenom, from freenom it redirects

to Route 53. From Route 53 it redirects to load balancer link and

website appears.

V. CONCLUSION AND FUTURE WORK

DevOps is a methodology that improves the collaboration

between Development and Operations teams. Enabling

DevOps improves the speed of the delivery according to

the business and customer needs. Especially automation in

DevOps improves the productivity, reliability and allows

standardizing the process, which in turn plays a major role

in product delivery for organizations. Processes have to

change with time as the market environment we operate in

is continuously changing. Thus adaption of DevOps in the

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-05, Issue-02, May 2019

555 | IJREAMV05I0250134 DOI : 10.35291/2454-9150.2019.0091 © 2019, IJREAM All Rights Reserved.

current era helps the industry to operate and deliver the

products quickly. By using various tools like git, maven,

Jenkins, docker, terraform and kubernetes this project tries

to show the working of all these tools by developing single

container website.

In this project single container application is used to show

the working of all the tools. In future multiple container

application can be developed to show the working of these

tools along with the working of load balancer. Since the

task of load balancer is to maintain the user request in turn

called load on the application, it decides to which website

access permission should be given to the user when there

are multiple websites are running and that can be seen while

using multiple container application.

REFERENCES

[1] Constantine Aaron Cois, Joseph Yankel, Anne Connell,

“Modern DevOps: Optimizing software development through

effective system interactions”, IEEE International

Professional Communication Conference (IPCC), 2014.

[2] Manish Virmani, “Understanding DevOps & Bridging the

gap from Continuous Integration to Continuous Delivery”,

Fifth international conference on Innovative Computing

Technology (INTECH 2015), 2015.

[3] Juhoon Kim, Catalin Meirosu, Ioanna Papafili, Rebecca

Steinert, Sachin Sharma, Fritz-Joachim Westphal, Mario

Kind, Apoorv Shukla, Felician Nemeth, “Service provider

DevOps for large scale modern network services”, IFIP/IEEE

International Symposium on Integrated Network

Management (IM), 2015.

[4] Felicián Németh, Rebecca Steinert, Per Kreuger, Pontus

Sköldström, “Roles of DevOps tools in an automated,

dynamic service creation architecture”, IFIP/IEEE

International Symposium on Integrated Network

Management (IM), 2015.

[5] Hasan Yasar, Kiriakos Kontostathis, “Secure DevOps

Process and Implementation”, IEEE Cybersecurity

Development (SecDev), 2016.

[6] Christof Ebert, Gorka Gallardo, Josune Hernantes, Nicolas

Serrano, “DevOps”, IEEE Software, 2016.

[7] Shahin, Muhammad Ali Babar, Liming Zhu, “Continuous

Integration, Delivery and Deployment: A Systematic Review

on Approaches, Tools, Challenges and Practices”, IEEE

2016.

[8] Matt Callanan, Alexandra Spillane, “DevOps: Making It

Easy to Do the Right Thing”, IEEE Software, 2016.

[9] M Rajkumar, Anil Kumar Pole, Vittalraya Shenoy

Adige, Prabal Mahanta, “DevOps culture and its impact on

cloud delivery and software development”, International

Conference on Advances in Computing, Communication, &

Automation (ICACCA) (Spring), 2016

[10] Elisa Diel, Sabrina Marczak, Daniela S. Cruzes,

“Communication Challenges and Strategies in Distributed

DevOps”, IEEE 11th International Conference on Global

Software Engineering (ICGSE), 2016.

[11] Hui Kang, Michael Le, Shu Tao, “Container and

Microservice Driven Design for Cloud Infrastructure

DevOps”, IEEE International Conference on Cloud

Engineering (IC2E), 2016.

[12] S. Palihawadana, C. H. Wijeweera, M. G. T. N. Sanjitha, V.

K. Liyanage, I. Perera, D. A. Meedeniya, “Tool support for

traceability management of software artefacts with DevOps

practices”, Moratuwa Engineering Research Conference

(MERCon), 2017.

[13] Wolfgang John, Guido Marchetto, Felician Nemeth, Pontus

Skoldstrom, Rebecca Steinert, Catalin Meiros, Ioanna

Papafili, Koastas Pentikousis, “Service Provider DevOps”,

 IEEE Communications Magazine, 2017.

[14] Zhenhua Li, Yun Zhang, Yunhao Liu, “Towards a full-stack

devops environment (platform-as-a-service) for cloud-hosted

applications”, Tsinghua Science and Technology, 2017.

[15] Arachchi, Indika Perera, “Continuous Integration and

Continuous Delivery Pipeline Automation for Agile Software

Project Management”, Moratuwa Engineering Research

Conference (MERCon) 2018.

[16] Aayush Agarwal, Subhash Gupta, Tanupriya Choudhury,

“Continuous and Integrated Software Development using

DevOps”, International Conference on Advances in

Computing and Communication Engineering (ICACCE-

2018) Paris, France 22-23 June 2018.

[17] Thomas F. Düllmann, Christina Paule, André van Hoorn,

“Exploiting DevOps Practices for Dependable and Secure

Continuous Delivery Pipelines”, IEEE/ACM 4th

International Workshop on Rapid Continuous Software

Engineering (RCoSE), 2018.

[18] Lianping Chen, “Microservices: Architecting for Continuous

Delivery and DevOps”, IEEE International Conference on

Software Architecture (ICSA), 2018.

[19] Aayush Agarwal, Subhash Gupta, Tanupriya Choudhury

“Continuous and Integrated Software Development using

DevOps”, International Conference on Advances in

Computing and Communication Engineering (ICACCE),

2018.

[20] Barry Snyder , Bill Curtis, “Using Analytics to Guide

Improvement During an Agile/DevOps Transformation”,

IEEE Software, 2018.

[21] Len Bass, “The Software Architect and DevOps”, IEEE

SOFTWARE 2018.

