
International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-05, Issue-02, May 2019

242 | IJREAMV05I0250140 DOI : 10.35291/2454-9150.2019.0042 © 2019, IJREAM All Rights Reserved.

Enhancing Cloud Availability using Artificial

Intelligent Operations (AIOps)

Parthasarathy PD, Research Scholar, BITS Pilani, India, pdparthasarathy.03@gmail.com

Dr. Vinod Vijayakumaran, Professor, BITS Pilani, India, vinod.vijayakumaran@gmail.com

Abstract - Every cloud provider wishes to provide 99.9999% availability for the systems provisioned and operated by

them for the customer i.e. may it be SaaS or PaaS or IaaS model, the availability of the system must be greater than

99.9999%. It becomes vital for the provider to monitor the systems and take proactive measures to reduce the

downtime. In an ideal scenario, the support colleagues (24*7 technical support) must be aware of the on-going issues in

the production systems before it is raised as an incident by the customer. But currently, there is no effective alert

monitoring solutions for the same. The proposed solution presented in this paper is to have a central alert monitoring

tool for all cloud solutions offered by the cloud provider. The central alert monitoring tool is intelligent enough to find

if the cloud system is in danger and performs a self healing and brings the system out of threat and helps to achieve the

availability goal. The AI powered intelligent monitoring tool uses machine learning techniques to decide if the system

needs a self healing. This paper acts as a guide to cloud providers and cloud practitioners.

Keywords —Artificial Intelligence, cloud availability, time series database (TSDB), machine learning (ML), Host Agent

(HA), self healing.

I. INTRODUCTION

Availability refers to the uptime of a system, a network of

systems, hardware, and software that collectively provide a

service during its usage [1]. Traditionally the availability of

these has been limited to local installations of hardware and

software resources which businesses and consumers

deployed and maintained. With the advent of cloud

services, there is a considerable shift of these resources into

the cloud. While cloud computing presents some cost-

effective benefits for the consumers and businesses, it is

also extremely important for the cloud service providers to

offer environments that are highly available. Regardless of

the size of an organization prolonged downtime of the

service (these days a few minutes) might be disastrous to its

business, customer loyalty and brand value.

Ideally, the cloud service providers are expected to offer

much more robust cloud infrastructures to ensure that their

customers are presented with an environment that is highly

available. This is true for the public, private and hybrid

models of the cloud. But, the situation with most cloud

providers is that they are not aware of the on-goings in the

infrastructure provisioned by them for the customer. The

cloud provider is aware of an issue in the customer system

only when the customer raises an incident in the cloud

providers support tool. This is a big threat to the cloud

providers brand value and hence it becomes vital for the

providers to monitor the infrastructure provisioned by them

and take proactive measures to reduce the downtime.

In an ideal scenario, the support colleagues (24*7 technical

support) must be aware of the on-going issues in the

production systems before it is raised as an incident by the

customer. Currently, there is no effective alert monitoring

solutions for the same. This paper proposes an effective

alert monitoring solution which can act as a reference guide

for cloud providers and cloud computing practitioners.

II. CURRENT APPROACH AND ISSUES

Current Approach

In the current scenario, there is no alert monitoring in place

and the cloud providers get to know about a downtime or an

issue only a customer reports the same via the cloud

providers support channel after which the analysis begins.

Also, to increase the availability the most common solutions

adopted by providers is heartbeat/echo, High Availability

(HA) and Disaster Recovery (DR) mechanisms. The

HA/DR techniques introduce redundancy at the system,

database, application level so that when there the primary

system is down, there is an immediate switch to the standby

systems. They come with various flavors such as

Active/Passive and Active/Active systems. In

heartbeat/echo, a component issues a ping and expects to

receive back an echo, within a predefined time, from the

component under scrutiny. If the echo is not received within

the predefined time, it is assumed to have failed.

Issues

As discussed in the above, echo/heartbeat technique is

limited only to detecting a failure and does not focus on

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-05, Issue-02, May 2019

243 | IJREAMV05I0250140 DOI : 10.35291/2454-9150.2019.0042 © 2019, IJREAM All Rights Reserved.

intricate details of components involved. A ping check also

helps only to know the overall availability of the system.

There is no intricate precautious monitoring at various

levels in these approaches. Meanwhile, the other approaches

like HA/DR and fail-over are reactive approaches to

increase availability. Hence, the proposed approached in

this paper tries to overcome the drawbacks of these by

having a predictive-precautious monitoring at each level of

the system (OS, DB, application) in a proactive manner.

III. KEY TERMS ELABORATED

 Availability

Availability is defined as the percentage of time that a

system is available to perform its required function(s). It is

measured in a variety of ways, but it is principally a

function of downtime [2]. Availability can be used to

describe a component or system, but it is most useful when

describing the nature of a system of components working

together. Because it is a fraction of time spent in the

“available” state, the value can never exceed the bounds of

0<A<1. Thus, availability will most often be written as a

decimal, as in 0.99999, as a percentage, as in 99.999%.

Availability is influenced by the time demand made by

preventive and corrective maintenance measure.

Availability (A) is measured by: A =

MTBF/(MTBF+MTTR)

where, MTBF: Refers to the amount of time that elapses

between one failure and the next and MTTR: Refers to the

amount of time required to repair a system and bring it back

to its fully functional state.

 Time Series Database [TSDB]

A time series database is a software system that is optimized

for handling time series data, array of numbers indexed by

time [3]. Software with complex logic or business rules and

high transaction volume for time series data may not be

practical with traditional relational database management

systems. Flat file databases are not a viable option either. In

such situations, a time series database comes into play. It is

a specialized database for storing and retrieving time series

in an efficient and optimized way. Some common time

series databases are RRDTool, Graphite, InfluxDB,

OpenTSDB, KairosDB, SAP HANA and many more!

In this use case, metric data is coming from many

systems/infrastructures every few seconds and hence a

timeseries database is needed.

 Machine Learning

ML is a field of computer science that uses statistical

techniques to give computer systems the ability to “learn”

with data, without being explicitly programmed [4]. The

machine is trained using large amounts of data and this acts

as the input often referred to as training data. The training

data is added to a training algorithm which analyses the data

and recognizes patterns, the outcome of this algorithm is

knowledge [5].

 Need for Machine Learning

In this use case, metric data is coming from many

systems/infrastructures every few seconds. This data may

contain noise and outliers. The incoming data cannot be

directly compared with the metric threshold data to

conclude if there is an issue. ML algorithms can help in

getting rid of this and help us cluster the data enabling us to

do a better analysis. The Decision tree are also useful for

the predictive modeling and self-healing.

 Host Agent

Host Agent is an agent which can accomplish several life-

cycle management tasks, such as system provisioning,

instance control and provisioning, installation manager,

operating system and database control. Host agent in

installed automatically during the installation of new

systems/infrastructures. The host agent is upgraded

automatically as part of the system, when the system is

patched or upgraded. Hence, most cloud providers have

such an agent for the installation and management of

systems with their own set of functionalities and name.

Example: SAP Host Agent (SHA), NetApp Host Agent

(NHA) and so on. Hence, every cloud provider provisioned

infrastructure/system has an agent in the system via which

the system was provisioned and can be managed. The idea

is to leverage the capabilities of this agent for constant

monitoring. The approach is to define relevant

metrics/monitoring parameters and their thresholds for each

type of system (ERP, CRM, CMS, MAP, PIM, AMS etc.) at

the operating system level, database level and application

level. The HA collects the real-time value of these metrics

in said intervals (ideally in milliseconds) and pushes it into

a time series database.

 Artificial Intelligence

Artificial intelligence (AI) is the simulation of human

intelligence processes by machines, especially computer

systems. These processes include learning (the acquisition

of information and rules for using the information),

reasoning (using rules to reach approximate or definite

conclusions) and self-correction.

 Self-Healing

In software systems, the self-healing term describes any

application, service, or a system that can discover that it is

not working correctly and, without any human intervention,

make the necessary changes to restore itself to the normal or

designed state. Self-healing is about making the system

capable of making its decisions by continually checking and

optimizing its state and automatically adapting to changing

conditions. The goal is to make fault tolerant and responsive

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-05, Issue-02, May 2019

244 | IJREAMV05I0250140 DOI : 10.35291/2454-9150.2019.0042 © 2019, IJREAM All Rights Reserved.

system capable of responding to changes in demand and

recuperation from failures. The three levels of self-healing

are at

1) Application level

2) System level

3) Hardware level

IV. PROPOSED APPROACH

The proposed solution is to have central alert monitoring

application which helps in predictive, proactive monitoring

of the customer systems and performs self-healing when

needed without the intervention of human beings.

It monitors the landscape of customer systems based on

metric values that are stored into a TSDB and creates

incidents in the providers support tool when the metric

value goes beyond the configured metric threshold values.

The support tool is AI powered meaning has the intelligence

to self-heal the issue. If that step fails, it sends a notification

to the human Support desk.

Stage 1

The basic architecture of the proposed solution as in stage 1

is as shown in Fig 1. The steps 1 through 6 in the diagram is

as explained below:

Step 01: The cloud provider uses the system provisioning

tool to setup the customers systems. Once the system is

setup and is live, it is delivered to the customer. The

provisioning data such as the type of system, different

metrics that are relevant for such a kind of system, the

thresholds of each metric etc. are stored in the Provisioning

and Metric Details Database of the System Provisioning

tool.

Fig. 1. A Basic Architecture of the Proposed Solution Stage 1

Step 02: The provisioning/system data along with the

metrics data of the newly provisioned systems are pushed

into the monitoring application. This data is vital for the

monitoring application as this acts as the metadata and the

monitoring application knows which systems to monitor,

what are the metrics and their thresholds respectively.

Step 03: The moment the customer‟s system goes live, the

host agents in the systems get activated and start pushing

real-time metric values to the TSDB on said intervals. The

metrics are spread across all levels namely, application

level, database level, and operating system level. The

intervals are configured when the system is setup in the

system provisioning tool. Each metric can have its own time

interval of pushing data, example: the hostagent may push

the metric value of a critical metric „X‟ every 5 milliseconds

while it may push the metric value of a non-critical metric

„Y‟ every 5 seconds into the TSDB.

Some of the metrics are CPU utilization, load, disk space

usage, disk space available percent, disk throughput, disk

latency, disk utilization, page size, number of active pages,

application specific metrics like number of active users and

so on. This activity of real-time metric values getting

pushed into the TSDB never stops unless explicitly told to

do so.

Step 04: Once, the Host agent‟s start pushing real-time

metric values into the database, the monitoring application

starts its action. The monitoring application polls the TSDB

every 1 second to get the collected values in the past 1

second. The application does a comparison of the incoming

metric values and the metric‟s threshold and performs the

necessary action. Hence, after the application and the

customer systems are live, the step 03, step 04 happens

iteratively in parallel.

Step 05: If the incoming metric values are beyond the

accepted threshold, the application uses ML techniques to

check if this could a potential threat causing an issue in the

system or is an outlier or a noise. In case of an outlier or a

noise, the application does not take an action but uses this

data for its learning. In case the ML algorithm finds that it is

a valid case and the metric value is going beyond threshold,

the application automatically creates an incident in the

support tool of the Cloud provider which is AI powered,

which we will discuss in Stage 2 of the proposed approach.

This is done using the decision tree algorithm as shown in

Fig. 2.

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-05, Issue-02, May 2019

245 | IJREAMV05I0250140 DOI : 10.35291/2454-9150.2019.0042 © 2019, IJREAM All Rights Reserved.

 Fig. 2. Machine Learning – Decision Tree in Action to

Determine the action based on Metric value

The application also keeps an eye on the raised incidents to

check if the incidents raised still holds good i.e. it

constantly monitors the incoming metric values with the

threshold values again as usual and say suppose in the next

few iterations, if the metric for which an incident was raised

is back to normal (if the metric in below threshold

constantly for say 1 minute) then the application is

intelligent enough to close the raised incident automatically.

Stage 2

This is the stage where the Cloud Providers Support tool

comes into play. This tool is powered by AI and has the

capability to perform self-healing based on adaptive

learning algorithms, incremental learning and transfer

learning. Whenever step 05 in stage 1 has raised an

incident, the incident reaches this AI powered tool which

using its AI performs self-healing.

The self-healing that the tool is capable are only at the

application level and system level. An example of this could

be: If an incident was raised for abnormal CPU usage, the

AI powered support tool will check the system, close

unwanted processes etc. The self-healing is performed

carefully as it should not have any after effects due to its

action. If the AI powered tool fails to perform a self-healing

or does not know an action (in case of a new issue which it

could not identify using ML techniques) or in case of

hardware level issues, the tool simply forwards the incident

created in Step 05, Stage 1 to the manual support which is

the 24 * 7 support staffs who can start analyses and resolve

them.

Fig.3. Process of AI Powered Support Tool

The AI powered tool raises/forwards only valid issues that it

could not resolve using its intelligence and closes the

incidents which are no longer valid (as explained in the

previous step). In this manner, the cloud provider is aware

of the customer systems and can resolve issues if any to

increase the availability of the customer systems. The

customer is not even aware of such an issue which is

ongoing in their landscape and can be assured of the

availability of their systems.

As shown in Fig.3. there are seven steps that the AI

powered support tool does. The role of each step is briefly

described below:

Step 01: The outcome of Stage 1, the incidents have arrived

in the AI powered support tool of the cloud provider.

Step 02: The incidents are clustered using K-Means, K-

neighbors etc. and other ML techniques

Step 03: Patterns are identified, and the existing knowledge

base is checked for self-healing mechanisms.

Step 04: Sent to the AI Engine which performs the self-

healing procedure/mechanism. If the healing was successful,

goto step 6.

Step 05: If the AI Engine failed to perform the self-healing,

then the human support (Development support) staffs are

intimated so that they can check it manually and fix the

issue. Also, the knowledgebase is enhanced with this

knowledge of issue and fix.

Step 06: The issue is resolved, and the system is behaving

normally. Also, the customer was not even aware of the

ongoing issue and its fix.

Step 07: The knowledge is captured & feed to the

knowledgebase so that AI engine can use it in future.

V. IMPLEMENTATION AND RESULTS

The steps as explained in the previous section were

implemented and the schema of the table currently used for

this implementation in TSDB is as shown below:

Where; CID is the customer ID, SID is the unique system

ID which is under scrutiny, MetricPath is the absolute path

of the metric along with the metric name, metric threshold

base value and limit value are the threshold values of the

corresponding metric, metric value indicating the real-time

metric value that is pushed from the systems Hostagent and

the issue flag representing a potential threat and which is

filled as a result of applying ML techniques as discussed in

the previous section, the last two attributes are the

timestamp when the metric was inserted. The k-means

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-05, Issue-02, May 2019

246 | IJREAMV05I0250140 DOI : 10.35291/2454-9150.2019.0042 © 2019, IJREAM All Rights Reserved.

algorithm is used to identify the noise in our

implementation. After implementing the solution in our

premise, the incidents and outage dump of last two quarters

where analyzed and the outcome is as shown in Fig. 4.

As seen in the Fig. 4 (which shows the comparative analysis

of the performance of the existing system and the proposed

system), the number of incidents raised by customers in the

support tool of the cloud provider is quite high before the

monitoring application is introduced (The 2 incidents in that

case is raised by operations team). After the introduction of

the monitoring application and AI powered support tool, we

observe that there is considerable number of internal

incidents raised automatically by the tool and there are

minimal incidents by the customer (only 1).

Fig. 4. Effect of Intelligent Monitoring Application

(Comparative Analysis of existing and proposed approach).

We can also observe that the number of actual outages is

narrowed down to 0 as a potential issue is raised as an

internal incident and before it turns into a threat, it is

resolved by the AI Engine or the support staff. Also, among

the 79 automatic incidents create as the outcome of Stage 1,

56 of them were solved by the AI engine using its ML and

self-healing procedures and 23 by human support staffs as

shown in Fig.5. Also, by incremental learning and

knowledgebase updation, the 29% of human intervention

can be brought down to less than 10%.

Fig.5. AIOps in Action

Hence, after the introduction of the intelligent monitoring

application, the customer can be assured of the availability

of their systems and the cloud provider and keep the

promise of 99.9999% availability of the systems

provisioned and maintained by them.

VI. CHALLENGES

 Self-Monitoring

There might be a case when the TSDB is out of memory,

the intelligent monitoring tool itself is not performing as

expected. To avoid this case, we need to have self-

monitoring capabilities from the intelligent monitoring tool

itself.

 Defining the Time interval for Data Push

If the time intervals for pushing data from Host agent to

TSDB and the time intervals at which intelligent application

polls TSDB is kept minimal then the monitoring is more

precise and efficient but this might become an overhead as

there is constant load on the monitored systems as they have

to push data every few milliseconds and also there would be

a network overhead and a higher bandwidth is required.

Thus, there must be a tradeoff while deciding the time

interval.

 Stability and Reliability of Self-healing procedures and

the ML techniques used must be chosen very carefully

as choosing the wrong technique would end in negative

consequences.

VII. CONCLUSION

The proposed solution in this paper can be used by cloud

providers to increase the availability of the systems that they

provision for the customers. Currently the intelligent

monitoring application acts as an alert monitoring solution

and as a self-healing agent using ML techniques. As seen in

the results section, there is a considerable percentage of

human intervention even now. The future scope is to reduce

this to less than 10% manual intervention. In the manner,

the whole availability scenario can be automated without

any manual intervention. This manuscript is aimed at

guiding and forming a hub for all cloud practitioners in

achieving high-availability in the systems that they

provision.

VIII. ABBREVIATIONS

o AI – Artificial Intelligence

o SaaS – Software as a Service

o PaaS – Platform as a Service

o IaaS – Infrastructure as a Service

o HA – Host Agent

o ERP – Enterprise Resource Planning

o CRM – Customer Relationship Management

o CMS – Content Management System

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Vol-05, Issue-02, May 2019

247 | IJREAMV05I0250140 DOI : 10.35291/2454-9150.2019.0042 © 2019, IJREAM All Rights Reserved.

o MAP – Marketing Automation Platform

o MTTF – Mean time to failure

o MTBF – Mean time between Failures

REFERENCES

[1] Network and communication technologies, Availability of

Services in the Era of Cloud Computing, [Online]

[2] SlideShare, Implementing the Reliability strategy by

Chariton Inao, [Online]

[3] Wikipedia, “Time series database”, [Online]

[4] Machine Learning, Wikipedia, [Online]

[5] Alex Smola and S.V.N. Viswanathan “A Taste of Machine

Learning” in Introduction to Machine Learning, Cambridge:

Cambridge University Press,2008, p.4

 [6] Roger S. Pressman, Software Engineering: A Practitioner’s

Approach,7th Ed., McGraw Hill International Edition,2017

 [7] Ian Sommerville, Software Engineering, 9th ed., Pearson,

2014

 [8] Len Bass, Paul Clements, Rick Kazman, Software

Architecture in Practice, 3rd Edition, Addison Wesley, 2013

 [9] Dong Seong Kim, Fumio Machinda, Kishor S. Trivedi,

“Availability modeling and analysis of a virtualised system”,

2009 15th IEEE Pacific. Rin In.

 [10]Host Agent, [Online], Available:

nscsap.blogspot.com/2015/09/installing-or-updating-sap-host-

agent

 [11] Korolev, A (2016) “Using fuzzy models by systems

engineers at the stages of system lifecycle” in Proceedings of the

First International Scientific Conference “Intelligent Information

Technologies for Industry” (IITI‟16) (451): 209-220,

https://doi.org/10.1007/978-3-319- 33816-3_21

 [12] Samsonovich, A. (2015) “Empirical Measure of

Learnability: A Tool for Semantic Map Validation” in Procedia

Computer Science (71): 265- 270, http:

doi.org/10.1016/j.procs.2015.12.223

 [13] Kaufman, L. and Rousseeuw, P.J. (1987) “Clustering by

means of Medoids” in Statistical Data Analysis Based on the L1–

Norm and Related Methods edited by Y. Dodge, North-Holland:

405–416

AUTHOR’S PROFILE

 Mr. Parthasarathy PD, has 3+

years of IT Industry experience

and currently employed as a full-

stack developer at SAP Labs

India Pvt. Ltd.

His areas of specialization are on

front-end technologies such as

MEAN Stack, JavaScript, OOJS,

SAP UI5, Fiori Guidelines,

ASP.net and backend topics such as SAP ABAP, C# and

Java and is a Machine Learning Enthusiast. He has

contributed to various open source projects and Innovation

topics within SAP. He is also a passionate trainer and

coaches‟ newbies on various technical topics of Computer

Science and technologies. On an academic front, he is a

gold medalist at graduation and post-graduation level and

loves applied research and wishes to pursue a PhD soon.

Dr. Vinod Vijayakumaran has

15 years of IT industry

experience and currently

employed as Technical Project

Manager with HANA Enterprise

Cloud, Partner Centre of

Expertise, at SAP Labs India Pvt.

Ltd. He holds doctorate from

Karunya University, Coimbatore in the field of Computer

Applications. His research area is on processes and this

thesis was on a combined software development model

incorporating LEAN, Agile and Six Sigma methodologies.

Vinod holds a patent from USPO on his tool „Downtime

Calculator‟

http://nscsap.blogspot.com/2015/09/installing-or-updating-sap-host-agent
http://nscsap.blogspot.com/2015/09/installing-or-updating-sap-host-agent

